RNA SEQUENCING TO DIAGNOSE SEPSIS AND OTHER DISEASES AND CONDITIONS

Information

  • Patent Application
  • 20220340972
  • Publication Number
    20220340972
  • Date Filed
    April 18, 2022
    2 years ago
  • Date Published
    October 27, 2022
    a year ago
Abstract
Deep RNA sequencing is a technology that provides an initial diagnostic for sepsis that can also monitor the indicia of treatment and recovery (bacterial counts reduce, physiology returns to steady-state). The invention can be used for many other hospital conditions, particularly those needing an intensive care unit stay with the attendant risk of bacterial infection, such as trauma, stroke, myocardial infarction, or major surgery.
Description
FIELD OF THE INVENTION

This invention generally relates to chemical analysis of biological material, using nucleic acid products used in the analysis of nucleic acids, e.g., primers or probes for diseases caused by alterations of genetic material.


BACKGROUND OF THE INVENTION

Sepsis is a life-threatening organ dysfunction due to a dysregulated host response to infection. Despite declining age-standardized incidence and mortality, sepsis remains a significant cause of health loss worldwide. Rudd et al., The Lancet, 395(10219), 200-211 (Jan. 18, 2020). Sepsis is treatable, and timely implementation of targeted interventions improves outcomes.


Sepsis is diagnosed clinically by the presence of acute infection and new organ dysfunction. Singer et al., JAMA, 315, 801-810 (February 2016). Unlike the previous concepts of septicemia or blood poisoning, the definition of sepsis extends across bacterial, fungal, viral, and parasitic pathogens. The definition focuses on the host response as the major source of morbidity and mortality. Bone et al., Chest, 101, 1644-1655 (1992). Globally, there were about 48.9 million cases of sepsis in 2017, with about 11.0 million total sepsis-related deaths worldwide, representing 19.7% (18·2-21·4). This number may be a substantial undercount. Rudd et al., The Lancet, 395(10219), 200-211 (Jan. 18, 2020). Sepsis results from an underlying infection, so sepsis is an intermediate cause of health loss. Because, according to the principles of the International Classification of Diseases (ICD), causes of death are assigned based on the underlying disorder that triggers the chain of events leading to death rather than intermediate causes, sepsis, when reported as the cause of death, are considered miscoded.


Thus, the global burden of sepsis is more significant than previously appreciated. There is substantial variation in sepsis incidence and mortality according to Healthcare Access and Quality Index (HAQ Index), Lancet, 390, 231-266 (2017)), with the highest burden in places that cannot prevent, identify, or treat sepsis. Further research is needed to understand these disparities and developing policies and practices targeting their amelioration. More robust infection-prevention measures should be assessed and implemented in areas with the highest incidence of sepsis and among populations on which sepsis has the most significant impact. The impact of sepsis is especially severe among children, so more than half of all sepsis cases worldwide in 2017 occurred among children, many neonates.


Physicians diagnose sepsis using clinical judgment under one or more clinical scores. The systemic inflammatory response syndrome (SIRS) approach assesses an inflammatory state affecting the whole body, which is the body's response to an infectious or non-infectious challenge. Jui et al. (American College of Emergency Physicians), Ch. 146: Septic Shock. in Tintinalli's Emergency Medicine: A Comprehensive Study Guide, 7th edition, (New York: McGraw-Hill, 2011). pp. 1003-14. Sepsis has both pro-inflammatory and anti-inflammatory components. The qSOFA approach simplifies the SOFA score by including only its three clinical criteria and by including any altered mentation. Singer et al., JAMA, 315, 801-810 (February 2016). qSOFA can easily and quickly be repeated serially on patients.


A culture of the bacterial infection confirms a diagnosis of sepsis. A culture diagnosis can be delayed by forty-eight hours and sometimes cannot be performed successfully. Clinical judgment sometimes misses sepsis.


Biomarkers are being developed for sepsis, but no reliable biomarkers exist. A 2013 review concluded moderate-quality evidence exists to support the use of the procalcitonin level as a method to distinguish sepsis from non-infectious causes of SIRS. Still, the level alone could not definitively make the diagnosis. Wacker et al., The Lancet Infectious Diseases. 13(5), 426-35 (May 2013). A 2012 systematic review found that soluble urokinase-type plasminogen activator receptor (SuPAR) is a nonspecific marker of inflammation and does not accurately diagnose sepsis. Backes et al. Intensive Care Medicine, 38(9): 1418-28 (September 2012).


There remains a need in the medical art for a better diagnosis of sepsis.


SUMMARY OF THE INVENTION

The concept of diagnostics is analogous to using a fishing lure to find a single protein, gene, or RNA sequence. The invention provides an improved concept, using a fishing net to obtain all the RNA data in a sample, and use computational biology to better sort through all the data (fish) to identify patients with sepsis and the bacteria causing the immune response. The invention provides an initial diagnostic for sepsis that can also monitor the indicia of treatment and recovery (bacterial counts reduce, physiology returns to steady-state). The invention can be used for many other hospital conditions, particularly those needing an intensive care unit stay with the attendant risk of bacterial infection, such as trauma, stroke, myocardial infarction, or major surgery.


In the first embodiment, the invention provides unmapped bacterial RNA reads to identify bacteria that cause sepsis. In the second embodiment, the invention provides unmapped viral reads to identify sepsis or viral reactivation. In the third embodiment, the invention provides the use of unmapped B/T V(D)J to identify sepsis. In the fourth embodiment, the invention provides Principal Component Analysis of RNA splicing entropy to identify sepsis. In the fifth embodiment, the invention provides RNA lariats to identify sepsis. In the sixth embodiment, the invention provides a Principal Component Analysis of gene expression, alternative RNA splicing, or alternative transcription start and end to identify sepsis.


In producing the listed embodiments, one of ordinary skill in the molecular biological art uses one or more of these steps.


The first step is for one of ordinary skill in the molecular biological art to obtain RNA sequencing from a body sample. In the seventh embodiment, the body sample is a bodily fluid sample. In the eighth embodiment, the bodily fluid sample is blood. In the ninth embodiment, the target is 100,000,000 reads/sample.


The second step is for one to align the RNA sequencing data (reads) to the genome of interest. In the tenth embodiment, the reads from a human sample are aligned to a human genome. In the eleventh embodiment, the reads from a mouse sample are aligned to a mouse genome.


The third step is to select the un-mapped reads and analyze the reads using a Read Origin Protocol (ROP).


In the first embodiment, the next step is to identify bacteria present in the sample. From the ROP, one of ordinary skill in the molecular biological art identifies bacteria present in the sample. In the twelfth embodiment, one of ordinary skill in the molecular biological art or medical art uses the identified bacteria to list potential causative organisms of sepsis (product).


In the second embodiment, from the ROP, the next step is to identify the viruses present in the sample. In the thirteenth embodiment, one uses the virus identified with PCA to identify likely sepsis samples.


In the third embodiment, from the ROP, the next step is to identify the T/B cell epitopes present in the samples. In the fourteenth embodiment, one uses the T/B cell epitopes identified with PCA to identify likely sepsis samples.


Alternatively, or in combination, in the third step, one selects the mapped reads and then uses a program that enables detection and quantification of alternative RNA splicing events to identity gene expression, RNA splicing events, alternative transcription start/end, or RNA splicing entropy. In a fifteenth embodiment, the program that enables detection and quantification of alternative RNA splicing events is Whippet. In the sixteenth embodiment, one uses the gene expression changes, RNA splicing events, and alternative transcription start/end with PCA to identify likely sepsis samples. In the seventeenth embodiment, one uses the RNA splicing entropy identified with PCA to identify likely sepsis samples.


In the fifth embodiment, from the gene expression, RNA splicing events, alternative transcription start/end, or RNA splicing entropy, the next step is for one to identify RNA lariats from the mapped reads. In the eighteenth embodiment, one uses the RNA lariats with PCA to identify likely sepsis samples.


In the nineteenth embodiment, the invention provides an output product with five plots comprising bacterial RNA reads, viral reads, B/T V(D)J epitopes, RNA splicing entropy, and RNA lariat embodiments described above and a list of likely bacteria causing the infection.


RNA sequencing data be used in several ways. (1) Identification of biomarkers. Rather than need to pick a subset to test for, RNA sequencing data can identify genes with increased expression that would correlate to biomarkers of interest. (2) Identification of new biomarkers. RNA sequencing data allows for analysis of processes such as RNA splicing. The method of RNA splicing entropy can be quantified and grouped according to a Principal Component Analysis into sick or not sick. RNA lariats can also be identified in sequencing data and used as a potential biomarker. All biomarkers can be followed over time to assess for resolution of the sepsis. (3) Use of un-mapped reads in sepsis. RNA sequencing typically aligns with the genome of reference (i.e., the human genome). Reads that are not aligned to the human genome are discarded (the percentage of un-mapped reads could itself be a biomarker). These un-mapped reads could be of two major potential interests. (4) Identification of the microbe causing the infection. The unmapped reads can be referenced to the genome of disease-causing microbes (bacteria, viruses, fungi, etc.) to identify the causative organism and start treatment earlier. Serial measurements can also assess the effectiveness of treatment.


The results presented show that mice exposed to trauma separated from controls using PCA. Similarly, mice that did not survive fourteen days post exposure clustered closely together on PCA. These results show a substantial difference in global pre-mRNA processing entropy in mice exposed to trauma vs. controls, and that pre-mRNA processing entropy is useful in predicting mortality.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a chart showing Principal Component Analysis of samples in the blood. Three mice exposed to the trauma model were compared to three mice in the control group (total n=6). When plotting the first two principal components against each other, the exposed mice separated from the control mice. Samples clustered based on tissue type and ARDS status on the Principal Component Analysis plot, suggesting that splicing entropy can be a biomarker for ARDS status. The first two principal components plotted against each other. The percentages in parentheses represent the percent variability explained by the principal component. Circles represent control mice; squares represent mice exposed to hemorrhage followed by cecal ligation and puncture.



FIG. 2 is a chart showing a Principal Component Analysis of the survival study. Ten mice exposed to trauma were part of the survival experiment. A mortality rate of 30% was observed, which is consistent with previous studies using this model. When plotting the first two principal components against each other, the mice who did not survive closely clustered together. The first two principal components are plotted against each other. The percentages represent the percent variability explained by the principal component. The squares represent mice that died by fourteen days post CLP, circles represent mice that survived.



