The disclosure relates to the field of computer systems for context-based searching, complex knowledge data set development, and artificial intelligence and machine learning driven risk modeling.
Challenges associated with managing and understanding risk for ongoing business relationships and enterprise management are growing. As individuals and corporate entities expand in this increasingly interconnected world so do the complexity of their relationships, ergo their potential risk factors. When it comes to informed decision making in the realm of business or financial relations, interested parties need a full understanding of a counterparty's relative state, value, and risk, including their own risk factors for that matter. The sheer volume of information associated with different individual and corporate entities is overwhelmingly complex and diffuse. The current state of risk management lacks the ability to perform reliable and comprehensive indexing and analysis of all available data pertinent to understanding an organization's risk.
What is needed is a system and method for identifying, profiling, and analyzing an entity's risk associated with second party, third party, and more extended relationships, one that automatically ingests both structured and unstructured data while computing dynamic relational attributes observed and inferred from a plurality of disparate data sources, and includes temporal and geospatial analyses for historical and geographical context.
A system and method for understanding and analyzing risk for use in business and financial decisions. The system and method allow a user to query an individual or business and return a profile and a rating associated with the risk of that entity. The profile consists of an advanced temporospatial weighted and directional knowledge graph that is generated by ingesting, processing, and transforming a vast amount of complex data for the purpose of human comprehension and further system analysis. Meanwhile, the rating is generated from a risk analysis algorithm that conducts a comprehensive analysis by categorizing and weighting all available risk factors (e.g., industry specific risks, 3rd and 4th party risk, etc.). The system and method provide advanced insights and analytics into the inherent state, value, and risk associated with an entity and its relations, geographies, industry sectors, and/or the like.
According to a preferred embodiment, a computing system for risk profiling and rating of extended relationships using ontological databases employing a cyber decision platform, the computing system comprising: one or more hardware processors configured for: receiving a natural language query; processing the query through a natural language processing engine to extract a context of the query; sending the query and the context to an ontological database generator; receiving the query and the context; determining whether or not to run the received query and context necessitate the construction of a new ontological database, or if a semantically similar ontological database already exists; conducting an Internet search for information related to the query and the context using a web scraper tool to obtain search results, the search results comprising temporospatial information; receiving heterogeneous data from third party sources to be searched for information related to the query and the context, the result of the search comprising temporospatial information; generating an ontological database of relationships from the search results, the relationships comprising a temporospatial dimension generated from the temporospatial information; analyzing the ontological database for query-related information, the query-related information comprising entities, locations, and topics associated with the subject; wherein the ontological database may be of any subject domain or ontological framework, as resulting from the construction of the database by the ontological database generator using queries and context from a semantic query analyzer; creating a weighted and directed knowledge graph, the weighted and directed knowledge graph comprising nodes representing the entities, locations, and topics associated with the subject and edges representing the relationships to the nodes in relation to the subject or the associated nodes, wherein: each node is assigned a risk value based on relationships in the ontological database, the risk value being based in part on a temporospatial comparative analysis of the temporospatial dimension of the ontological database; and each edge is assigned a probability of influence between the nodes to which it is connected; applying a graph analysis algorithm to identify a plurality of paths within the directed graph; iterating over the nodes and edges in each identified path to determine a probability of occurrence and risk impact associated with that path; and assigning a risk rating to each path identified, based on the probability of occurrence and risk impact associated with that path.
According to a preferred embodiment, a computer-implemented method executed on a cyber decision platform for risk profiling and rating of extended relationships using ontological databases, the computer-implemented method comprising: receiving a natural language query; processing the query through a natural language processing engine to extract a context of the query; sending the query and the context to an ontological database generator; receiving the query and the context; determining whether or not to run the received query and context necessitate the construction of a new ontological database, or if a semantically similar ontological database already exists; conducting an Internet search for information related to the query and the context using a web scraper tool to obtain search results, the search results comprising temporospatial information; receiving heterogeneous data from third party sources to be searched for information related to the query and the context, the result of the search comprising temporospatial information; generating an ontological database of relationships from the search results, the relationships comprising a temporospatial dimension generated from the temporospatial information; analyzing the ontological database for query-related information, the query-related information comprising entities, locations, and topics associated with the subject; wherein the ontological database may be of any subject domain or ontological framework, as resulting from the construction of the database by the ontological database generator using queries and context from a semantic query analyzer; creating a weighted and directed knowledge graph, the weighted and directed knowledge graph comprising nodes representing the entities, locations, and topics associated with the subject and edges representing the relationships to the nodes in relation to the subject or the associated nodes, wherein: each node is assigned a risk value based on relationships in the ontological database, the risk value being based in part on a temporospatial comparative analysis of the temporospatial dimension of the ontological database; and each edge is assigned a probability of influence between the nodes to which it is connected; applying a graph analysis algorithm to identify a plurality of paths within the directed graph; iterating over the nodes and edges in each identified path to determine a probability of occurrence and risk impact associated with that path; and assigning a risk rating to each path identified, based on the probability of occurrence and risk impact associated with that path.
According to a preferred embodiment, a system for risk profiling and rating of extended relationships using ontological databases employing a cyber decision platform, comprising one or more computers with executable instructions that, when executed, cause the system to: receive a natural language query; process the query through a natural language processing engine to extract a context of the query; send the query and the context to an ontological database generator; receive the query and the context; determine whether or not to run the received query and context necessitate the construction of a new ontological database, or if a semantically similar ontological database already exists; conduct an Internet search for information related to the query and the context using a web scraper tool to obtain search results, the search results comprising temporospatial information; receive heterogeneous data from third party sources to be searched for information related to the query and the context, the result of the search comprising temporospatial information; generate an ontological database of relationships from the search results, the relationships comprising a temporospatial dimension generated from the temporospatial information; analyze the ontological database for query-related information, the query-related information comprising entities, locations, and topics associated with the subject; wherein the ontological database may be of any subject domain or ontological framework, as resulting from the construction of the database by the ontological database generator using queries and context from a semantic query analyzer; create a weighted and directed knowledge graph, the weighted and directed knowledge graph comprising nodes representing the entities, locations, and topics associated with the subject and edges representing the relationships to the nodes in relation to the subject or the associated nodes, wherein: each node is assigned a risk value based on relationships in the ontological database, the risk value being based in part on a temporospatial comparative analysis of the temporospatial dimension of the ontological database; and each edge is assigned a probability of influence between the nodes to which it is connected; apply a graph analysis algorithm to identify a plurality of paths within the directed graph; iterate over the nodes and edges in each identified path to determine a probability of occurrence and risk impact associated with that path; and assign a risk rating to each path identified, based on the probability of occurrence and risk impact associated with that path.
According to a preferred embodiment, non-transitory, computer-readable storage media having computer-executable instructions embodied thereon that, when executed by one or more processors of a computing system employing a cyber decision platform for risk profiling and rating of extended relationships using ontological databases, cause the computing system to: receive a natural language query; process the query through a natural language processing engine to extract a context of the query; and send the query and the context to an ontological database generator; receive the query and the context; determine whether or not to run the received query and context necessitate the construction of a new ontological database, or if a semantically similar ontological database already exists; conduct an Internet search for information related to the query and the context using a web scraper tool to obtain search results, the search results comprising temporospatial information; receive heterogeneous data from third party sources to be searched for information related to the query and the context, the result of the search comprising temporospatial information; generate an ontological database of relationships from the search results, the relationships comprising a temporospatial dimension generated from the temporospatial information; analyze the ontological database for query-related information, the query-related information comprising entities, locations, and topics associated with the subject; wherein the ontological database may be of any subject domain or ontological framework, as resulting from the construction of the database by the ontological database generator using queries and context from a semantic query analyzer; create a weighted and directed knowledge graph, the weighted and directed knowledge graph comprising nodes representing the entities, locations, and topics associated with the subject and edges representing the relationships to the nodes in relation to the subject or the associated nodes, wherein: each node is assigned a risk value based on relationships in the ontological database, the risk value being based in part on a temporospatial comparative analysis of the temporospatial dimension of the ontological database; and each edge is assigned a probability of influence between the nodes to which it is connected; and apply a graph analysis algorithm to identify a plurality of paths within the directed graph; iterate over the nodes and edges in each identified path to determine a probability of occurrence and risk impact associated with that path; and assign a risk rating to each path identified, based on the probability of occurrence and risk impact associated with that path.
