The present invention relates to an improved riser weak link and particularly, but not exclusively to a pressure balanced weak link.
Risers are commonly used to link hydrocarbon wells on the seabed to floating vessels such as oil rigs or ships. A riser is made up of lengths of tubing and is extremely heavy. The surface vessel therefore needs to apply tension to the riser to prevent it collapsing under its own weight. However, in certain sea conditions, for example, as the vessel moves, the applied tension will fluctuate. At excessive tensions, it is known for risers to break. This can cause an environmental catastrophe as, at the time of separation, the riser may be full of hydrocarbons which could subsequently leak from the riser.
To counter this problem, risers may be provided with a weak link which has a lower tensile rating than the other components of the riser and, in the event of over tensioning the riser, the riser will separate at the weak link.
A conventional weak link comprises two parts which are releasably attached to one another by, for example, studs, which fracture at a predetermined tensile force. Such conventional weak link systems, however, have a drawback. The tensile force applied to the weak link is applied not only by the vessel on the surface but also by well pressure. The studs therefore have to be rated to separate at a tension which is a combination of the separation force supplied by well pressure and the tension applied from surface. Well pressure is variable and at high well pressure a conventional weak link can provide very limited operational utilisation and at low pressure a conventional weak link can fail to protect the system.
According to a first aspect of the present invention there is provided a riser weak link comprising:
an upper housing for connecting to a riser upper section,
a lower housing for connecting to a riser lower section,
at least one connection device for releasably connecting the upper and lower housings, and
a pressure application device adapted to apply a coupling force to the upper housing to at least partially counter a separation force applied, in use, by well pressure, the well pressure separation force acting to separate the upper and lower housings.
In one embodiment the pressure application device applies a coupling force which counters the separation force applied by well pressure. The effect of this is the net separation force acting on the connection device is primarily the tension in the upper riser section, which is applied by a surface vessel to the upper riser section. As a result the connection device can be more accurately rated to allow separation of the upper housing (including the upper riser section) from the lower housing should the tension in the riser exceed a predetermined value.
The pressure application device may utilise well pressure to apply the coupling force to the upper housing.
Preferably, the pressure application device is adapted to apply a counter force to the upper housing to fully counter the separation force applied, in use, by well pressure. This is achievable by presenting sufficient area to, for example, well pressure to generate a sufficient coupling force.
Preferably, the releasable connection device is adapted to permit the upper and lower housings to separate at a predetermined force.
Preferably, the at least one connection device is at least one stud. The studs transfer the riser tension from the upper to the lower sections.
Alternatively, the at least one connection device is at least one latch, shear ring, hydraulic connector or the like.
Preferably, there are a plurality of studs.
Preferably, the studs are adapted to sever or fracture at a predetermined tension.
Preferably, the pressure application device is moveable between a first position in which the device is latched to the upper housing and a second position in which the device is disengaged from the upper housing.
In the second position the pressure application device may be latched to the lower housing.
In one embodiment, the pressure application device comprises at least one pressure balance piston and at least one latch device.
Preferably, the/each latch device, in the first position, is adapted to engage a latch recess defined by the upper housing.
Preferably, in the first position, the/each pressure balance piston acts on the/each latch device under the influence of the coupling force.
Preferably, the/each pressure balance piston acts in a downward direction on the latch device which in turn transfers the coupling force to the upper housing.
Preferably, the/each pressure balance piston is an annular piston.
Preferably, the/each latch device is a collette or segmented band.
Alternatively, the/each latch device comprises one or more dogs.
Preferably, movement of the upper housing moves the pressure application device from the first position to the second position.
Preferably, the/each latch device, in the second position, is adapted to engage a latch recess defined by the lower housing.
Preferably, the/each pressure balance piston is adapted to encircle a portion of the lower housing.
Preferably, the upper housing is adapted to disconnect completely from the lower housing.
Preferably, when the upper housing is completely disconnected from the lower housing, the/each pressure balance piston is associated with the lower housing.
Preferably, the lower housing defines at least one port for permitting well pressure to access the pressure application device.
Preferably, in the first position the/each port is opened and in the second position the/each port is sealed by the/each pressure balance piston.
Preferably, the upper housing includes a closure device. A closure device is provided to seal the upper housing to, in use, prevent the riser contents being deposited through the upper housing upon separation of the upper housing from the lower housing.
Preferably, the closure device is a flapper. Alternatively, the closure device may be a ball valve, a gate valve or a ram.
Preferably the flapper is biased to seal the throughbore.