FIG. 3 confirms by real time PCR that the peak SARS-CoV-2 RNA described in this specification is higher than the rest of the N-gene in the blood of critically ill COVID-19 patients.



FIG. 4 is a pair of figures showing the SARS-CoV-2 reads per patient. The top panel is a bar graph showing the number of reads aligning to the SARS-CoV-2 genome from each patient. Most reads aligned to loci encoding the N protein (red bar) or the RNA dependent RNA polymerase (black bar). Bottom panel is the location where the cumulative reads from all the patients align to the SARS-CoV-2 genome. Genes encoding the RNA dependent RNA polymerase and the N protein are at positions ˜15,000 and ˜29,000, respectively.



FIG. 5 is a graph created by the principal component analysis of the >380,000 entropy values related to alternative RNA splicing and alternative transcription start/end. Patients labeled in red died from COVID-19 and surviving patients are labeled with green dots. Mortality rate above PC2=0 is 75% and below is 14% (p=0.04)



FIG. 6 (TABLE 1) is a list of the clinical and demographic data for fifteen study participants.



FIG. 7 (TABLE 2) is a list of the counts per patient from Kraken2 assays performed for the fifteen study participants.



FIG. 8 (TABLE 3) is a list of the gene difference between patients that died versus patients that lived among the fifteen study participants.





DETAILED DESCRIPTION OF THE INVENTION
Industrial Applicability

Despite causing death in one out of five people in the world, there is not a single standard test to diagnose sepsis. Despite declining age-standardized incidence and mortality, sepsis remains a significant cause of health loss worldwide. Rudd et al., The Lancet, 395(10219), 200-211 (Jan. 18, 2020). Sepsis patients undergo the physiology common to patients in the intensive care unit: hypotension, tachycardia, hyperthermia, and hypoxia.


Delays in treatment for sepsis impact mortality. Early identification of the differences between clinically similar patients would allow for earlier interventions (surgery, antibiotics). Using RNA sequencing technology combined with computation biology techniques to understand RNA biology the differences in these two patients could be identified. Earlier prediction of complications would also allow for triage of patients to facilities equipped to deal with them and allow for better discussions regarding expected mortality and morbidity.


It takes days to get a final diagnosis for bacterial pathogen, since culturing of the bacteria is needed. Confirming bacteremia is done microbial blood culture, but the turnaround time can lead to a delay in diagnosis. Biron et al., Biomarker Insights. 10(Suppl 4), 7-17 (Sep. 15, 2015). Procalcitonin (PCT) has been shown to correlate more closely to onset and treatment of sepsis than C-reactive protein (CRP). Vijayan et al., J. Intensive Care (Aug. 3, 2017). Much work has been done with PCT as a predictor of sepsis before symptom onset. Dolin et al., Shock, 49(4), 364-70 (April 2018). PCT has low specificity for sepsis, and is elevated in cancers, autoimmune diseases, and other physiological stressors. Bloos & Reinhart, Virulence, 5(1), 154-60 (Jan. 1, 2014).


RNA sequencing data can identify the bacteria more quickly than culture. The drop in the cost of sequencing has refocused genetic analyses from DNA to RNA sequencing. Methods to analyze this data have improved. Stark et al., Nature Reviews Genetics (2019). Compared to DNA. RNA undergoes dynamic changes by transcription and post-transcriptional processing, providing unique insight into cellular activity. RNA reflects a broader source of infectious etiologies, given that both DNA and RNA viruses have RNA genetic material, whether in the genome or by transcription of mRNA. Patients with trauma who die or have complications are expected to have different changes in expression, alternative RNA splicing, and alternative transcription start/end compared to patients who survive and do not have a complication. The differences seen in RNA biology may correlate with injury severity or predict outcomes. This invention should help direct care in trauma patients when RNA sequencing speeds increase to allow for results that are available when needed for patients in the ICU (within one hour).


RNA sequencing data related to other processes (RNA splicing entropy, gene expression, viral counts, lariat counts, etc.) provide a signature that can identify patients with sepsis. A better understanding of RNA biology in the clinical scenario of critically ill sepsis patients can have a broad impact on biomedical science. When the information in RNA sequencing data can identify patients who have not resolved the immune response to the initial sepsis, outcomes can improve.


The number of unmapped reads aligning to viral pathogenic genomes can be a biomarker of critical illness. Patients with late death should have different gene expression, alternative RNA splicing (including RNA splicing entropy), and alternative transcription start/end as compared to patients with an early death. the genes with increased alternative RNA splicing (including RNA splicing entropy), and alternative transcription start/end are expected to be different in the patients who died late compared to those who died early. These identified genes provide insight into proteins not considered in trauma patients as potential biomarkers or targets of therapeutic intervention but point to pathological mechanism not appreciated or unclear.


RNA biology before the trauma should be able to predict survivors. Mice that survive to fourteen days should have less RNA biology changes compared to mice at the early time point. This are done across three distinct background mice to account for the heterogeneity of humans and the comparability of the two most common immunological/genetic mouse model strains used. As it relates to comparing samples across mouse strains, since gene expression. RNA splicing, and alternative transcription start/end are all basic molecular functions, the results remain similar across the multiple strains.


Identification of B and T cell epitopes from the unmapped reads could be a biomarker for sepsis. Critical illness decreases the diversity of these epitopes. A resolution could signal an improvement in clinical status. Losing some epitopes could indicate immune suppression seen in critical illness.


Alternative transcription starts and end is another biological process potentially influenced by sepsis. Current technology now allows us to identify changes in transcription with RNA sequencing data. Hardwick et al., Frontiers in Genetics. 10, 709 (2019); Cass & Xiao X, Cell Systems, 9(4), 23, 393-400.e6 (October 2019). The genes that have increased difference in alternative transcription start/end could be disease treatment targets. A change to the start or end of the RNA is likely to change the ultimate endpoint of that transcript. Understanding the changes in transcription start and end would better describe the ultimate result of proteins since that were thought to be transcribed and translated could have been transcribed (with changes in the start or end) which led to nonsense mediated decay or the translation of an alternative isoform.


Genes with significant alternative splicing and high entropy in the mouse after trauma may be target for intervention. This invention can better diagnose sepsis and the microbe causing the disease. Emergency room and critical care physicians can use the invention.


Solution: RNAs as Biomarkers of Critical Illness

While proteins have traditionally been used to reflect inflammatory load, RNAs are more specific to certain etiologies and clinical outcomes.


High through-put sequencing technologies allows for coding and non-coding RNAs (ncRNA) as markers of disease risk and progression. Next-generation sequencing (NGS) quantifies RNAs by sequencing of complementary DNA (cDNA), allowing transcriptomic analysis of mRNAs, ribosomal RNAs (rRNA), and ncRNAs. Kukurba & Montgomery, Cold Spring Harb. Protoc., 2015(11), 951-69 (Apr. 13, 2015).


Coding and non-coding RNAs have been studied as biomarkers. Less attention has been on the portion of data produced (9-20%) via RNA-sequencing that is consistently discarded when it cannot be mapped to a reference genome. Mangul et al., ROP: Dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol., 19 (Feb. 15, 2018).


The discovery of serum-stable circulating miRNAs allows the use of cell-free miRNAs as biomarkers of disease. Benz et al., Int. J. Mol. Sci., 17(1) (Jan. 9, 2016); Wang et al., J. Cell Physiol., 231(1), 25-30 (2016). Elevated miR-133a levels in serum correlate to poorer prognosis in ICU patients. Tacke et al., Crit. Care Med., 42(5), 1096-104 (May 2014). Groups of miRNAs delineate between different infectious etiologies, such as S. aureus and E. coli. Wu et al., PLoS One, 8(10) (2013). The lack of standardization in measuring circulating miRNA expression affects reproducibility between analyses and limited its clinical applicability. Lee et al., Mol. Diagn. Ther., 21(3), 259-68 (June 2017).


Physiologic stress induces viral reactivation by impairing the immune response and upregulating cell cycle progression pathways such as MAPK and NF-κB. Walton et al., PLoS One, 9(6), e98819 (Jun. 11, 2014); Traylen et al., Future Virol., 6(4), 451-63 (April 2011). Secretion of pro-inflammatory cytokines, such as TNF-α, functions in reactivating latent cytomegalovirus (CMV) in patients that had undergone recent stress even absent systemic inflammation. Prösch et al., Virology, 272(2), 357-65 (Jul. 5, 2000). A combination of inflammatory challenges and immune cell dysregulation has been shown to contribute to an environment that both promotes viral reactivation and maintains viremia. Walton et al., PLoS One, 9(6), e98819 (Jun. 11, 2014).


In a traumatic shock EXAMPLE, C57BL6 mice were treated by sequential hemorrhagic shock followed by cecal ligation and puncture, which induces sepsis. RNA was extracted from cellular component of lung and immune cells in blood after discarding plasma and serum. Samples were collected from both healthy and critically ill mice and sequenced via NGS at Gene Wiz in South Plainfield, N.J., USA. Reads were aligned to mm9 genome using STAR and then unmapped reads were mapped to viral genomes via ROP. Dobin et al., Bioinformatics, 29(1), 15-21 (January 2013). Mangul et al., Genome Biol., 19 (Feb. 15, 2018). Two-sample t tests were conducted to compare number of viral reads in healthy versus critically ill mouse lung and blood.


Definitions

For convenience, the meaning of some terms and phrases used in the specification, examples, and appended claims, are listed below. Unless stated otherwise or implicit from context, these terms and phrases have the meanings below. These definitions are to aid in describing particular embodiments and are not intended to limit the claimed invention. Unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. For any apparent discrepancy between the meaning of a term in the art and a definition provided in this specification, the meaning provided in this specification shall prevail.


Acute respiratory distress syndrome (ARDS) has the medical art-defined meaning. ARDS is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath, rapid breathing, and bluish skin coloration. Causes may include sepsis, pancreatitis, trauma, pneumonia, and aspiration.