According to an aspect of an embodiment, the heterogenous data comprises information obtained from governmental databases, legislative actions, and news reports.
According to an aspect of an embodiment, the risk rating is associated with a third-party risk or a fourth-party risk.
According to an aspect of an embodiment, the risk rating is associated with an industry-specific risk.
The accompanying drawings illustrate several aspects and, together with the description, serve to explain the principles of the invention according to the aspects. It will be appreciated by one skilled in the art that the particular arrangements illustrated in the drawings are merely exemplary, and are not to be considered as limiting of the scope of the invention or the claims herein in any way.
The inventor has conceived and reduced to practice system and method for understanding and analyzing extended relationship risks for use in business and financial decisions. The system and method allow a user to query an individual or business and returns a profile and a rating associated with the relationship risk of that entity. The profile consists of an advanced temporospatial weighted and directional knowledge graph that is generated by ingesting, processing, and transforming a vast amount of complex data for the purpose of human comprehension and further system analysis. Meanwhile, the rating is generated from a risk analysis algorithm that conducts a comprehensive analysis by categorizing and weighting all available risk factors. The system and method provide advanced insights and analytics into the inherent state, value, and risk associated with an entity and its relations.
The system and method work by receiving a query about an entity and resolving the query through semantic computing. As used herein, semantic computing is the use of natural language processing (NLP) and machine learning to derive context and meaning from the search before converting the search into a structured query that is then used to parse and update ontological databases within the system.
Once the query has been analyzed semantically, the system then pulls information from a variety of available sources using data-extraction, web-scraping, and network reconnaissance techniques. This includes all private, public, and proprietary sources accessible by the system. A comprehension engine, using the same semantic computing techniques, observes and infers primary, secondary, and tertiary relationships and attributes of the entity in question. This data is stored in ontological databases. In some embodiments, the system may use web ontology language (OWL) and financial industry business ontology (FIBO) standards.
Once the ontological databases are created or updated, where the data has been organized into typical ontological data structures e.g., classes, attributes, relations, axioms, etc., a knowledge graph is generated which may be presented to the user for advanced insight and analysis into the risk factors and relationships associated with the queried entity, but also is used by the system to answer additional queries through various procedures. The procedures used by the system to accomplish this may include GraphFrames (e.g., Spark, Jupyter, etc.) and vectorization (e.g., adjacency matrices) of the knowledge graph.
This leads to the risk analysis which can be used to generate a risk score or rating. The system and method use semantics computing and machine learning to generate a risk rating of the queried entity. The first step is to derive context and meaning from each bit of ingested data and the insight from the knowledge graph to identify what type of risk it is and how impactful it is to the entity. Machine learning algorithms assist in determining the impact and severity of the risk by consulting actuarial tables and commercial-off-the-shelf (COTS) modeling tools, and together with the system's semantic computing, assign a summed total of the risk rating. The risk rating scale is customizable but as an example, it may be configured where a negative numerical score means a higher risk, a risk rating of zero is neutral, and a positive numerical rating is of low risk or beneficial relationship to the user.
A few detailed aspects of the system include the ability to use geoJSON data coupled with semantic computing to determine dynamic risks based on market conditions, locality, and sentiment/hype to enable analyses to remain consistent and potentially risk-normalized. Additionally, basic data sets can be extended to include official inquiries as well as internal/external scans, network infrastructure, behavioral, news sources, and interpreted historical and cultural information from sources such as Wikipedia.
On the topic of risk management, another aspect of the system and method is additionally mitigating risk from an actual disruption of services from real-world events by considering regulatory or legislative disruption which can be imposed on organizations. These may comprise societal expectations, observation, validation, and enforcement change, where the actual and near-actual credible histories associated with legal and regulatory action are processed through the system by analyzing bodies of discourse, proposed actions, and realized actions. Salient examples include the Federal Trade Commission actions and the Securities and Exchange Commission actions against Facebook and Equifax. Linking these actions with the nature of public and private (mainly proprietary) discourse and the actual state of the entities and their competitive set from the perspective of establishing industry norms is a critical part of the invention and aids in understanding historical context and the ongoing change of today's daily news cycle and events.
To summarize, the system dynamically comprehends the context and relations of a very large number of data points with relation to a queried entity and then organizes and stores the information in ontological relational databases thus creating comprehensive and holistic data models, from which the system infers and observes risks to produce a weighted and directed temporospatial knowledge graph and risk rating. Additionally, the knowledge graphs generated are not only weighted and directional but attribute temporal and spatial context which may be viewed as independent time-slices, geospatial-slices, or temporospatial-slices, to give historical and geospatial information to the user but also to serve in artificial intelligence and machine learning feedback loops for predictive risk analysis. The risk rating is a comprehensive numerical score generated from a myriad of data points proving near-real time risk analysis for business decisions.
The system and method are equally valuable for counterparty trade negotiations and investors in public or private companies seeking to understand the relative state, value, and risks associated with their holdings. The system and method further integrate holding information such as Carta-like financial information, and combinations of public, private licensed, and proprietary data that when processed together is useful for any interested party to improve the efficacy of their investment, governance, and operational decisions.
One or more different aspects may be described in the present application. Further, for one or more of the aspects described herein, numerous alternative arrangements may be described; it should be appreciated that these are presented for illustrative purposes only and are not limiting of the aspects contained herein or the claims presented herein in any way. One or more of the arrangements may be widely applicable to numerous aspects, as may be readily apparent from the disclosure. In general, arrangements are described in sufficient detail to enable those skilled in the art to practice one or more of the aspects, and it should be appreciated that other arrangements may be utilized and that structural, logical, software, electrical and other changes may be made without departing from the scope of the particular aspects. Particular features of one or more of the aspects described herein may be described with reference to one or more particular aspects or figures that form a part of the present disclosure, and in which are shown, by way of illustration, specific arrangements of one or more of the aspects. It should be appreciated, however, that such features are not limited to usage in the one or more particular aspects or figures with reference to which they are described. The present disclosure is neither a literal description of all arrangements of one or more of the aspects nor a listing of features of one or more of the aspects that must be present in all arrangements.
Headings of sections provided in this patent application and the title of this patent application are for convenience only and are not to be taken as limiting the disclosure in any way.
Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more communication means or intermediaries, logical or physical.
A description of an aspect with several components in communication with each other does not imply that all such components are required. To the contrary, a variety of optional components may be described to illustrate a wide variety of possible aspects and in order to more fully illustrate one or more aspects. Similarly, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may generally be configured to work in alternate orders, unless specifically stated to the contrary. In other words, any sequence or order of steps that may be described in this patent application does not, in and of itself, indicate a requirement that the steps be performed in that order. The steps of described processes may be performed in any order practical. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the aspects, and does not imply that the illustrated process is preferred. Also, steps are generally described once per aspect, but this does not mean they must occur once, or that they may only occur once each time a process, method, or algorithm is carried out or executed. Some steps may be omitted in some aspects or some occurrences, or some steps may be executed more than once in a given aspect or occurrence.
When a single device or article is described herein, it will be readily apparent that more than one device or article may be used in place of a single device or article. Similarly, where more than one device or article is described herein, it will be readily apparent that a single device or article may be used in place of the more than one device or article.
The functionality or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality or features. Thus, other aspects need not include the device itself.