Preferably, the riser weak link comprises an override mechanism. An override mechanism is provided to ensure that the upper and lower housings do not separate, for example, when the riser weak link is being run into position.
Preferably, the override mechanism is adapted to retain the pressure application device in the first position.
Preferably, the override mechanism comprises an override piston.
Preferably, the override piston is an annular piston.
Preferably, the override piston is adapted to act directly on the pressure application device and, in one embodiment, directly on the at least one pressure balance piston.
Preferably, the override mechanism is hydraulically controlled. Hydraulic pressure can be readily applied to, for example, the override piston.
According to a second aspect of the present invention there is provided method of pressure balancing a riser weak link, the method comprising the step of
exposing a pressure application device to a well pressure, the pressure activation device converting the well pressure to a coupling force and applying the coupling force to a riser weak link upper housing, the upper housing being releasably connected to a riser weak link lower housing, the coupling force at least partially countering a separation force applied by well pressure, the well pressure separation force acting to separate the upper and lower housings.
Embodiments of the present invention will now be described with reference to the accompanying drawings in which:
Reference is firstly made to
The riser weak link 10 comprises an upper housing 16, connected to the upper riser section 12 and a lower housing 18 connected to the lower riser section 14. The upper and lower housings 16,18 define a throughbore 20, connecting the upper riser section 12 to a production tube 21, thereby permitting access to a downhole formation (not shown) by a service vessel (not shown) at the top of the upper riser section 12.
The upper and lower housings 16,18 are releasably connected by studs 22. The studs 22 are adapted to fracture at a predetermined force permitting the upper and lower housings 16, 18 to separate.
The production tube 21, the riser weak link 10 and the upper riser section 12, in use, are all exposed to well pressure. The well pressure acts on both the upper and lower housings 16, 18 at a housing interface 26. At this interface 26, the well pressure acts in the direction of arrow A to push the upper housing 16 upwards and in the direction of arrow B to push the lower housing 18 downwards. This separation force is in addition to a further separation force applied by the surface vessel (not shown) to the upper riser section 12 and upper housing 16 to keep the upper riser section 12 in tension.
In a conventional weak link, the connection devices (represented by studs 22 in the present invention) have to be rated to withstand both the separation force applied by well pressure and the separation force applied by the surface vessel. However, correctly rating the connection devices is difficult to achieve because well pressure can be variable and the rating chosen does not always lead to optimal operation of a conventional weak link.
To overcome this limitation the weak link 10 of the present invention incorporates a pressure application device 24. The pressure application device 24 is adapted to apply a coupling force to the upper housing 16 to counter the separation force applied, in use, by well pressure. The pressure application device comprises a pressure balance piston 28 and a latching device 30. The pressure balance piston 28 is an annular piston which encircles the outer surface 32 of a portion of the lower housing 18. The latching device 30 is a segmented band which also encircles the lower housing outer surface portion 32. The lower housing 18 defines a series of ports 34 which permits the well pressure to access and act on an upper surface 36 of the pressure balance piston 28. The area of the pressure balance piston upper surface 36 is chosen such that the downward force applied by the well pressure results in a coupling force equal to the separation force applied at the housing interface 26 in the direction of arrow A. As the well pressure coupling force is equal to the well pressure separation force, the only separation force experienced by the studs 22, is the tension applied to the upper riser section 12 by the surface vessel. As a result the studs 22 can be accurately rated to fracture at a tension less than the ultimate tensile strength of the riser but close enough to the ultimate tensile strength of the upper riser section 12 to maximise the utility of the upper riser section 12.
As can be seen from
The riser weak link 10 also comprises an override piston 42, which is used to apply a coupling force through the pressure activation device 24 to retain the upper and lower housings 16,18 in engagement when, for example, the riser weak link 10 is being run-into position. A downward force can be applied to the override piston 42 by the use of a hydraulic fluid pumped from a source (not shown) to a hydraulic line 44.
The riser weak link 10 further comprises a flapper 50 the purpose of which will be discussed in due course.
The operation of the riser weak link 10, will now be described with reference to
In
Referring now to
Referring now to
Referring now to
If it is desired to recover the lower housing 18 to surface, this can be achieved using a recovery tool as shown in
Various modifications and improvements may be made to the above described embodiment without departing from the scope of the invention. For example although studs are shown connecting the upper and lower housings, any suitable connecting means may be employed such as mechanical latches, shear rings or hydraulic connectors.
Number | Date | Country | Kind |
---|---|---|---|
0811219.5 | Jun 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2009/001535 | 6/18/2009 | WO | 00 | 2/11/2011 |