Alternative splicing (AS) has the molecular biological art-defined meaning. RNA splicing is a basic molecular function that occurs in all cells directly after RNA transcription, but before protein translation, in which introns are removed and exons are joined. Alternative splicing or alternative RNA splicing, or differential splicing, is a regulated process during gene expression that results in a single gene coding for multiple proteins. Exons of a gene can be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. The proteins translated from alternatively spliced mRNAs can contain differences in their amino acid sequence and, often, in their biological functions.


Aldo/keto reductase gene has the molecular biological art-defined meaning.


Base R is an R-based computer program.


Mann Whitney U tests has the statistical art-defined meaning. The Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon-Mann-Whitney test) is a nonparametric test of the null hypothesis that it is equally likely that a randomly selected value from one population is less than or greater than a randomly selected value from a second population. This test Can investigate whether two independent samples were selected from populations having the same distribution.


mountainClimber is a cumulative-sum-based approach to identify alternative transcription start (ATS) and alternative polyadenylation (APA) as change points. Unlike many existing methods, mountainClimber runs on a single sample and identifies multiple ATS or APA sites anywhere in the transcript. Cass & Xiao, Cell Systems, 9(4), 23, 393-400.e6 (October 2019).


Next Generation Sequencing (NGS) has the molecular biological art-defined meaning. NGS technology is typically characterized by being highly scalable, allowing the entire genome to be sequenced at once. Usually, this is accomplished by fragmenting the genome into small pieces, randomly sampling for a fragment, and sequencing it using one of a variety of technologies.


Principal Component Analysis (PCA) has the computer-art and molecular biological art-defined meaning. Principal component analysis is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components.


Read origin protocol (ROP) has the computer-art meaning of is a computational protocol that aims to discover the source of all reads, including those originating from repeat sequences, recombinant B and T cell receptors, and microbial communities. The Read Origin Protocol was developed to determine what the unmapped reads represented. Mangul al., Genome Biology 19, 36 (2018). Recent development of Read Origin Protocol (ROP) has demonstrated that unmapped reads align to bacterial, viral, fungal, and B/T rearrangement genomes.


Read has the molecular biological art-defined meaning of reading sequencing results to determine nucleotide base structure.


Sepsis has the medical art-defined meaning of a life-threatening condition that arises when the body's response to infection injures its tissues and organs. Bone et al., Chest, 101, 1644-1655 (1992); Singer et al., JAMA, 315, 801-810 (February 2016).


STAR aligner is the Spliced Transcripts Alignment to a Reference (STAR), a fast RNA-seq read mapper, with support for splice-junction and fusion read detection. STAR aligns reads by finding the Maximal Mappable Prefix (MMP) hits between reads (or read pairs) and the genome, using a Suffix Array index. Different parts of a read can be mapped to different genomic positions, corresponding to splicing or RNA-fusions. The genome index includes known splice-junctions from annotated gene models, allowing for sensitive detection of spliced reads. STAR performs local alignment, automatically soft clipping ends of reads with high mismatches. Dobin et al., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21 (January 2013).


Treatment for sepsis has the medical-art recognized meaning. Sepsis is treatable, and timely implementation of targeted interventions improves outcomes. The Mayo Clinic informs the public that several medications are used in treating sepsis and septic shock. They include antibiotics. Broad-spectrum antibiotics, which are effective against a variety of bacteria, are usually used first. After learning the results of blood tests, a doctor may switch to a different antibiotic that's targeted to fight the specific bacteria causing the infection. They include intravenous fluids and vasopressors. Other medications include low doses of corticosteroids, insulin to help maintain stable blood sugar levels, drugs that modify the immune system responses, and painkillers or sedatives.


Treatment for COVID-19 has the medical-art recognized meaning. Corticosteroids can be therapeutic. See Prescott & Rice, Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. JAMA, 324, 1292-1295 (2020). Other treatments are known by persons having ordinary skill in the medical art. See Waterer & Rello, Steroids and COVID-19: We need a precision approach, not one size fits all. Infectious Diseases and Therapy (2020). See also Beigel et al., Remdesivir for the treatment of Covid-19—Preliminary Report. New England Journal of Medicine (2020).


Treatment for Acute respiratory distress syndrome (ARDS) has the medical-art recognized meaning. Corticosteroids can be therapeutic. See Prescott & Rice, Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. JAMA, 324, 1292-1295 (2020). Other treatments are known by persons having ordinary skill in the medical art.


V(D)J recombination has the molecular biological art-defined meaning. V(D)J recombination occurs in developing lymphocytes during the early stages of T and B cell maturation, involves somatic recombination, and results in the highly diverse repertoire of antibodies/immunoglobulins and T cell receptors (TCRs) found in B cells and T cells, respectively.


Whippet (OMICS_29617) is a program that enables detection and quantification of alternative RNA splicing events of any complexity with computational requirements compatible with a laptop computer. Whippet applies the concept of lightweight algorithms to event-level splicing quantification by RNAseq. The software can facilitate the analysis of simple to complex AS events that function in normal and disease physiology. Alternative splicing events with high entropy are identified using Whippet. Sterne-Weiler et al., Molecular Cell, 72, 187-200.e186 (2018).


Materials and Methods

Mouse strains. Mice are purchased from The Jackson Laboratory. C57BL/6J, the most popular mouse model used, exhibits a Th1/more pro-inflammatory phenotype. C57BL/6J is also the background of numerous knock out animals. BALB/cJ is also another commonly used mouse and can be the background of analyses with knockout animals but has more of a Th1/anti-inflammatory predominant repose phenotype. The CAST mouse is derived from wild mouse and genetically different from common laboratory mice. Using these three strains adjusts for the heterogeneity seen in humans.


Mouse model of sepsis: cecal ligation and puncture (CLP). A mouse model of hemorrhagic shock followed by the induction of sepsis by cecal ligation and puncture induces severe sepsis. Lomas-Neira et al., Shock, 45(2), 157-65 (2016)); Monaghan et al., Mol Med., 24(1), 32 (Jun. 18, 2018); Wu et al., PLoS One, 8(10) (2013); Monaghan et al., Annals of Surgery, 255, 158-164 (2012). Anesthetized, restrained mice in supine position catheters are inserted into both femoral arteries. Mice are bled over a 5-10-minute period to a mean blood pressure of 30 mmHg (±5 mmHg) and kept stable for 90 minutes. To achieve this level of hypotension, the mice have one mL of blood withdrawn. One mL of blood is approximately 50% of their blood volume so this correlates to class 4 hemorrhagic shock in humans. Mice are resuscitated intravenously (IV) with Ringers lactate at four times drawn blood volume. Sham hemorrhages are performed as a control in which femoral arteries ligated, but no blood is drawn to mimic the tissue destruction. The following day, sepsis is induced as a secondary challenge by cecal ligation and puncture. The timing of this secondary challenged is based on previous findings that hemorrhagic shock followed twenty-four hours by the induction of sepsis produced results in line with critical illness such as altering PaO2 to FIO2 ratios. The mouse model uses a double hit of hemorrhagic shock followed by cecal ligation and puncture correlates to a missed bowel injury in humans after hemorrhagic shock. This mouse model correlates with an injury severity score (ISS) of twenty-five. The dual challenge of hemorrhagic shock followed by septic shock is in line with the sepsis patients who are critically ill. Sometimes patients present with bleeding from wounds and a bowel injury missed upon initial assessment.


Sample sizes for these assays are based upon results from the inventor's previous work looking at the alternative splicing of sPD-1 and an effect size of Cohen's d=2.85 standard deviations difference between groups was calculated. With such a large effect size, power analysis poorly justifies sample size since, if the effect size is tenable, it would be exceedingly rare for assays of any sample size to fail to reach statistical significance. Small sample sizes provide poor point estimates and may be very unstable. the inventors chose a sample size of six mice per group based on feasibility and hoping to provide a reasonable point estimate for each group.


Mice of both sexes are used, because there are significant sex differences in the response to bleeding from trauma. Deitch et al., Annals of Surgery, 246(3), 447-53; discussion 53-5 (2007).


Human subjects. Patients are recruited from the Trauma Intensive Care Unit (TICU) at Rhode Island Hospital with Institutional Review Board approval and consent. The patient population at Rhode Island Hospital (a level 1 trauma center) is sufficient for this EXAMPLE. Over 3700 trauma patients were admitted to the hospital in 2018. The TICU admitted 765 patients in 2018. This would cause over 3000 patients admitted to the intensive care unit over the 4-year project. Using the advanced technology of the hospital's electronic health records (EPIC) combined with the mandated trauma registry there are streamlined efforts to recruit and retain patients. Since the mouse model correlates to an injury severity score (ISS) of twenty-five, the goal is to ensure that the average ISS for all the patients is twenty-five. Minimal risk to the patient is maintained since there is no direct benefit; the blood collected are less than 50 mL over an 8-week period and not collected more than twice a week. Blood samples from patients are taken on admission (25 mL) and during the TICU stay when a complication is developed (25 mL). This should cause the maximum for the initial 8-week period after the trauma. When the patient is recovered, at least 8 weeks after the last blood draw, a final blood draw 50 mL of are done in the outpatient setting. A power analysis was done based upon previous results from human patients. The effect size of Cohen's d=0.8 using a power of 80% and alpha of 0.05 the inventors calculated a sample size of twenty-six per group. The mortality of patients in the TICU is 5%. To enroll twenty-six patients who die after trauma, the inventors need 520 TICU patients (26/0.05=520). No enrollment is planned in the last six months to ensure adequate follow up, data collection and analysis. Fourteen % of patients in the TICU have complications after trauma. Due to the correlation to the mouse model of an ISS of twenty-five, the average ISS for the enrolled patients is targeted at twenty-five. This system recruits some patients who are not used. These patient samples are banked and not sent for RNA sequencing. After twenty-six patients who die and twenty-six patients with a complication are enrolled. The entire set of patients has an average ISS of twenty-five then recruitment conclude.


Where patients are being recruited, variables such as age, weight, and medical co-morbidities are collected and compared across groups. If these variables are different (t test or rank sum), these factors are adjusted for in the analysis by regression.


In the human studies, both sexes are recruited and analyzed in the GTEx data set. Age, weight, and other health problems are constant in the mouse assays.