Techniques and mechanisms described or referenced herein will sometimes be described in singular form for clarity. However, it should be appreciated that particular aspects may include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. Process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of various aspects in which, for example, functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
As used herein, “graph” is a representation of information and relationships, where each primary unit of information makes up a “node” or “vertex” of the graph and the relationship between two nodes makes up an edge of the graph. Nodes can be further qualified by the connection of one or more descriptors or “properties” to that node. For example, given the node “James R,” name information for a person, qualifying properties might be “183 cm tall,” “DOB Aug. 13, 1965” and “speaks English.” Similar to the use of properties to further describe the information in a node, a relationship between two nodes that forms an edge can be qualified using a “label.” Thus, given a second node “Thomas G,” an edge between “James R” and “Thomas G” that indicates that the two people know each other might be labeled “knows.” When graph theory notation (Graph=(Vertices, Edges)) is applied this situation, the set of nodes are used as one parameter of the ordered pair, V and the set of 2 element edge endpoints are used as the second parameter of the ordered pair, E. When the order of the edge endpoints within the pairs of E is not significant, for example, the edge James R, Thomas G is equivalent to Thomas G, James R, the graph is designated as “undirected.” Under circumstances when a relationship flows from one node to another in one direction, for example James R is “taller” than Thomas G, the order of the endpoints is significant. Graphs with such edges are designated as “directed.” In the distributed computational graph system, transformations within transformation pipeline are represented as directed graphs with each transformation comprising a node and the output messages between transformations comprising edges. Distributed computational graph stipulates the potential use of non-linear transformation pipelines which are programmatically linearized. Such linearization can result in exponential growth of resource consumption. The most sensible approach to overcome possibility is to introduce new transformation pipelines just as they are needed, creating only those that are ready to compute. Such method results in transformation graphs which are highly variable in size and node, edge composition as the system processes data streams (and/or bulk data sets). Those familiar with the artwill realize that transformation graphs may assume many shapes and sizes with a vast topography of edge relationships and are composable with various subgraphs or tasks capable of being aggregated inside other graphs/subgraphs. The examples given were chosen for illustrative purposes only and represent a small number of the simplest of possibilities. These examples should not be taken to define the possible graphs expected as part of the operation of the invention.
As used herein, “transformation” is a function performed on zero or more streams of input data which results in a single stream of output which may or may not then be used as input for another transformation. Transformations may comprise any combination of machine, human or machine-human interactions Transformations need not change data that enters them, one example of this type of transformation would be a storage transformation which would receive input and then act as a queue for that data for subsequent transformations. As implied above, a specific transformation may generate output data in the absence of input data. A time stamp serves as an example. In the invention, transformations are placed into pipelines such that the output of one transformation may serve as an input for another. These pipelines can consist of two or more transformations with the number of transformations limited only by the resources of the system. Historically, transformation pipelines have been linear with each transformation in the pipeline receiving input from one antecedent and providing output to one subsequent with no branching or iteration. Other pipeline configurations are possible. The invention is designed to permit several of these configurations including, but not limited to: linear, afferent branch, efferent branch and cyclical.
A “database” or “data storage subsystem” (these terms may be considered substantially synonymous), as used herein, is a system adapted for the long-term storage, indexing, and retrieval of data, the retrieval typically being via some sort of querying interface or language. “Database” may be used to refer to relational database management systems known in the art, but should not be considered to be limited to such systems. Many alternative database or data storage system technologies have been, and indeed are being, introduced in the art, including but not limited to distributed non-relational data storage systems such as Hadoop, column-oriented databases, in-memory databases, document, relational, key-value, column, graph, timeseries, vector, etc. and/or the like. While various aspects may preferentially employ one or another of the various data storage subsystems available in the art (or available in the future), the invention should not be construed to be so limited, as any data storage architecture may be used according to the aspects. Similarly, while in some cases one or more particular data storage needs are described as being satisfied by separate components (for example, an expanded private capital markets database and a configuration database), these descriptions refer to functional uses of data storage systems and do not refer to their physical architecture. For instance, any group of data storage systems of databases referred to herein may be included together in a single database management system operating on a single machine, or they may be included in a single database management system operating on a cluster of machines as is known in the art. Similarly, any single database (such as an expanded private capital markets database) may be implemented on a single machine, on a set of machines using clustering technology, on several machines connected by one or more messaging systems known in the art, or in a master/slave arrangement common in the art. These examples should make clear that no particular architectural approaches to database management is preferred according to the invention, and choice of data storage technology is at the discretion of each implementer, without departing from the scope of the invention as claimed.
A “data context,” as used herein, refers to a set of arguments identifying the location of data. This could be a Rabbit queue, a .csv file in cloud-based storage, or any other such location reference except a single event or record. Activities may pass either events or data contexts to each other for processing. The nature of a pipeline allows for direct information passing between activities, and data locations or files do not need to be predetermined at pipeline start.
A “pipeline,” as used herein and interchangeably referred to as a “data pipeline” or a “processing pipeline,” refers to a set of data streaming activities and batch activities. Streaming and batch activities can be connected indiscriminately within a pipeline. Events will flow through the streaming activity actors in a reactive way. At the junction of a streaming activity to batch activity, there will exist a StreamBatchProtocol data object. This object is responsible for determining when and if the batch process is run. One or more of three possibilities can be used for processing triggers: regular timing interval, every N event, or optionally an external trigger. The events are held in a queue or similar until processing. Each batch activity may contain a “source” data context (this may be a streaming context if the upstream activities are streaming), and a “destination” data context (which is passed to the next activity). Streaming activities may have an optional “destination” streaming data context (optional meaning: caching/persistence of events vs. ephemeral), though this should not be part of the initial implementation.
“Artificial intelligence” or “AI” as used herein means a computer system or component that has been programmed in such a way that it mimics some aspect or aspects of cognitive functions that humans associate with human intelligence, such as learning, problem solving, and decision-making. Examples of current AI technologies include understanding human speech, competing successfully in strategic games such as chess and Go, autonomous operation of vehicles, complex simulations, and interpretation of complex data such as images and video.
“Machine learning” as used herein is an aspect of artificial intelligence in which the computer system or component can modify its behavior or understanding without being explicitly programmed to do so. Machine learning algorithms develop models of behavior or understanding based on information fed to them as training sets, and can modify those models based on new incoming information. An example of a machine learning algorithm is AlphaGo, the first computer program to defeat a human world champion in the game of Go. AlphaGo was not explicitly programmed to play Go. It was fed millions of games of Go, and developed its own model of the game and strategies of play.
“Domain-specific ontology” refers to a hierarchical taxonomy of concepts and their relationships within a particular ontological domain (i.e., a set of reference ideas that establishes context). For example, the word “card” has many different meanings, depending on the ontological domain (context) in which it is used. In the domain of poker, the term “card” would refer to a “playing card” as used in playing the game of poker. In the domain of computer software, the term “card” may refer to the antiquated “punch card” form of information storage. In the domain of computer hardware, the term “card” could refer to a “video card”, an “SD card” (a type of memory storage device), or similar pieces of hardware.
“Knowledge graph stack” or “KGS” is used as shorthand to refer to a system for single-tenant or multi-tenant graph databases with dynamic specification and enforcement of ontological data models, although other terms such as system, method, methodology, etc., may be used.
“Ontology” refers to a formal naming and definition of the types, properties, and interrelationships of the entities that exist in a particular domain of discourse. Ontologies are a method of classification of things and their relationships with other things. They are related to, but more flexible than, taxonomies, hierarchies, and class definitions given that relationships between concept entities can be specified. The term ontologies, as used herein, has the meaning associated with information and computer science, rather than the definition used in philosophy of classifying things as they exist in reality.
Results of the transformative analysis process may then be combined with further client directives, and additional business rules and practices relevant to the analysis and situational information external to the already available data in the automated planning service module 130 which also runs powerful information theory 130a based predictive statistics functions and machine learning algorithms to allow future trends and outcomes to be rapidly forecast based upon the current system derived results and choosing each a plurality of possible business decisions. Using all available data, the automated planning service module 130 may propose business decisions most likely to result is the most favorable business outcome with a usably high level of certainty. Closely related to the automated planning service module in the use of system derived results in conjunction with possible externally supplied additional information in the assistance of end user business decision making, the action outcome simulation module 125 with its discrete event simulator programming module 125a coupled with the end user facing observation and state estimation service 140 which is highly scriptable 140b as circumstances require and has a game engine 140a to more realistically stage possible outcomes of business decisions under consideration, allows business decision makers to investigate the probable outcomes of choosing one pending course of action over another based upon analysis of the current available data.
When performing external reconnaissance via a network 107, web crawler 115 may be used to perform a variety of port and service scanning operations on a plurality of hosts. This may be used to target individual network hosts (for example, to examine a specific server or client device) or to broadly scan any number of hosts (such as all hosts within a particular domain, or any number of hosts up to the complete IPv4 address space). Port scanning is primarily used for gathering information about hosts and services connected to a network, using probe messages sent to hosts that prompt a response from that host. Port scanning is generally centered around the transmission control protocol (TCP), and using the information provided in a prompted response a port scan can provide information about network and application layers on the targeted host.
Port scan results can yield information on open, closed, or undetermined ports on a target host. An open port indicates that an application or service is accepting connections on this port (such as ports used for receiving customer web traffic on a web server), and these ports generally disclose the greatest quantity of useful information about the host. A closed port indicates that no application or service is listening for connections on that port, and still provides information about the host such as revealing the operating system of the host, which may be discovered by fingerprinting the TCP/IP stack in a response. Different operating systems exhibit identifiable behaviors when populating TCP fields, and collecting multiple responses and matching the fields against a database of known fingerprints makes it possible to determine the OS of the host even when no ports are open. An undetermined port is one that does not produce a requested response, generally because the port is being filtered by a firewall on the host or between the host and the network (for example, a corporate firewall behind which all internal servers operate).
Scanning may be defined by scope to limit the scan according to two dimensions, hosts and ports. A horizontal scan checks the same port on multiple hosts, often used by attackers to check for an open port on any available hosts to select a target for an attack that exploits a vulnerability using that port. This type of scan is also useful for security audits, to ensure that vulnerabilities are not exposed on any of the target hosts. A vertical scan defines multiple ports to examine on a single host, for example a “vanilla scan” which targets every port of a single host, or a “strobe scan” that targets a small subset of ports on the host. This type of scan is usually performed for vulnerability detection on single systems, and due to the single-host nature is impractical for large network scans. A block scan combines elements of both horizontal and vertical scanning, to scan multiple ports on multiple hosts. This type of scan is useful for a variety of service discovery and data collection tasks, as it allows a broad scan of many hosts (up to the entire Internet, using the complete IPv4 address space) for a number of desired ports in a single sweep.
Large port scans involve quantitative research, and as such may be treated as experimental scientific measurement and are subject to measurement and quality standards to ensure the usefulness of results. To avoid observational errors during measurement, results must be precise (describing a degree of relative proximity between individual measured values), accurate (describing relative proximity of measured values to a reference value), preserve any metadata that accompanies the measured data, avoid misinterpretation of data due to faulty measurement execution, and must be well-calibrated to efficiently expose and address issues of inaccuracy or misinterpretation. In addition to these basic requirements, large volumes of data may lead to unexpected behavior of analysis tools and extracting a subset to perform initial analysis may help to provide an initial overview before working with the complete data set. Analysis should also be reproducible, as with all experimental science, and should incorporate publicly-available data to add value to the comprehensibility of the research as well as contributing to a “common framework” that may be used to confirm results.
When performing a port scan, web crawler 115 may employ a variety of software suitable for the task, such as Nmap, ZMap, or masscan. Nmap is suitable for large scans as well as scanning individual hosts, and excels in offering a variety of diverse scanning techniques. ZMap is a newer application and unlike Nmap (which is more general-purpose), ZMap is designed specifically with Internet-wide scans as the intent. As a result, ZMap is far less customizable and relies on horizontal port scans for functionality, achieving fast scan times using techniques of probe randomization (randomizing the order in which probes are sent to hosts, minimizing network saturation) and asynchronous design (utilizing stateless operation to send and receive packets in separate processing threads). Masscan uses the same asynchronous operation model of ZMap, as well as probe randomization. In masscan however, a certain degree of statistical randomness is sacrificed to improve computation time for large scans (such as when scanning the entire IPv4 address space), using the BlackRock algorithm. This is a modified implementation of symmetric encryption algorithm DES, with fewer rounds and modulo operations in place of binary ones to allow for arbitrary ranges and achieve faster computation time for large data sets.
Received scan responses may be collected and processed through a plurality of data pipelines 155a to analyze the collected information. MDTSDB 120 and graph stack 145 may be used to produce a hybrid graph/time-series database using the analyzed data, forming a graph of Internet-accessible organization resources and their evolving state information over time. Customer-specific profiling and scanning information may be linked to CPG graphs (as described below in detail, referring to
Other modules that make up the advanced cyber decision platform may also perform significant analytical transformations on trade related data. These may include the multidimensional time series data store 120 with its robust scripting features which may include a distributive friendly, fault-tolerant, real-time, continuous run prioritizing, programming platform such as, but not limited to Erlang/OTP 221 and a compatible but comprehensive and proven library of math functions of which the C++ math libraries are an example 222, data formalization and ability to capture time series data including irregularly transmitted, burst data; the GraphStack service 145 which transforms data into graphical representations for relational analysis and may use packages for graph format data storage such as Titan 245 or the like and a highly interface accessible programming interface an example of which may be Akka/Spray, although other, similar, combinations may equally serve the same purpose in this role 246 to facilitate optimal data handling; the directed computational graph module 155 and its distributed data pipeline 155a supplying related general transformer service module 160 and decomposable transformer module 150 which may efficiently carry out linear, branched, and recursive transformation pipelines during trading data analysis may be programmed with multiple trade related functions involved in predictive analytics of the received trade data. Both possibly during and following predictive analyses carried out by the system, results must be presented to clients 105 in formats best suited to convey both important results for analysts to make highly informed decisions and, when needed, interim or final data in summary and potentially raw for direct human analysis. Simulations which may use data from a plurality of field spanning sources to predict future trade conditions these are accomplished within the action outcome simulation module 125. Data and simulation formatting may be completed or performed by the observation and state estimation service 140 using its ease of scripting and gaming engine to produce optimal presentation results.
In cases where there are both large amounts of data to be cleansed and formalized and then intricate transformations such as those that may be associated with deep machine learning, first disclosed in ¶067 of co-pending application Ser. No. 14/925,974, predictive analytics and predictive simulations, distribution of computer resources to a plurality of systems may be routinely required to accomplish these tasks due to the volume of data being handled and acted upon. The advanced cyber decision platform employs a distributed architecture that is highly extensible to meet these needs. A number of the tasks carried out by the system are extremely processor intensive and for these, the highly integrated process of hardware clustering of systems, possibly of a specific hardware architecture particularly suited to the calculations inherent in the task, is desirable, if not required for timely completion. The system includes a computational clustering module 280 to allow the configuration and management of such clusters during application of the advanced cyber decision platform. While the computational clustering module is drawn directly connected to specific co-modules of the advanced cyber decision platform these connections, while logical, are for ease of illustration and those skilled in the art will realize that the functions attributed to specific modules of an embodiment may require clustered computing under one use case and not under others. Similarly, the functions designated to a clustered configuration may be role, if not run, dictated. Further, not all use cases or data runs may use clustering.
For example, in an exemplary scoring system similar to a credit rating, information from initial Internet recon operations may be assigned a score up to 400 points, along with up to 200 additional points for web/application recon results, 100 points for patch frequency, and 50 points each for additional endpoints and open-source intel results. This yields a weighted score incorporating all available information from all scanned sources, allowing a meaningful and readily-appreciable representation of an organization's overall cybersecurity strength. Additionally, as scanning may be performed repeatedly and results collected into a time-series hybrid data structure, this cybersecurity rating may evolve over time to continuously reflect the current state of the organization, reflecting any recent changes, newly-discovered or announced vulnerabilities, software or hardware updates, newly-added or removed devices or services, and any other changes that may occur.