Sample collection and sequencing. Mouse blood and lung samples were obtained as described. Monaghan et al., Annals of Surgery, 255, 158-164 (2012). Data for humans was obtained from GTEx by their protocols. RNA was extracted using the MasterPure Complete DNA/RNA Purification kit (epicenter, Madison Wis., USA) followed by the Globin Clear Kit (ThermoScientific, Waltham, Mass., USA). RNA was then sent to Genewiz (South Plainfield, N.J., USA) for sequencing as 1400 ng RNA in forty μL of fluid.


The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS and the data used for the analyses were obtained from the GTEx Portal and dbGaP accession number phs000424.v6.p1.


Cloud based computing. All computational biology work is performed on cloud-based computing by Lifespan-RI Hospital approved and supported Microsoft Azure environment. This server manages all large data sets from RNA sequencing. An intentional decision was made to use cloud-based computing for this project. Due to the depth of sequencing that is needed for RNA splicing analysis (100 million reads vs. forty million), more data is generated from both sequencing and analysis (a small study generated one terabyte of sequencing data and another terabyte from the alignment to the genome). With such a large amount of data predicted available for the EXAMPLE, the ability to expand and contract the storage space and computing power in the cloud is the ideal choice. This server stores and analyzes data from both mouse and human samples. Since RNA sequencing data is always identifiable, the data from humans are treated as though it is protected health information (PHI), even though none of the typical identifiers (such as name, date of birth, etc.) are associated with the data. The server was created in collaboration with the Information Technology department at Rhode Island Hospital to ensure data security. The cloud server is only accessible through a hospital virtual desktop and data are saved only to the Azure server or a hospital computer. Data are encrypted while stored, and when in transit to or from the hospital. Any link to typical identifiers (name, date of birth, etc.) are kept separate from the sequencing data. The cloud-based server allows for large data analysis with computing and storage needs changing on a per-use basis. The Azure server is Linux based and uses programming in R and Python. The following pipeline encompasses the typical analysis: differential expression, RNA analysis is done with Whippet. This also includes an entropy measure, and genes of interest undergo GO term analysis. Genes with alternative transcription start and end sites identified through Whippet are correlated with findings from the mountainClimber analysis.


Computational analysis and statistics. RNA sequencing data from the mouse was first checked for quality using FASTQC. RNA-sequencing data collected from the GTEx consortium, and the mouse ARDS model was analyzed with the Whippet software for differential gene processing. Alternative transcription events are those events identified by Whippet as ‘tandem transcription start site,’ ‘tandem alternative polyadenylation site,’ ‘alternative first exon,’ and ‘alternative last exon.’ Alternative RNA splicing events are those events labeled ‘core exon.’ ‘alternative acceptor splice site,’ ‘alternative donor splice site,’ and ‘retained intron.’ Alternative mRNA processing events were determined by a log 2 fold change of greater than 1.5+/−0.2. Statistical significance was calculated by the chi-square p-value of a contingency table based on 1000 simulations of the probability of each result.


Gene ontology (GO) was assessed using The Gene Ontology Resource Knowledgebase. Ashburner et al., Nature Genetics, 25, 25-29 (2000); The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47. D330-d338 (2019). Genes from the analyses were entered and outputs displayed. Outputs from gene ontology do not correlate with actual increase or decrease in a gene's expression but are related to expected based upon the set of genes entered.


Blood sample collection. Blood samples are collected on day 0 of ICU admission. Clinical data including COVID specific therapies was collected prospectively from the electronic medical record and participants were followed until hospital discharge or death. Ordinal scale can be collected as described by Beigel et al., New England Journal of Medicine (2020); along with sepsis and associated SOFA score, and the diagnosis of ARDS. See Singer et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315: 801-810 (2016); Ferguson et al. The Berlin definition of ARDS. Intensive Care Medicine, 38: 1573-1582 (2012).


RNA extraction and sequencing. Whole blood can be collected in PAXgene tubes (Qiagen, Germantown, Md.) and sent to Genewiz (South Plainfield, N.J., USA) for RNA extraction, ribosomal RNA depletion and sequencing. Sequencing can be done on Illumina HiSeq machines to provide 150 base pair, paired-end reads. Libraries were prepared to have three samples per lane. Each lane provided 350 million reads ensuring each sample had >100 million reads.


Computational Biology and Statistical Analysis. All computational analysis can be done blinded to the clinical data. The data can be assessed for quality control using FastQC. Andrews. A quality control tool for high throughput sequence data. FastQC (2014). RNA sequencing data can be aligned to the human genome utilizing the STAR aligner. Dobin et al., Bioinformatics (Oxford, England), 29, 15-21 (2013). Reads that aligned to the human genome can be separated and called ‘mapped’ reads. Reads that do not align to the human genome, which are typically discarded during standard RNA sequencing analysis, were identified as ‘unmapped’ reads. The unmapped reads then align to the relevant comparator and counted per sample using Magic-BLAST. See Boratyn et al., BMC Bioinformatics, 20, 405 (2019). The unmapped reads were further analyzed with Kraken2. See Wood, Lu, & Langmead, Genome Biology, 20, 257 (2019). The analysis used the PlusPFP index to identify other bacterial, fungal, archaeal, and viral pathogens. See Kraken 2/Bracken Refseq indexes maintained by BenLangmead, which uses Kutay B. Sezginel's modified version of the minimal GitHub pages theme.


Reads that align to the human genome, the mapped reads, also can undergo analysis for gene expression, alternative RNA splicing, and alternative transcription start/end by Whippet. See Sterne-Weiler et al., Molecular Cell, 72, 187-200.e186 (2018). When comparisons are made between groups (died vs. survived) differential gene expression can be set with thresholds of both p<0.05 and +/−1.5 log 2 fold change. Alternative splicing was defined as core exon, alternative acceptor splice site, alternative donor splice site, retained intron, alternative first exon and alternative last exon. Alternative transcription start/end events can be defined as tandem transcription start site and tandem alternative polyadenylation site. Alternative RNA splicing and alternative transcription start/end events can be compared between groups. See Sterne-Weiler et al., Molecular Cell, 72, 187-200.e186 (2018). Significance was set at great than 2 log 2 fold change as described by Fredericks et al., Intensive Care Medicine (2020). Genes identified from the analysis of mapped reads can be evaluated by GO enrichment analysis (PANTHER Overrepresentation released 20200728). See Mi et al. Nature Protocols, 8, 1551-1566 (2013).


Whippet can generate an entropy value for every identified alternative splicing and transcription event of each gene. These entropy values are created with no groups used in the gene expression analysis. To visualize this data a principal component analysis (PCA) can be conducted to reduce the dimensionality of the dataset and to obtain an unsupervised overview of trends in entropy values among the samples. Raw entropy values from all samples can be concatenated into one matrix and missing values were replaced with column means. Mortality can be overlaid onto the PCA plot to assess the ability of these raw entropy values to predict this outcome in this sample set. This analysis was done in R (version 3.6.3).


Kraken 2. The following tools are compatible with both Kraken 1 and Kraken 2. Both tools assist users in analyzing and visualizing Kraken results. Bracken allows users to estimate relative abundances within a specific sample from Kraken 2 classification results. Bracken uses a Bayesian model to estimate abundance at any standard taxonomy level, including species/genus-level abundance. Pavian has also been developed as a comprehensive visualization program that can compare Kraken 2 classifications across multiple samples. KrakenTools is a suite of scripts to help analyze Kraken results. For more information, a person having ordinary skill in the biomedical art can refer to Wood, Lu, & Langmead, Improved metagenomic analysis with Kraken 2, Genome Biology (Nov. 28, 2019).


The following EXAMPLES are provided to illustrate the invention and should not be considered to limit its scope.


Example 1
Unmapped Bacterial Reads to Identify Bacteria Causing Sepsis

Because bacterial infections are a common cause of morbidity in trauma patients, unmapped reads that align with bacteria are useful for the diagnosis and treatment of trauma patients. Unmapped reads from RNA sequencing data provide a valuable tool for the trauma patient. The decrease in the number of bacterial reads in the blood may be due to increased immune response. Some bacteria keep constant levels between groups, which signifies a virulent pathogen.


The technique of RNA sequencing has resulted in creating massive amounts of data. The first step with public RNA sequencing data is usually to align the reads to the reference genome of interest. RNA sequences that do not align with the reference genome (10-30%) are usually discarded when they cannot be mapped.


The inventors used a mouse model of hemorrhagic shock followed by cecal ligation and puncture. The inventors isolate RNA from blood and lung samples and had the RNA sequenced using standard techniques. They compare RNA from the test mice to sham controls. They analyze the RNA data that did not map to the mouse genome. Unmapped reads aligned to common bacterial pathogens, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes. The inventors also identify specific genes with high read counts.


In one assay, the blood samples from the test mice exposed to trauma had fewer reads mapping to bacteria (365,974) as compared to the control mice (902,063, p=0.02). In the lung, the bacteria counts were similar. Despite an overall decrease in mapped bacterial RNA reads in the test mice, the three Streptococcus species and Staphylococcus aureus had a similar number of reads mapping between the test mice and the control mice. The most common RNA read mapped to aldo/keto reductase gene from group B strep (82793634[uid]). There was more expression of this gene in the blood of mice after trauma (15,096) compared to controls (3671, p=0.006). This difference was not seen in the lung compartment (13,691 vs. 15,996, p=0.24). In the blood of the test mice, most of the identified bacterial sequences were reduced in counts compared to the blood of the control mice (43 vs. 16).


Example 2
Unmapped Viral Reads to Identify Sepsis or Viral Reactivation

Unmapped data have been aligned to regions in the genomes of viruses. In critical illness, not only does the percentage of unmapped reads suggest a biomarker, but also the alignment of unmapped reads to some viral genomes. The percentage of unmapped reads in these organs during periods of critical illness can be a biomarker of severity and outcomes.


To assess the impact of critical illness on unmapped reads and their composition, the inventors expose mice (e.g., C57BL6 mice) to sequential treatment of hemorrhagic shock followed by sepsis. This treatment produces indirect acute respiratory distress syndrome (ARDS). RNA is extracted from lung and blood samples and sequenced via next-generation RNA-sequencing. Reads are aligned to the mm9 reference genome. The sources of unmapped reads were aligned by Read Origin Protocol (ROP). Changes in the viral signature of the unmapped reads are different when comparing blood to the lung.


In a second assay, the blood samples of critically ill mice averaged 31.9 million reads versus 32.1 million reads in healthy mice, and lung samples of critically ill mice averaged 33 million reads versus 33.7 million reads in healthy mice. The blood of critically ill mice had an average of 1.5 million unmapped reads (4.74%), more than the average 52,000 unmapped reads (0.16%) in the blood of healthy mice (p=0.000082). The lungs of critically ill mice had, on average, 194,331 unmapped reads (0.58%), which was more than the average 130,480 unmapped reads (0.39%) seen in the lungs of healthy mice (p=0.031665). In blood samples, unmapped reads from critically ill mice were less likely to be viral than healthy mice (average 3480 in critically ill vs. 4866 in healthy, p=0.025955). In lung samples, unmapped reads from critically ill mice were more likely to be viral than those from healthy mice (average 6959 in critically ill vs. 3877 in healthy, p=0.031959). The results were notable for higher viral loads in lungs of critically ill mice, showing that viral RNA loads can be a biomarker of critical illness.


Human correlates can translate into a clinical setting.


Example 3
Unmapped B/T V(D)J Use to Identify Sepsis

In immune systems, V(D)J recombination allows for a diversity of antibodies in B cells and T cell receptors in T cells. During critical illness, the variety of these recombination events reduces, but recovers. RNA sequencing better characterizes V(D)J recombination events. RNA sequencing shows more diversity in critical illness compared to what was described previously. B and T cell composition could prove to be an important marker in critical illness and predicting outcomes of sepsis.


The inventors subject mice (e.g., C57BL6 mice) to sequential of hemorrhagic shock followed by sepsis. This induces acute respiratory distress syndrome (ARDS). Lung and blood samples are collected. RNA from the samples is sequenced by next-generation sequencing. Reads from critically ill and healthy mice are aligned to GRCm38 annotation and then mapped to the V(D)J annotation by Read Origin Protocol (ROP).


In a third assay, the inventors recovered ˜thirty million reads were recovered from RNA-seq data generated from lung tissue of critically ill mice and healthy controls. Alignment with STAR aligner showed an average of 7.77% unaligned reads in the healthy control, and 8.78% unaligned reads in the samples extracted from critically ill mice. Unmapped reads then underwent a secondary alignment to assay for V(D)J recombinants. Healthy mice have an average of 629 recombinant epitopes, whereas critically ill mice had an average of only 208 recombinant epitopes. Assays were done in triplicate with littermates.


Analysis of unmapped reads shows that critical illness inhibits the generation of B cell and T cell epitopes by the immune system during critical illness. Although the percentage of unmapped reads between healthy mice and critically ill mice was not significant, the composition of B and T cell epitopes differs vastly in critically ill mice.


Example 4
Principal Component Analysis of RNA Splicing Entropy to Identify Sepsis

Next Generation Sequencing is useful for the diagnosis and treatment of diseases.


The effect of alternative RNA splicing before translation has not been studied much, especially in the critically ill patient. Previous work showed an association between cancer and the level of global alternative splicing entropy. Elias & Dias, Cancer Microenvironment, 1(1),131-9 (2008); Ritchie et al., PLoS Computational Biology, 4(3), e1000011 (2008). RNA splicing entropy is correlated with acute respiratory distress syndrome (ARDS) across multiple tissues. Evaluating splicing entropy can provide insights about biological processes and gene targets in the critical illness setting.


The inventors induce a mouse model of ARDS by subjecting mice to hemorrhagic shock, followed by cecal ligation and puncture. Blood and lung samples are collected from three mice undergoing ARDS and three sham controls. RNA is purified.


Next-generation RNA sequencing is performed. Alternative splicing (AS) entropy levels are determined using Whippet (v 0.11) on Julia (v 0.6.4). Principal Component Analysis (PCA) is conducted using base R (v 3.4.0). Alternative splicing events with a proportion of spliced in values between 0.05 and 0.95 are analyzed. A threshold of 1.5 is applied to determine the percentage of high entropy events. Proportions of high entropy events across tissues and experimental groups are compared using Mann Whitney U tests.


In a fourth assay, Principal Component Analysis of the blood samples was performed. Samples clustered based on tissue type and ARDS status on a Principal Component Analysis plot This result suggested that splicing entropy can serve as a biomarker for ARDS status. The inventors observed differential levels of splicing entropy across tissue types, with the most entropy in the lung.


Example 5
RNA Lariats to Identify Sepsis

This EXAMPLE demonstrates the collecting of RNA sequencing data from a complex tissue (blood), rather than a cell line, and uses computational biology techniques to analyze the data.


RNA splicing occurs directly after DNA transcription, but before protein translation. RNA splicing by a two-step esterification process with the formation of an intermediary lariat formed by the intron and joining of the 5′ and 3′ splice sites. Introns typically degrade rapidly.


The biology of lariats has recently been identified as important as it relates to viral biology. The DBR1 gene encodes for the only RNA debranching enzyme. Mutations of DBR1 increase susceptibility to HSV1 and increase viral brainstem infections in humans. Assessing the RNA lariat counts in the critically ill trauma patients could predict poor outcomes or prolonged immune suppression. The inventers undertook the mouse model of critical illness (CLP). Assessing for the resolution or return to a healthy level of lariat counts could be a marker to identify immune suppression or those patients at risk for a complication.


The identification of lariats from RNA sequencing data had been difficult. The William G. Fairbrother laboratory created a method to count lariats from RNA sequencing data. Taggart et al., Nature Structural & Molecular Biology, 19, 719-721 (2012).


In a fifth assay, the preliminary data suggests that in the critically ill mouse, the typical metabolism of RNA lariats is changed, resulting in an accumulation of lariats in the blood. The inventors found that the blood of mice with the critical illness have higher lariat counts compared to the control mice.


Example 6
Traumatic Shock

Lungs from healthy mice had an average of 3877 viral reads. Lungs from critically ill mice had on average 6956 viral reads. Blood from healthy mice had 4866 viral reads. Blood from critically ill mice had 3480 viral reads. Lungs from critically ill mice were more likely to have unmapped reads originating from viral genomes when compared to lungs from healthy mice (0.36% in critically ill, 0.21% in healthy; p-value=0.032). This could be due to critical illness leading to a compromised immune response that allows for viral reactivation and a higher viral load in lungs of critically ill mice. Traylen et al., Future Virol., 6(4), 451-63 (April 2011).


Blood of healthy mice were more likely to have unmapped reads originating from viral genomes than blood of critically ill mice (0.05% in critically ill, 0.11% in healthy; p-value=0.026). There are several explanations for why healthy mice could have increased viral loads in the blood compared to critically ill mice. Mature lymphocytes are constantly recirculating through blood and lymphatic organs. Charles et al., Immunobiol. Immune Syst. Health Dis. 5th Ed. (2001). In critical illness, the release of pro-inflammatory mediators may compound the intensity of immune surveillance, as documented in patients with systemic inflammatory response syndrome (SIRS). Duggal et al., Science Reports, 8(1), 1-11 (Jul. 5, 2018).


Change in leukocyte populations in critically ill mice may lead to a higher number of RNA-producing polymorphonucleocytes (PMN) in blood, which reduces the total viral RNA signal in critically ill mouse blood. Therefore, steps are taken to enrich for lymphocytes and monocytes to reduce RNA reads from PMNs.


This traumatic shock EXAMPLE demonstrated an association between critical illness and higher viral loads in mouse lung, lending promise to the clinical use of viral loads as a marker of critical illness.


Example 7
Processing RNA Sequencing Data to Aid in the Care of Sepsis Patients

More should be known about RNA biology, specifically alternative RNA splicing, in the sepsis population.


Over 90% of human genes with multiple exons require alternative splicing events to produce functional proteins. Pan et al., Nature Genetics 40, 1413-1415 (2008). RNA splicing creates a large natural source of variation of the transcribed gene to the produced protein product. RNA splicing is under exquisite control under normal conditions. Fever, hypothermia, and osmotic stress from fluid shifts can influence RNA splicing in vitro and change RNA splicing, altering protein expression. Gultyaev et al., TSitologiia i Genetika, 48, 40-44 (2014); Lemieux et al., PloS One 10, e0126654 (2015); Mahen et al., PLoS Biology 8, e1000307 (2010). Acidosis influences RNA splicing. Elias & Dias, Cancer Microenvironment, 1 131-139 (2008). Hypoxia also influences RNA splicing. Romero-Garcia et al., Experimental Lung Research 40, 12-21 (2014); Kasim et al., The Journal of Biological Chemistry, 289, 26973-26988 (2014). The effects of physiologic stress on RNA splicing should be better known. The pathological significance of changes induced RNA splicing process and proteins should be better understood.


This EXAMPLE shows the use of deep RNA sequencing data using computational biology methods (RNA splicing entropy, lariat counts, viral identification, and B and T cell epitope creation) and apply these methods to three distinct data sets: mouse of different strains undergoing sepsis, deceased sepsis patients who participated in the GTEx project, and human sepsis patients.


RNA splicing entropy after sepsis. RNA splicing is a basic molecular function in all cells. This EXAMPLE uses the global index/marker of RNA splicing called ‘RNA splicing entropy’ a calculation of the precision of RNA splicing typically occurring. The entropy and thus the disorder, is maximal when the probability of all events P (xi) is equally likely and the outcome is most uncertain. This calculation is done for each type of alternative splicing event: skipped exon, retained intron, alternative donor (3′ splice site), and alternative acceptor (5′ splice site). The alternative splicing events with high entropy are identified using Whippet.


A lower percentage of RNA slicing entropy may predict increased mortality or more complications, particularly infections, in patients with sepsis. Previous work on cancer samples has shown that RNA splicing entropy is increased in the tumor compared to the healthy tissue in many cancer types. From the preliminary data in mice with and without ARDS after sepsis, RNA splicing entropy is less in the blood, 7.7% vs 10.7%, p=0.1. RNA splicing entropy was calculated for total white blood cell components of mice with critical illness caused by hemorrhage and cecal ligation and puncture and compared to controls. The RNA from blood and the lungs of mice was extracted, processed, and then subjected to deep RNA sequencing.