Pipeline orchestrator 501 may spawn a plurality of child pipeline clusters 502a-b, which may be used as dedicated workers for streamlining parallel processing. In some arrangements, an entire data processing pipeline may be passed to a child cluster 502a for handling, rather than individual processing tasks, enabling each child cluster 502a-b to handle an entire data pipeline in a dedicated fashion to maintain isolated processing of different pipelines using different cluster nodes 502a-b. Pipeline orchestrator 501 may provide a software API for starting, stopping, submitting, or saving pipelines. When a pipeline is started, pipeline orchestrator 501 may send the pipeline information to an available worker node 502a-b, for example using AKKA™ clustering. For each pipeline initialized by pipeline orchestrator 501, a reporting object with status information may be maintained. Streaming activities may report the last time an event was processed, and the number of events processed. Batch activities may report status messages as they occur. Pipeline orchestrator 501 may perform batch caching using, for example, an IGFS™ caching filesystem. This allows activities 512a-d within a pipeline 502a-b to pass data contexts to one another, with any necessary parameter configurations.
A pipeline manager 511a-b may be spawned for every new running pipeline, and may be used to send activity, status, lifecycle, and event count information to the pipeline orchestrator 501. Within a particular pipeline, a plurality of activity actors 512a-d may be created by a pipeline manager 511a-b to handle individual tasks, and provide output to data services 522a-d. Data models used in a given pipeline may be determined by the specific pipeline and activities, as directed by a pipeline manager 511a-b. Each pipeline manager 511a-b controls and directs the operation of any activity actors 512a-d spawned by it. A pipeline process may need to coordinate streaming data between tasks. For this, a pipeline manager 511a-b may spawn service connectors to dynamically create TCP connections between activity instances 512a-d. Data contexts may be maintained for each individual activity 512a-d, and may be cached for provision to other activities 512a-d as needed. A data context defines how an activity accesses information, and an activity 512a-d may process data or simply forward it to a next step. Forwarding data between pipeline steps may route data through a streaming context or batch context.
A client service cluster 530 may operate a plurality of service actors 521a-d to serve the requests of activity actors 512a-d, ideally maintaining enough service actors 521a-d to support each activity per the service type. These may also be arranged within service clusters 520a-d, in a manner similar to the logical organization of activity actors 512a-d within clusters 502a-b in a data pipeline. A logging service 530 may be used to log and sample DCG requests and messages during operation while notification service 540 may be used to receive alerts and other notifications during operation (for example to alert on errors, which may then be diagnosed by reviewing records from logging service 530), and by being connected externally to messaging system 510, logging and notification services can be added, removed, or modified during operation without impacting DCG 500. A plurality of DCG protocols 550a-b may be used to provide structured messaging between a DCG 500 and messaging system 510, or to enable messaging system 510 to distribute DCG messages across service clusters 520a-d as shown. A service protocol 560 may be used to define service interactions so that a DCG 500 may be modified without impacting service implementations. In this manner it can be appreciated that the overall structure of a system using an actor-driven DCG 500 operates in a modular fashion, enabling modification and substitution of various components without impacting other operations or requiring additional reconfiguration.
It should be appreciated that various combinations and arrangements of the system variants described above (referring to
As a brief overview of operation, information is obtained about the client network 1907 and the client organization's operations, which is used to construct a cyber-physical graph 1902 representing the relationships between devices, users, resources, and processes in the organization, and contextualizing cybersecurity information with physical and logical relationships that represent the flow of data and access to data within the organization including, in particular, network security protocols and procedures. The directed computational graph 1911 containing workflows and analysis processes, selects one or more analyses to be performed on the cyber-physical graph 1902. Some analyses may be performed on the information contained in the cyber-physical graph, and some analyses may be performed on or against the cyber-physical graph using information obtained from the Internet 1913 from reconnaissance engine 1906. The workflows contained in the directed computational graph 1911 select one or more search tools to obtain information about the organization from the Internet 1915 and may comprise one or more third party search tools 1915 available on the Internet 1913. As data are collected, they are fed into a reconnaissance data storage 1905, from which they may be retrieved and further analyzed. Comparisons are made between the data obtained from the reconnaissance engine 1906, the cyber-physical graph 1902, the data to rule mapper, from which comparisons a cybersecurity profile of the organization is developed. The cybersecurity profile is sent to the scoring engine 1910 along with event and loss data 1914 and context data 1909 for the scoring engine 1910 to develop a score and/or rating for the organization that takes into consideration both the cybersecurity profile, context, and other information.
Extraction engine 2010 may be configured to use processes of advanced cyber decision platform 100, such as connector module 135, web crawler 115, and multidimensional time series data store 120 to connect to data sources to extract data, which may be richly formatted data, structured data, unstructured data, and the like. Extraction engine 2010 may be configured to not only work across different modalities of data and preserve context across the different modalities, but data extracted from the various modalities may be used to augment data from one modality to another. Extracted data from the same modality from different sources may also be able to augment one another. During the extraction process, extraction engine 2010 may take into consideration user-provided context. The context may then be used by extraction engine 2010 to refine the types of the data that is extracted. Once data has been extracted, the data may be subjected to external feedback as a means for quality assurance for the extracted data.
Another capability of extraction engine 2010 is tagging extracted data with relevant timestamp data and storing the data as time-series data. This may be useful for classifying data in phases so that transitions over time may be captured using graph edge analysis. This may be useful, for example, for tracking development in expert judgement in particular fields overtime, as well as let interested parties explore data from specific time periods.
Referring to
Audio analysis engine 2111 may be configured to use audio analysis models to process audio data, for example, performing general speech-to-text operations or to analyze tonal cues in voice recordings. This may provide additional insight by cross referencing the tones and inflections with presented facts, for example, it may reveal whether or not certain statements can be considered truthful or not. Data extracted from audio may then be processed by data formatting service 2114, so that the data may conform to any preset standards for usage in a knowledge base.
Video analysis engine 2112 may be configured to use video analysis models to process videos, and capture information from videos. For example, analyzing body language to glean concealed information or perform lip-reading analysis as a means to increase accuracy of speech dictation.
Text analysis engine 2113 may be configured to use natural language processing (NLP) models to analyze text-based data, which may include, system logs, news articles, blog posts, tabular data, and the like. Text analysis engine 2113 may contain an extensible collection of parsers that may be utilized to parse text data in a known format.
Data formatting service 2114 may be configured to use graph stack service 145 to clean and formalize data gathered by other processes of extraction engine 2010 and convert the data into a graph representation to ensure that the data conforms to any preset standards for compatibility with knowledge bases that are in use by system 2000.
Knowledge base construction service 2020 may be configured to assemble and maintain extracted and processed data. Knowledge bases may be divided in context collections provided by a user, for example, a knowledge base may be based on a particular company, a technical field of interest, financial data, and the like. As new data is extracted and processed, KBC service 2020 may update existing knowledge bases with the newly extracted data, or create a new knowledge base if a suitable knowledge base doesn't exist. Knowledge bases may be stored in system 2000 in data store 2030. In some embodiments, knowledge bases may also be actively monitored and evaluated, for example, by using DCG module 155 with the associated transformer modules 150, 160 and observation and state estimation service 140, to locate information originating from multiple sources that, when evaluated collectively, are valuable. For example, using forward analysis on a particular knowledge base, the detection of data exfiltration may be unearthed. Personally Identifiable Information (PII) encodings, such as name, phone number, and address collectively may constitute a Data Loss Prevention breach under some jurisdictions, and a Universal Unique Identifier (UUID) associated with each of these three pieces of info are sent separately to the same recipient, this approach will identify that all three were sent based upon enrichment and ongoing analysis of the knowledge base.
Based on some competitor positioning, one very important use case is the idea of enabling a distributed Data Loss Prevention (DLP) capability. Effectively, using forward analysis (aggregating data together in a unified data model like a knowledge graph), our extraction capability can detect unwanted data exfiltration through analytics. For example, consider Personally Identifiable Information (PII) encodings where name/phone number/address all together constitute a DLP breach (the US gov and others think in these terms about PII violations in terms of such specific correlations) and a UUID paired with each of these three pieces of info are sent separately to the same source, this approach will identify that all three were sent based upon enrichment of the knowledge graph.
Proxy connection service 2021 may be configured to automatically connect to a proxy network to facilitate anonymous connections to data sources or, for example, to appear from a specific region (e.g., a residential IP address). This may be useful in cases, for instance, in which a particular data source aggressively blocks web crawlers from accessing pages, when bypassing a firewall is required, to conceal one's true identity, and the like. Proxy connection service 2021 may automatically determine when a proxy connection is required and may automatically determine optimal proxy networks to use.
Phase transition analyzer 2022 may be configured to use DCG module 155 along with the associated transformer modules 155 to analyze graph and time-series data for shifts and changes in data over time, for example, changes in lingo in a particular field or development that changes understanding of a subject overtime. This may provide useful, for instance, when considering data sources from particular time periods, especially if the field of interest has undergone significant change over time.
In this example, which is necessarily simplified for clarity, the cyber-physical graph 2700 contains 12 nodes (vertices) comprising: seven computers and devices designated by solid circles 2702, 2703, 2704, 2706, 2707, 2709, 2710, two users designated by dashed-line circles 2701, 2711, and three functional groups designated by dotted-line circles 2705, 2708, and 2712. The edges (lines) between the nodes indicate relationships between the nodes, and have a direction and relationship indicator such as “AdminTo,” “MemberOf,” etc. While not shown here, the edges may also be assigned numerical weights or probabilities, indicating, for example, the likelihood of a successful attack gaining access from one node to another. Possible attack paths may be analyzed using the cyber-physical graph by running graph analysis algorithms such as shortest path algorithms, minimum cost/maximum flow algorithms, strongly connected node algorithms, A*, Dijkstra's, Random Walk, etc. In this example, several exemplary attack paths are ranked by likelihood. In the most likely attack path, user 2701 is an administrator to device 2702 to which device 2703 has connected. Device 2703 is a member of functional group 2708, which has a member of group 2712. Functional group 2712 is an administrator to the target 2706. In a second most likely attack path, user 2701 is an administrator to device 2707 to which device 2704 has connected. Device 2704 is a member of functional group 2705, which is an administrator to the target device 2706. In a third most likely attack path, a flaw in the security protocols allow the credentials of user 2701 to be used to gain access to device 2710. User 2711 who is working on device 2710 may be tricked into providing access to functional group 2705, which is an administrator to the target device 2706.
The data then flows to a comprehension engine 2811 which using the same semantic computing techniques (e.g., Amazon Comprehend, SpaCy, IBM Watson Tone Analyzer) parses through the information determining relational attributes to the search query 3120. This process appends data with temporal, geospatial (geoJSON formatted), information reliability, and contextual metadata as determined by the system's 3110 machine learning algorithms and ontological axioms configuration. As an example of system operation to construct an ontology, the comprehension engine 2811 runs in parallel with the automated ontology engine 2501 to store processed data, using web ontology language (OWL) and property graph extensions rooted in financial industry business ontology (FIBO) into the system's time-series data store 120.
After the ontological databases have been created and/or updated, a directed computational graph module 155 utilizing the ontologies generates a knowledge graph. A GraphStack service 145 identifies subgraphs of interest (from the knowledge graph), returns the subgraphs of interest, and bulk loads the data about the edges and vertices based on their swimlanes from the time-series data store into Spark. Spark then creates graphframes and performs comparative analysis of individual time slices which provide temporospatial information to the risk rating engine 3111. This information is used by the risk rating engine's 3111 semantic computing and machine learning algorithms to determine the risk impact likelihood to the entity. Furthermore, the risk rating engine 3111 uses spectral graph theory (adjacency matrices) to perform additional comparative temporospatial analysis in parallel with Spark's graphframe analysis to provide deeper comparative analysis thus providing more reliable results of the risk profile and rating 3140. More specifically, the risk rating engine 3111 using the comparative analysis results, parses each result through a semantic computing (NLP) and machine learning algorithm which identifies, categorizes, and scores each relation with a risk score. The risk rating engine 315 then sums all scores and produces a risk rating profile 340 to the client comprising the knowledge graph and numerical risk score.
As an example of temporospatial comparative analysis, assume that lead paint had never been banned in the United States and is a current topic of discussion. If a query were initiated on a paint manufacturing company that produced lead paint, the knowledge graph generated would include vertices and edges derived from public/legal discourse as well as proposed governmental legislation that a potential ban on lead paint may be imminent. This would be understood by comparative analysis on temporospatial slices in the form of graphframes and adjacency matrices where the risk rating engine 3111 would assign a higher risk score based on the analysis. Expand upon this idea to understand why temporospatial attributes are critical to understanding risk in today's volatile market. More detail on the knowledge graph and risk rating engine 3111 follows in
Looking at this simplified example, one might initially notice that Company X 3210 has business dealings with Company Y 3211. The user may then query Company Y 3211 through a new request or by interacting with the node. However, the ATKGE 3110 has already identified useful and meaningful relations to other entities and generated those within the original query of Company X 3210. For example, it may be determined, through social media, personnel databases, or government records that Company X 3210 and Company Y 3211 have employed or are currently employing the same individual 3212. Furthermore, it may be of interest that the individual, Employee A 3212, has been convicted of embezzlement 3214 in Company Y 3211 and was found to have relations to another individual of interest 3213. The significance of some relations is left up to the user however, the system may be configured to provide additional insights such as potential risk or evidentiary proof.
As an example, the system may be configured to show the amount of observed and reliable data points and to manifest as the weight of the edges, as in relations With 3220. Where the weight of the edge relations With 3220 is heavier due to both individuals 3212/3213 connected on multiple social media platforms or forums as opposed to only one data point to show that the individual of interest 3213 is a stockholder of 3221 Company X 3210.
As another example, the system may be configured to show the inferred risk as differing diameters of vertices. According to the query by the user, the system may have determined that considering temporal and public sentiment that the global rank 3215 of the country 3216 in which Company X 3210 operates in, is more significant to the query parameters than is a trade embargo 3217. A plethora of configurable options are available and more may be added with relative ease. The knowledge graph 3200 also provides context into whether vertices and edges are formed from inferred algorithms or observed 3230 through reliable data points.
Detailing more aspects of the system and method, we might consider the relations of governmental databases 3218, legislative actions 3218, or news reports 3220 which may affect the company 3210 itself or simply the industry 3219. Again, other aspects of the system and method include ingesting unstructured data such as websites, blogs, and social media 3221 as well as proprietary data such as customer relations data 3223 and balance sheets 3224/3225 in order to understand sentiment 3222 and potential risk factors of said company 3210.
The graph exemplified here does not include all advanced temporospatial knowledge graph engine 3210 features, present or future, and is intended as a simplified version of an advanced temporospatial knowledge graph 3200.
This method 800 for behavioral analytics enables proactive and high-speed reactive defense capabilities against a variety of cyberattack threats, including anomalous human behaviors as well as nonhuman “bad actors” such as automated software bots that may probe for, and then exploit, existing vulnerabilities. Using automated behavioral learning in this manner provides a much more responsive solution than manual intervention, enabling rapid response to threats to mitigate any potential impact. Utilizing machine learning behavior further enhances this approach, providing additional proactive behavior that is not possible in simple automated approaches that merely react to threats as they occur.
The next step 3307 is to adjust the impact score 3306 by assigning a reliability score 3309 based on data integrity techniques 3308. The more data points, verified sources, and observational relations 3308 the higher the score; alternatively, less points, unverified data, or inferred relations 3308 lessen the numerical value of the score 3309. Next, every data point 3300 is offset 3310 by previously identified and associated hedged risks 3311 and further assigned 3312 a numerical value based off modeling tools 3305. Any future identified hedged risk associated with an already calculated non-hedged risk is recalculated. Finally, the scores are summed 3313 and a score is generated.
As an example of the application of the algorithm, imagine the system to be configured to output a score within a scale from negative fifty (−50) to positive fifty (+50) where −50 is the greatest level of risk and +50 being the least amount of risk. Consider further, the algorithm determined from historical Internet data that a manufacturing plant, a main asset of the company in question, is in a location stricken with hurricanes. Where hurricanes are statistically more likely to occur within 50 miles of the plant every 2.5 years. This information would enter the system and likely be determined to be a non-financial risk and categorized as a locality risk.