Obtaining this data demonstrates the ability to isolate RNA samples from the target organ tissues of interest in the mouse model system. This EXAMPLE demonstrates the ability to process the complex data using computational biology and custom scripts that result from RNA sequencing. This preliminary data suggests that the process of RNA splicing in critical illness is different compared to the controls, changes in RNA splicing entropy may be a reflection/response to or a mechanism driving pathological processes that drive mortality and morbidity in patients with sepsis. Genes with significant alternative splicing and high entropy in the mouse after sepsis may be target for intervention. These genes of interest are identified using machine-learning techniques and compared across both humans and mice.


Assessment of viral activity after sepsis. In the initial assessment of RNA sequencing data, the reads are aligned to the genome of the species the sample came from. The unmapped reads can account for up to 20% of the data and this data is typically discarded. From this Read Origin Protocol analysis of multiple data sets (including GTEx data), the inventors found their protocol accounted for 99.9% of all reads. The data typically discarded was then analyzed in a seven-step process. Two of those steps are of particular interest because of the relevance to critical care: Viral reads and B and T cell receptor rearrangement.


Identification of viruses after sepsis is a marker of immune suppression since there is data suggesting sepsis re-activates herpes infections. Cook et al., Critical Care Medicine, 31, 1923-1929 ((2003)). Much current research is focused on these mechanisms and interventions. Viral counts could correlate with immune suppression or complications. This is important because of the re-activation data. RNA sequencing data from the lungs of control mice showed fewer viral reads (3877) compared to mice after sepsis (6956, p=0.032). In the blood the opposite was true. Control had 4866 counts versus sepsis with 3480 counts (p=0.026). This difference between tissue types could be due to a multitude of reasons, such as latent infections, like CMV, in the lung. Because blood is the most accessible tissue type, the efforts for the human samples should focus on the blood.


Assessment of immune cell epitopes after sepsis. During critical illness, the immune system is activated and likely creating new receptors to respond to challenges/pathogens. These epitopes come from lymphocytes, known to be reduced in sepsis with resolution to normal levels linked to recovery. Heffernan et al., Critical Care, 16, R12 (2012). While the count of lymphocytes themselves is useful, measuring the number and diversity of the epitopes could provide further insights into immune suppression after sepsis.


In the mouse model, preliminary data shows fewer epitopes in the lung of mice after sepsis, compared to control. This demonstrates the ability to analyze data from a mouse model and characterize B and T cell epitopes via computational methods. Like lymphocytes, the production of epitopes may reduce. Recovery should correlate with a return to normal immune state.


The above-described methods to assess for immune suppression in sepsis patients by analysis of RNA sequencing data to understand RNA biology are applied to these samples.


For analysis of RNA splicing entropy, lariat counts, viral identification, and B and T cell epitope creation in the mouse model, using pilot data, using forty mice (twenty critically ill, twenty healthy controls) should have 80% power to detect a difference at a two-tailed alpha of 0.05. This method is used for each of the three mouse variants.


At the time points of twenty-four hours after cecal ligation and puncture and fourteen days after cecal ligation and puncture, mice are sacrificed, and organs procured. Organs to be collected are brain, lung, heart, kidney, liver, spleen, and blood. RNA from these samples is isolated as described below. The time point of twenty-four hours after CLP is selected as that is the time of most significant organ dysfunction. The time point of fourteen days is selected, since this is the point at which a mouse would be considered a survivor after this challenge.


RNA from blood samples in the mouse are processed using the MasterPure Complete RNA Purification (epicenter, Madison Wis., USA) kit for mice. Due to the high concentration of globin RNA in blood samples, these samples can then be further processed with the GLOBINclear Kit (epicenter, Madison Wis., USA). From blood one of skill in the molecular biological art can get 30-50 nanograms per microliter, with a total blood volume isolated from the mouse of about one mL. RNA from lung, heart, brain, kidney, liver, and spleen samples are extracted using MasterPure Complete RNA Purification kit for mice. After RNA samples are processed, the RNA was sequenced using standard techniques, for example by Deep RNA sequencing with a goal of 100,000,000 reads per sample. All samples should require at least 1400 nanograms of RNA for deep sequencing.


Human samples. Patients are recruited under Institutional Review Board approval and after consent is obtained. Blood samples are obtained from pre-existing catheters to minimize the risk. Blood samples are collected on admission and serially while the patient is in the intensive care unit. Samples are collected in PAXgene tubes and stored in an −80 C freezer until isolation of RNA for sequencing is needed. RNA sequencing is done in batches to minimize cost. For this experiment, it is expected 300 sepsis patients are recruited (average of 100 the first three years to allow analysis over the final two years of the project).


Control samples are obtained from healthy patients undergoing routine laboratory analysis at outpatient facilities. Blood from these patients is collected in PAXgene tubes and stored in an −80 C freezer until isolation of RNA for sequencing is needed. RNA sequencing is done in batches to minimize cost. Healthy controls are matched to sepsis patients based upon demographic/clinical data. Recruitment aims for 300 patients total (average 100 each year over the first three years). Sample size calculations for the recruitment of humans was done based upon initial results from the mice assays. Preliminary data from humans with sepsis shows more variation compared to the mice data. These differences from humans are accounted for by several things such as age, sex, medical co-morbidities, and variations in the timing of collection from the point of the sepsis.


RNA from blood samples from humans are processed using the MasterPure Complete RNA Purification (epicenter, Madison Wis., USA) kit for humans. Due to the high concentration of globin RNA in blood samples, these samples can then be further processed with the GLOBINclear Kit (epicenter, Madison Wis., USA). All samples require at least 1400 nanograms of RNA for deep sequencing, e.g., by Deep RNA sequencing with a goal of 100,000,000 reads per sample.


Genotype Tissue Expression (GTEx). The GTEx data has over 500 patients included with at least one sample that has undergone RNA sequencing. Extensive clinical data is available on these participants. The data can stratify the patients into early deaths (<36 hours) and late deaths (>36 hours). This classification and comparison between the groups was done as it highlights a population who could be intervened upon. The patients who die later die because of immune suppression leading to complications from sepsis. Earlier identification of immune suppression could change outcomes. The GTEx samples have been collected and undergone RNA sequencing. This sequencing data are analyzed as described above.


Innovativeness. RNA sequencing technology affords an avenue to bring precision medicine to sepsis patients. The inventors used blood samples from sepsis patients, process them and obtain RNA sequencing data of similar quality to that of cell lines or solid tissue samples. Monaghan et al., Shock, 47, 100 (2017). RNA sequencing allows for understanding not only the gene expression but also RNA biology. RNA is unstable compared to DNA. Kara & Zacharias, Biopolymers, 101, 418-427 (2014). RNA is influenced by the specific cellular environment (altered in sepsis).


Conceptual Innovation. Past work on sepsis and molecular mechanisms has been focused on gene transcription and protein expression. The process of alternative RNA splicing also can influence the expression of a protein independent of the gene expression. Chang et al., Combinatorial Chemistry & High Throughput Screening, 13, 242-252 (2010); Fredericks et al., Biomolecules, 5, 893-909 (2015).


By comparing findings in mice to humans using the publicly available RNA sequencing data from GTEx and human samples from the Intensive Care Unit, the inventors can establish the nature/type of RNA splicing common across species.


By determining the temporal relationship of changes in RNA splicing entropy, RNA lariats, viral identification, and B and T cell epitope creation with developing complications/mortality, the inventors can establish whether RNA biology can provide insight to immune suppression after sepsis.


Assessing information in the unmapped reads (viral and B/T cell epitopes) to determine clinical significance is using data that is typically discarded. This is like the use of lymphocyte counts to predict sepsis outcomes. Heffernan et al., Critical Care, 16, R12 (2012).


Technical innovation. RNA is isolated from complex tissues from both mice and humans. The isolate RNA is of high enough quality to allow for deep RNA sequencing. This analysis has only previously been done on cell line or cancer samples.


The inventors can use a series of analytical algorithms; initially, using the STAR aligner, then Whippet to assess and characterize splicing events and splicing entropy. This analysis is done across GTEx data, mice with sepsis and humans with sepsis.


The inventors can use the Read Origin Protocol as a basis. The inventors can modify as appropriate to assess viral content and B/T cell epitopes in data obtained from mouse models of sepsis, GTEx, and humans with sepsis.


The inventors can apply the scripts used previously to calculate lariat counts from RNA sequencing data. Taggart et al., Nature Structural & Molecular Biology, 19, 719-721 (2012). The RNA sequencing data is obtained from mouse models of sepsis, GTEx, and humans with sepsis.


Assaying the large amount of data that comes from RNA sequencing is commonly not successful due to several reasons. The analyses have biases for which controls are not in place, the large data should produce a statistically significant result but is it biologically and clinically significant. Using multiple biologic outputs (RNA splicing entropy, lariat counts, viral identification, and B and T cell epitope creation) across three samples (GTEx, mouse model, and humans) mitigate.


By assaying RNA splicing entropy, lariat counts, viral identification, and B and T cell epitope creation, one of ordinary skill in the molecular biological art can identify patients with this prolonged immune suppression.


Analyzing data already collected, such as using the GTEx data, and data like the unmapped reads from RNA sequencing supports creativity. This data would typically be ignored, but with the proper clinical relevance, the data can be reanalyzed and potentially find new biomarkers. The lymphocyte counts on a complete blood count with differential, a potential biomarker in the sepsis population. Heffernan et al., Critical Care, 16, R12 (2012).


Analysis of RNA sequencing data can provide one marker of the severity of the critical illness.


Evaluating RNA biology and outcomes after sepsis. Next generation RNA sequencing allows for the analysis of the RNA and assessment of not only gene expression but also other biological processes (alternative splicing, changes in transcription start and end). Correlating genomic information from high throughput sequencing technologies about a patient on arrival to the hospital with outcomes such as death and complications like infection should improve care. Since RNA is not as stable as DNA, assessing RNA are more sensitive to the physiologic stress in sepsis. The inventors can assess how the physiologic stress of sepsis influences RNA biology and alters proteins. Assaying RNA biology in critical care sepsis patients should translate to other patients with critical care after diseases.