Next, the impact of the hurricane risk, determined by actuarial tables and probabilistic historical models, is assigned negative thirty (−30), because of the probable burden the risk would have for the future of the company. Next, since the historical data is accurate, the reliability of it is high; although weather predictions being what they are, the future reliability is negative. So, the system determines the reliability score to be negative five (−5), near neutral. This decreases the score to negative thirty-five (−35). The score decreased because negatively impacting data was found to be mostly reliable. If the data point were a hedged risk or asset, the reliability score would be a positive number. Upon reaching the next stage, the system previously processed proprietary data which shows the company has successfully traded hurricane options on the Chicago Mercantile Exchange Hurricane Index (CMEHI) and avoided any financial or market loss over the past 15 years (comparative analysis via temporospatial graphframes). The system would then assign a risk offset score of positive twenty (+20) bringing the present locality risk category to a total of negative fifteen (−15).
This algorithm may iterate over every data point and sum the total risk ratings from all categories into a single score presented to the user. Advanced insight and further details into the risks and relations can be seen by the associated knowledge graph also generated by the system 3110.
Generally, the techniques disclosed herein may be implemented on hardware or a combination of software and hardware. For example, they may be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, on an application-specific integrated circuit (ASIC), or on a network interface card.
Software/hardware hybrid implementations of at least some of the aspects disclosed herein may be implemented on a programmable network-resident machine (which should be understood to include intermittently connected network-aware machines) selectively activated or reconfigured by a computer program stored in memory. Such network devices may have multiple network interfaces that may be configured or designed to utilize different types of network communication protocols. A general architecture for some of these machines may be described herein in order to illustrate one or more exemplary means by which a given unit of functionality may be implemented. According to specific aspects, at least some of the features or functionalities of the various aspects disclosed herein may be implemented on one or more general-purpose computers associated with one or more networks, such as for example an end-user computer system, a client computer, a network server or other server system, a mobile computing device (e.g., tablet computing device, mobile phone, smartphone, laptop, or other appropriate computing device), a consumer electronic device, a music player, or any other suitable electronic device, router, switch, or other suitable device, or any combination thereof. In at least some aspects, at least some of the features or functionalities of the various aspects disclosed herein may be implemented in one or more virtualized computing environments (e.g., network computing clouds, virtual machines hosted on one or more physical computing machines, or other appropriate virtual environments).
Referring now to
In one aspect, computing device 10 includes one or more central processing units (CPU) 12, one or more interfaces 15, and one or more busses 14 (such as a peripheral component interconnect (PCI) bus). When acting under the control of appropriate software or firmware, CPU 12 may be responsible for implementing specific functions associated with the functions of a specifically configured computing device or machine. For example, in at least one aspect, a computing device 10 may be configured or designed to function as a server system utilizing CPU 12, local memory 11 and/or remote memory 16, and interface(s) 15. In at least one aspect, CPU 12 may be caused to perform one or more of the different types of functions and/or operations under the control of software modules or components, which for example, may include an operating system and any appropriate applications software, drivers, and the like.
CPU 12 may include one or more processors 13 such as, for example, a processor from one of the Intel, ARM, Qualcomm, and AMD families of microprocessors. In some aspects, processors 13 may include specially designed hardware such as application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), field-programmable gate arrays (FPGAs), and so forth, for controlling operations of computing device 10. In a particular aspect, a local memory 11 (such as non-volatile random access memory (RAM) and/or read-only memory (ROM), including for example one or more levels of cached memory) may also form part of CPU 12. However, there are many different ways in which memory may be coupled to system 10. Memory 11 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, and the like. It should be further appreciated that CPU 12 may be one of a variety of system-on-a-chip (SOC) type hardware that may include additional hardware such as memory or graphics processing chips, such as a QUALCOMM SNAPDRAGON™ or SAMSUNG EXYNOS™ CPU as are becoming increasingly common in the art, such as for use in mobile devices or integrated devices.
As used herein, the term “processor” is not limited merely to those integrated circuits referred to in the art as a processor, a mobile processor, or a microprocessor, but broadly refers to a microcontroller, a microcomputer, a programmable logic controller, an application-specific integrated circuit, and any other programmable circuit.
In one aspect, interfaces 15 are provided as network interface cards (NICs). Generally, NICs control the sending and receiving of data packets over a computer network; other types of interfaces 15 may for example support other peripherals used with computing device 10. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, graphics interfaces, and the like. In addition, various types of interfaces may be provided such as, for example, universal serial bus (USB), Serial, Ethernet, FIREWIRE™, THUNDERBOLT™, PCI, parallel, radio frequency (RF), BLUETOOTH™, near-field communications (e.g., using near-field magnetics), 802.11 (Wi-Fi), frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Ethernet interfaces, Serial ATA (SATA) or external SATA (ESATA) interfaces, high-definition multimedia interface (HDMI), digital visual interface (DVI), analog or digital audio interfaces, asynchronous transfer mode (ATM) interfaces, high-speed serial interface (HSSI) interfaces, Point of Sale (POS) interfaces, fiber data distributed interfaces (FDDIs), and the like. Generally, such interfaces 15 may include physical ports appropriate for communication with appropriate media. In some cases, they may also include an independent processor (such as a dedicated audio or video processor, as is common in the art for high-fidelity A/V hardware interfaces) and, in some instances, volatile and/or non-volatile memory (e.g., RAM).
Although the system shown in
Regardless of network device configuration, the system of an aspect may employ one or more memories or memory modules (such as, for example, remote memory block 16 and local memory 11) configured to store data, program instructions for the general-purpose network operations, or other information relating to the functionality of the aspects described herein (or any combinations of the above). Program instructions may control execution of or comprise an operating system and/or one or more applications, for example. Memory 16 or memories 11, 16 may also be configured to store data structures, configuration data, encryption data, historical system operations information, or any other specific or generic non-program information described herein.
Because such information and program instructions may be employed to implement one or more systems or methods described herein, at least some network device aspects may include nontransitory machine-readable storage media, which, for example, may be configured or designed to store program instructions, state information, and the like for performing various operations described herein. Examples of such nontransitory machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as optical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM), flash memory (as is common in mobile devices and integrated systems), solid state drives (SSD) and “hybrid SSD” storage drives that may combine physical components of solid state and hard disk drives in a single hardware device (as are becoming increasingly common in the art with regard to personal computers), memristor memory, random access memory (RAM), and the like. It should be appreciated that such storage means may be integral and non-removable (such as RAM hardware modules that may be soldered onto a motherboard or otherwise integrated into an electronic device), or they may be removable such as swappable flash memory modules (such as “thumb drives” or other removable media designed for rapidly exchanging physical storage devices), “hot-swappable” hard disk drives or solid state drives, removable optical storage discs, or other such removable media, and that such integral and removable storage media may be utilized interchangeably. Examples of program instructions include both object code, such as may be produced by a compiler, machine code, such as may be produced by an assembler or a linker, byte code, such as may be generated by for example a JAVA™ compiler and may be executed using a Java virtual machine or equivalent, or files containing higher level code that may be executed by the computer using an interpreter (for example, scripts written in Python, Perl, Ruby, Groovy, or any other scripting language).
In some aspects, systems may be implemented on a standalone computing system. Referring now to
In some aspects, systems may be implemented on a distributed computing network, such as one having any number of clients and/or servers. Referring now to
In addition, in some aspects, servers 32 may call external services 37 when needed to obtain additional information, or to refer to additional data concerning a particular call. Communications with external services 37 may take place, for example, via one or more networks 31. In various aspects, external services 37 may comprise web-enabled services or functionality related to or installed on the hardware device itself. For example, in one aspect where client applications 24 are implemented on a smartphone or other electronic device, client applications 24 may obtain information stored in a server system 32 in the cloud or on an external service 37 deployed on one or more of a particular enterprise's or user's premises. In addition to local storage on servers 32, remote storage 38 may be accessible through the network(s) 31.
In some aspects, clients 33 or servers 32 (or both) may make use of one or more specialized services or appliances that may be deployed locally or remotely across one or more networks 31. For example, one or more databases 34 in either local or remote storage 38 may be used or referred to by one or more aspects. It should be understood by one having ordinary skill in the art that databases in storage 34 may be arranged in a wide variety of architectures and using a wide variety of data access and manipulation means. For example, in various aspects one or more databases in storage 34 may comprise a relational database system using a structured query language (SQL), while others may comprise an alternative data storage technology such as those referred to in the art as “NoSQL” (for example, HADOOP CASSANDRA™, GOOGLE BIGTABLE™, and so forth). In some aspects, variant database architectures such as column-oriented databases, in-memory databases, clustered databases, distributed databases, or even flat file data repositories may be used according to the aspect. It will be appreciated by one having ordinary skill in the art that any combination of known or future database technologies may be used as appropriate, unless a specific database technology or a specific arrangement of components is specified for a particular aspect described herein. Moreover, it should be appreciated that the term “database” as used herein may refer to a physical database machine, a cluster of machines acting as a single database system, or a logical database within an overall database management system. Unless a specific meaning is specified for a given use of the term “database,” it should be construed to mean any of these senses of the word, all of which are understood as a plain meaning of the term “database” by those having ordinary skill in the art.
Similarly, some aspects may make use of one or more security systems 36 and configuration systems 35. Security and configuration management are common information technology (IT) and web functions, and some amount of each are generally associated with any IT or web systems. It should be understood by one having ordinary skill in the art that any configuration or security subsystems known in the art now or in the future may be used in conjunction with aspects without limitation, unless a specific security 36 or configuration system 35 or approach is specifically required by the description of any specific aspect.
In various aspects, functionality for implementing systems or methods of various aspects may be distributed among any number of client and/or server components. For example, various software modules may be implemented for performing various functions in connection with the system of any particular aspect, and such modules may be variously implemented to run on server and/or client components.
The skilled person will be aware of a range of possible modifications of the various aspects described above. Accordingly, the present invention is defined by the claims and their equivalents.
Priority is claimed in the application data sheet to the following patents or patent applications, each of which is expressly incorporated herein by reference in its entirety: Ser. No. 17/088,387Ser. No. 16/945,698Ser. No. 15/141,752Ser. No. 15/091,563Ser. No. 14/986,536Ser. No. 14/925,974Ser. No. 16/864,133Ser. No. 15/847,443Ser. No. 15/616,427Ser. No. 15/489,716Ser. No. 15/409,510Ser. No. 15/379,899Ser. No. 15/376,657Ser. No. 15/237,625Ser. No. 15/206,195Ser. No. 15/186,453Ser. No. 15/166,158Ser. No. 16/915,176Ser. No. 15/891,329Ser. No. 15/860,980Ser. No. 15/850,037Ser. No. 15/673,368Ser. No. 15/790,457Ser. No. 15/788,00262/568,305Ser. No. 15/787,60162/568,31262/568,298Ser. No. 15/905,041Ser. No. 15/931,534Ser. No. 16/777,270Ser. No. 16/720,383Ser. No. 15/823,363Ser. No. 15/725,274Ser. No. 15/655,113Ser. No. 15/790,327Ser. No. 15/683,765Ser. No. 16/718,906Ser. No. 15/879,18262/568,291Ser. No. 16/191,054Ser. No. 16/654,309Ser. No. 16/660,727Ser. No. 15/229,476
Number | Date | Country | |
---|---|---|---|
62568298 | Oct 2017 | US | |
62568291 | Oct 2017 | US | |
62568305 | Oct 2017 | US | |
62568312 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17088387 | Nov 2020 | US |
Child | 18444759 | US | |
Parent | 15879182 | Jan 2018 | US |
Child | 16718906 | US | |
Parent | 15229476 | Aug 2016 | US |
Child | 16660727 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16945698 | Jul 2020 | US |
Child | 17088387 | US | |
Parent | 16864133 | Apr 2020 | US |
Child | 16945698 | US | |
Parent | 15847443 | Dec 2017 | US |
Child | 16864133 | US | |
Parent | 15790457 | Oct 2017 | US |
Child | 15847443 | US | |
Parent | 15790327 | Oct 2017 | US |
Child | 15790457 | US | |
Parent | 15616427 | Jun 2017 | US |
Child | 15790327 | US | |
Parent | 15141752 | Apr 2016 | US |
Child | 15616427 | US | |
Parent | 15091563 | Apr 2016 | US |
Child | 15141752 | US | |
Parent | 14986536 | Dec 2015 | US |
Child | 15091563 | US | |
Parent | 14925974 | Oct 2015 | US |
Child | 14986536 | US | |
Parent | 15616427 | Jun 2017 | US |
Child | 15847443 | US | |
Parent | 14925974 | Oct 2015 | US |
Child | 15616427 | US | |
Parent | 15489716 | Apr 2017 | US |
Child | 15847443 | US | |
Parent | 15409510 | Jan 2017 | US |
Child | 15489716 | US | |
Parent | 15379899 | Dec 2016 | US |
Child | 15409510 | US | |
Parent | 15376657 | Dec 2016 | US |
Child | 15379899 | US | |
Parent | 15237625 | Aug 2016 | US |
Child | 15376657 | US | |
Parent | 15206195 | Jul 2016 | US |
Child | 15237625 | US | |
Parent | 15186453 | Jun 2016 | US |
Child | 15206195 | US | |
Parent | 15166158 | May 2016 | US |
Child | 15186453 | US | |
Parent | 15141752 | Apr 2016 | US |
Child | 15166158 | US | |
Parent | 16915176 | Jun 2020 | US |
Child | 16945698 | US | |
Parent | 15847443 | Dec 2017 | US |
Child | 16915176 | US | |
Parent | 15891329 | Feb 2018 | US |
Child | 15847443 | US | |
Parent | 15860980 | Jan 2018 | US |
Child | 15891329 | US | |
Parent | 15850037 | Dec 2017 | US |
Child | 15860980 | US | |
Parent | 15489716 | Apr 2017 | US |
Child | 15850037 | US | |
Parent | 15673368 | Aug 2017 | US |
Child | 15489716 | US | |
Parent | 15376657 | Dec 2016 | US |
Child | 15673368 | US | |
Parent | 15788002 | Oct 2017 | US |
Child | 15860980 | US | |
Parent | 15787601 | Oct 2017 | US |
Child | 15788002 | US | |
Parent | 15616427 | Jun 2017 | US |
Child | 15787601 | US | |
Parent | 15905041 | Feb 2018 | US |
Child | 16915176 | US | |
Parent | 15237625 | Aug 2016 | US |
Child | 15905041 | US | |
Parent | 15931534 | May 2020 | US |
Child | 16945698 | US | |
Parent | 16777270 | Jan 2020 | US |
Child | 15931534 | US | |
Parent | 16720383 | Dec 2019 | US |
Child | 16777270 | US | |
Parent | 15823363 | Nov 2017 | US |
Child | 16720383 | US | |
Parent | 15725274 | Oct 2017 | US |
Child | 15823363 | US | |
Parent | 15655113 | Jul 2017 | US |
Child | 15725274 | US | |
Parent | 15616427 | Jun 2017 | US |
Child | 15655113 | US | |
Parent | 15683765 | Aug 2017 | US |
Child | 15931534 | US | |
Parent | 15409510 | Jan 2017 | US |
Child | 15683765 | US | |
Parent | 16718906 | Dec 2019 | US |
Child | 15931534 | US | |
Parent | 15850037 | Dec 2017 | US |
Child | 15879182 | US | |
Parent | 15905041 | Feb 2018 | US |
Child | 15931534 | US | |
Parent | 16191054 | Nov 2018 | US |
Child | 15905041 | US | |
Parent | 15655113 | Jul 2017 | US |
Child | 16191054 | US | |
Parent | 15237625 | Aug 2016 | US |
Child | 15655113 | US | |
Parent | 16654309 | Oct 2019 | US |
Child | 15931534 | US | |
Parent | 15847443 | Dec 2017 | US |
Child | 16654309 | US | |
Parent | 16660727 | Oct 2019 | US |
Child | 15931534 | US | |
Parent | 15206195 | Jul 2016 | US |
Child | 15229476 | US |