By high throughput RNA sequencing the inventors can assay gene expression and the RNA processing events of alternative transcription start/end and alternative RNA splicing of from leukocytes in the blood. All three of these biological processes influence protein expression via generation of the RNA (gene expression), changing the beginning and end of the RNA (alternative transcription start/end), and changing the isoforms that are expressed (alternative RNA splicing). The combination of these three modalities creates a ‘transcriptomic phenotype’ and better identifies expressed proteins in the sepsis population as compared to the typical use of gene expression alone, compared to DNA, RNA is more influenced by the physiologic derangements seen in sepsis such as hypoxia and acidosis in cell culture. Elias & Dias, Cancer Microenvironment, 1(1),131-9 (2008); Kasim et al., The Journal of Biological Chemistry, 289(39), 26973-88 (2014).


In an intensive care unit, monitoring of physiology correlates to improved clinical outcome. Clinicians do not monitor how this physiology impacts RNA biology. Using high throughput sequencing, the inventors assay RNA biology in sepsis patients. The understanding of RNA biology at the time of injury should predict mortality, complications, and other outcomes in sepsis patients. Three aims are tested using a mouse model of sepsis, data from GTEx of sepsis patients, and blood from sepsis patients with correlation to outcomes.


Aim 1: Identify changes in RNA biology (gene expression, alternative transcription start/end, and alternative RNA splicing) in the blood before and after a pre-clinical mouse model of sepsis and compare to controls.


Aim 2: Using the data available from the Genotype Tissue Expression (GTEx) project correlate findings in the mouse model to these sepsis patients (81 patients).


Aim 3: Enroll critically ill sepsis patients and identify aspects of RNA biology that identify and predict outcomes (mortality, infection).


These analyses use data from high throughput sequencing and cloud computing to establish findings of RNA biology that correlate and predict outcomes in sepsis patients. This data comes from an ancestrally diverse sepsis population and can be applied to sepsis patients across the country and to multiple critically ill patient populations.


New technology has come that allows for analysis of all genes, not just those identified by the technology at the time. Tompkins, The Journal of Trauma and Acute Care Surgery. 78(4), 671-86 (2015). With RNA sequencing technology, particularly at the depth identified (80-100 million reads) needed for RNA biology assessment, the inventors can assess all genes transcribed, not just those identified as important with older technology. The analysis of all transcribed genes allows for the identification of genes that may be important for trauma, that in the past were overlooked, likely due to low transcription levels, with RNA sequencing technology the inventors can assay RNA biology (alternative transcription start/end and alternative RNA splicing), for a complete understanding of what genes are ultimately translated to functional proteins. Hardwick et al., Frontiers in Genetics, 10, 709 (2019).


Over 90% of human genes with multiple exons require alternative splicing events to produce functional proteins, creating a potentially large natural source of variation of the transcribed gene to the produced protein product. Pan et al., Nature Genetics, 40(12), 1413-5 (2008). Splicing is under exquisite control under normal conditions. Some conditions common in trauma, such as fever, hypothermia, and osmotic stress from fluid shifts can influence RNA splicing in vitro and change RNA splicing, altering protein expression. Gultyaev et al., TSitologiia i Genetika, 48(6), 40-4 (2014); Lemieux et al., PloS One, 10(5), e0126654 (2015); Mahen et al., PLoS Biology, 8(2), e1000307 (2010).


Using a mouse model of trauma caused by hemorrhage followed by cecal ligation and puncture, the inventors reported that alternative RNA splicing results in expression of varied isoforms of an immune modulating protein (programmed cell death receptor-1, PD-1). Preliminary data on RNA splicing entropy indicate that global RNA splicing is modified in the mouse model of trauma. Ritchie et al., PLoS Computational Biology, 4(3), e1000011 (2008). Increased RNA splicing entropy is also present in other pathologic conditions, such as cancers, as compared to normal tissue. Ritchie et al., PLoS Computational Biology, 4(3), e1000011 (2008). Increased entropy is characteristic of disease states and could be a marker of critical illness after sepsis.


Sepsis patients are a good population in which to assay critical illness and generalize the findings to other patients. A population of sepsis patients is an ideal group to assay genomic factors as previous research has been hindered by lack of racial and ethnic diversity. Multiple factors cause minorities to avoid healthcare. Chikani et al., Public Health Reports, 131(5), 704-10 (2016). By assaying sepsis patients, the inventors can collect data from a diverse population that is more in line with the general population and not the population that seeks healthcare. The findings are more generalizable, especially among an ancestrally diverse population.


Protocols for sepsis have improved outcomes. Rhodes et al., Intensive Care Medicine, 41(9), 1620-8 (2015). Sepsis can cause critical illness in a young population. The response to sepsis should not be influenced by co-morbidities associated with an increasingly aged population, but the inventors can collect co-morbidities to assess if there is an impact.


Genomic medicine is an ideal target for sepsis patients but is limited by sequencing technologies. Although genomic medicine is typically defined as using genomic information about an individual patient as part of their clinical care, this definition cannot be applied to sepsis patients or any critically ill patients.


Next generation RNA sequencing takes about 18 hours on an Illumina machine, but this does not include time for data analysis. Since the data are delayed until the outcome of the patient is known, data analysis can be blinded to allow for more robust conclusions, through this work, the efficiencies in computation biology can be elucidated so that when the sequencing technology speeds up, the analysis are quick enough to have a clinically relevant time frame (less than one hour) from sample acquisition to actionable result.


Thus, there is value in understanding of how stressors associated with sepsis can affect RNA biology (RNA splicing (and entropy) and alternative transcription start/end) and how changes in the RNA biology leads to altered protein product expression, contributing to potential dysfunction at a cell and tissue level.


Innovation. Past work focusing on trauma and molecular mechanisms has been focused on gene transcription and protein expression. The process of alternative RNA splicing and alternative transcription start/end both have the potential to influence the expression of a protein independent of the gene expression. Chang et al., Combinatorial Chemistry & High Throughput Screening, 13(3), 242-52 (2010); Fredericks et al., Biomolecules, 5(2), 893-909 (2015). By comparing findings in mice to humans using the publicly available RNA sequencing data from GTEx and human samples from the Trauma Intensive Care Unit the inventors can establish the nature/type of RNA biology that is common across species.


In determining the temporal relationship of changes in RNA biology with developing complications/mortality, the inventors can establish whether RNA biology can provide insight to immune suppression after sepsis.


Knowledge of RNA biology in the critically ill is useful because previous work on this process has focused largely on chronic diseases and genetic diseases.


The combination of gene expression, RNA splicing, and transcription start/end create a ‘transcriptomic phenotype’ that can be followed during the patients hospital stay.


RNA is isolated from complex tissues from both mice and humans. The isolate RNA is of high enough quality to allow for deep RNA sequencing. This analysis has only previously been done on cell line or cancer samples.


The inventors can use a series of analytical algorithms using the STAR aligner, then Whippet, to assess and characterize RNA biology. Results from Whippet are compared to mountainClimber to ensure accurate data as it pertains to alternative transcription start and end. This analysis is done across GTEx data, mice with sepsis and humans with sepsis.


Using multiple biologic outputs (alternative RNA splicing, including entropy, alternative transcription start/end) across three different samples (GTEx, mouse model, and humans in the trauma intensive care unit) should mitigate some of the potential flaws.


Preliminary data regarding trauma. In a small cohort of trauma patients from GTEx, three patients form the early death cohort (<48 hours) were compared to six patients from the late death cohort (>/=48 hours). In this comparison, 524 genes are significantly increased in the late death versus the early death. In the late death group, 2331 genes are decreased compared to the early death group. The GO terms associated with the genes that decreased expression in the late group compared to the early group are valid based upon previous research. The terms with a decrease in expected representation in the GO terms reference mitochondrial biology. This decrease in GO terms likely represents that genes are increased in expression at the early death time point. Mitochondrial molecular patterns have been a component of the early response to trauma and those genes would be increased in the early group. (37, 38) anemia occurs during trauma. In the late group, genes associated with erythrocyte development are over-represented, suggesting increase expression in the late death group compared to the early death group. These few GO terms and correlation to phenotypes of trauma, suggest use of early versus late death is a valid clinical tool. This preliminary data shows the ability to access, manage, and analyze GTEx data with clinically significant groups using modern computational biology techniques. Using GO terms allows us to prove clinical relevance. This project aims to obtain and analyze all the trauma samples from GTEx. The inventors can also use similar computational approaches with the prospectively collected data from trauma patients.


Multiple alternative RNA splicing events and alternative transcription start, and events are detected, but there are fewer that are significant. Using the same cohort as above, this preliminary date from GTEx data, alternative splicing and alternative transcription events are characterized using Whippet. Multiple events were identified to be alternative RNA splicing and alternative transcription start/end in the blood samples. When comparing the groups there were only significant differences when assessing alternative RNA splicing and not alternative transcription start and end. This data confirms that alternative RNA splicing is an active process during trauma and could predict mortality and outcomes in trauma patients, genes with changes in splicing, and potentially transcription start/end could identify useful targets. The combination of gene expression, splicing and transcription start/end could alter what proteins were thought to have increased gene expression and subsequent protein transcription have altered processing resulting in new isoforms or changes in transcription. These findings highlight the ability to access GTEx data, categorize the samples in a clinically relevant manner, and process the RNA sequencing data with advanced computational methods, such as Whippet.


RNA splicing, specifically RNA splicing entropy shows differences after trauma. From the preliminary data in mice with and without, the inventors can show that in the blood there is less RNA splicing entropy, 7.7% versus 10.7%, p=0.1. RNA splicing entropy was calculated using Whippet. The percentage of each type of splicing event with an entropy of >1.5 (Alternative Donor, Alternative Acceptor, Retained Intron, and Skipped Exon). Using the mouse model of trauma, RNA splicing entropy was calculated for total white blood cell components of mice after trauma caused by hemorrhage with cecal ligation and puncture (n=3) and compared to controls (n=3). The RNA from blood was extracted, processed, and then subjected to deep RNA sequencing. This preliminary data suggests that the process of RNA splicing in critical illness is different compared to the controls, changes in RNA splicing entropy may be a reflection/response to or a mechanism driving pathological processes that drive mortality and morbidity in patients with trauma. Obtaining this data demonstrates the ability to isolate RNA samples from the target organ tissues of interest in the mouse model system. This EXAMPLE demonstrates the ability to process the complex data using computational biology and custom scripts that result from RNA sequencing.


The trauma patients in the intensive care unit provide an ancestrally diverse population and adequate numbers to correlate mortality and other complications. The trauma intensive care unit admits over 750 patients a year with 20% of those patients coming from an ancestrally diverse background. The enrollment is in line with the general population, even though underrepresented minorities seek medical care at a reduced rate. One aspect to this invention is the correlation of the RNA sequencing data to mortality and complications.


This EXAMPLE shows the importance of not only predicting mortality, but also using RNA sequencing data to predict complications as patients with complications had a higher mortality (7.7%). Mortality could be influenced. This data shows the trauma center has the volume of patients in the intensive care unit to have an appropriately powered study.


Over four years, 520 patients can be enrolled based on sample size calculations, with fewer than the 3000 expected admissions proving feasibility.











TABLE 4





Aim
Suggested Type of Research
Application







1
Integration of other data types,
A model organism (mouse



such as environmental data, family
after trauma) will provide



history, transcriptomics,
the basis for other



epigenomics, functional data, or
analyses in humans after



model organism data to improve
trauma. Multiple strains



assessment of clinical validity or
will mimic the diverse



clinical utility of genomic
human population.



information.


2
Assessment of improved
GTEx data are re-analyzed



approaches for reanalyzing patient
using modern approaches and



genomic data and understanding
a unique population (early



its impact on clinical care.
versus late trauma deaths)


3
Evaluation of modern approaches
Trauma patients will provide



to interpreting genomic data in
an ancestrally diverse



ancestrally diverse populations in
population to assay this



clinical settings
clinical genomic date.









This approach uses RNA sequencing data from a mouse model of trauma, re-analysis of existing genomic data in GTEx about early versus late trauma deaths, and samples from ancestrally diverse critically ill trauma patients uniquely suited to provide clinical information applicable across many clinical scenarios, particularly critically ill patients with cancer, sepsis, stroke, or myocardial infarction. The analysis of the RNA data from next generation sequencing technology creates a ‘transcriptomic phenotype’ for each trauma patient. Understanding the RNA biology at the time of injury can predict outcomes (mortality and complications) in trauma patients. The method to test the three aims, the expected result, and the potential impact are summarized in TABLE 5.












TABLE 5





Aim
Method
Result
Impact







1
Mouse model of
Changes in RNA biology
These findings provide the



trauma, assessing
predict mortality after the
foundation for predicting



blood before
mouse model of trauma.
mortality and complications



trauma, after
The results seen at 24
in critically ill trauma



trauma, and in
hours differ from those
patients. Data seen at 24



survivors
identified at 14 days.
hours and 14 days correlate





with patients who die early





versus late.


2
81 deceased
Changes in RNA biology
This are the foundation for



trauma patients
are identified in early
analysis of RNA data from



from GTEx, 23
versus late trauma deaths
trauma patients during their



early deaths and
and these correlate with
hospital stay.



58 late deaths
mouse data.


3
Critically ill trauma
Changes in RNA biology
Using RNA sequencing data



patients assessing
on admission predict
predict mortality and



blood on
complications and
complications and enhance



admission and
mortality. changes over
care of trauma patients with



throughout course
the hospital course
applicability to all intensive




correlate with long-term
care unit patients.




outcomes.









Aim 1: Identify changes in RNA biology (gene expression, alternative transcription start/end, and alternative RNA splicing) in the blood before and after a pre-clinical mouse model of trauma and compare to controls.


Rationale: to determine if altered RNA biology in its various forms can predict outcomes, RNA sequencing data must be collected at various time points during the traumatic injury. The inventors can establish the equivalency of such a pre-clinical animal model to what is encountered clinically. The inventors previously used a mouse model of hemorrhagic shock followed my septic shock by cecal ligation and puncture (CLP). Monaghan et al., J. Transl. Med., 14(1), 312 (2016). This mouse model mimics a trauma patient with hemorrhagic shock from an extremity injury who then had a missed bowel injury resulting in severe critical illness. Using this mouse model, the inventors can obtain blood at the initial injury and assess if changes in RNA biology, to predict mortality from the severe trauma model. Using a mouse model allows for acquisition of blood samples at multiple time points (twenty-four hours after injury and in those mice that survived). The inventors can first assess if RNA biology in the blood can predict mortality, if changes in RNA biology are seen twenty-four hours after injury, and how these correlate to the RNA biology of survivors at fourteen days.


Test 1: Assess RNA sequencing data and identify genes with changes in expression, alternative RNA splicing, and alternative transcription start/end to develop the ‘transcriptomic phenotype’ from shed blood in the mouse model of trauma to predict outcomes. Mice (8-12 weeks old) undergo hemorrhagic shock followed by CLP to mimic the critical illness that a trauma would undergo after hemorrhagic shock from an extremity injury complicated by a missed small bowel injury. Mice are used from the background of C57BL/6J, BALB/cJ, and CAST to simulate the heterogeneity of humans. Each group has twenty-four (twelve sham and twelve trauma) mice for each strain based upon statistical calculations. C57BL/6J mice have a 30% survival at fourteen days. The shed blood from the hemorrhage component is collected. Although this blood is collected before the effects of hemorrhage, this time point can mimic an early time point in trauma, since the mice have undergone anesthesia and isolation/catheter insertion of the artery. RNA is isolated, sequenced and analyzed as described. The mice that survive to fourteen days can also be sacrificed and used in Test 2.


Test 2: Assess RNA sequencing data and identify genes with changes in expression, alternative RNA splicing, and alternative transcription start/end to develop the ‘transcriptomic phenotype’ from the blood of mice at twenty-four hours and fourteen days after trauma. Mice (8-12 weeks old) undergo hemorrhagic shock followed by CLP to mimic a severe trauma. Mice are used from the background of C57BL/6J, BALB/cJ, and CAST. Mice are sacrificed at twenty-four hours after CLP. Mice that survive to fourteen days are also sacrificed to assess RNA biology at that point among the survivors. Appropriate controls for each type of background mice undergo sham procedures. Based upon previous work, six mice are needed for each group. After mice are sacrificed (CO2 overdose followed by direct cardiac puncture) at either twenty-four hours or fourteen days after CLP blood are harvested. RNA from blood samples in the mouse are processed.


Human samples. Through collaboration with the military, soldiers in combat areas could be consented to donate blood before deployment. This blood would then undergo RNA sequencing and be compared to samples collected if there was an unfortunate traumatic injury. Many previous efforts using animal models to treat diseases such as sepsis failed to translate to humans. Fink & Warren. Nature Reviews Drug Discovery, 13(10), 741-58 (2014). The inventors previously studied conditions in mice with correlation to humans. Monaghan et al., J. Transl. Med., 14(1), 312 (2016); Monaghan et al., Molecular Medicine, 24(1), 32 (2018); Monaghan et al., Journal of the American College of Surgeons, 213(3), S54-S5 (2011); Monaghan et al. Annals of Surgery 255(1), 158-84 (2012). Trauma research may have better translatable results because of the timing of the disease. In trauma, the time of the event is known. This timing correlates with the induced trauma in the mouse. In sepsis, the time point at which sepsis started in the mouse is known. In humans, the time at which sepsis starts is impossible to know, as exemplified by inability to understand when an appendix may perforate. Iacobellis et al., Seminars in Ultrasound, CT, and MR, 37(1), 31-6 (2016). This is limited because it is a controlled traumatic challenge and should produce very consistent response to trauma. In humans, no trauma is the same. The number of humans needed to detect a difference is more since the traumas are not similar. Humans have more heterogeneity adjusted for by using multiple mouse strains. The inventors can account for differences in trauma by using the Injury Severity Score. The ISS of this challenge on the mouse is twenty-five, and this is the target average ISS of patients enrolled.


Aim 2: Using the data available from the Genotype Tissue Expression (GTEx) project correlate findings in the mouse model to these trauma patients (eighty-one patients).


Rationale. Using the GTEx data, the inventors can assess RNA biology in the blood of trauma patients. The GTEx data has over 500 patients included with at least one sample that has undergone RNA sequencing. The patients in the GTEx data set have extensive clinical data available. Unfortunately, all patients in this data set are deceased. This should be considered in interpretation of the data. To adjust for the fact all patients are deceased, the inventors use the time to procurement of the RNA from the death of the patient as a variable due to adjust for RNA degradation and other metrics as suggested by the GTEx consortium. (50) Trauma patients are selected (n=81) and identified as early (<48 hours) versus late death (>/=48 hours). The inventors can compare RNA biology between trauma patients who died early versus late and compare it to findings in a mouse model of mice who died early (twenty-four hours) versus survivors (fourteen days)


Test 1: Assess RNA sequencing data and identify genes with changes in expression, alternative RNA splicing, and alternative transcription start/end to develop the ‘transcriptomic phenotype’ the blood of deceased trauma patients and compare among early and late deaths. There are 81 unique trauma patients in the data set with blood samples. These patients are aged 20-68, in line with the age of typical trauma patients. The GTEx samples have been collected and undergone RNA sequencing. RNA sequencing data are aligned to the human genome with STAR. RNA Splicing events are assessed using Whippet and characterized into one of the five alternative splicing events: skipped exon, retained intron, mutually exclusive exon, alternative 3′ splice site, and alternative 5′ splice site. Entropy calculations are completed using Whippet. Alternative transcription events from Whippet are compared to outputs from mountainClimber.


Test 2: Correlation of changes in expression, alternative RNA splicing, and alternative transcription start/end (the ‘transcriptomic phenotype’) in the blood of humans to the mouse samples. From mouse model (Aim 1) changes in expression, alternative RNA splicing, and alternative transcription are identified and these are compared to findings in the human GTEx data (Aim 2, Test 1). The mouse model data are taken from mice at twenty-four hours after CLP and at fourteen days after CLP. This data is compared to the human data of early (<48 hours) and late (>/=48 hours) death. The identical genetic background of laboratory mice (despite coming from three strains) allows for assumptions to be made about significance of changes at a higher resolution, due to the certainty of the genetic model. Simultaneously it creates uncertainty about the validity of findings, due to a lack of comparability to humans that experience conditions outside of the laboratory. Human data is plagued by an equal and opposite effect as data derived from animal models. The homogeneity of the mouse model is replaced with heterogeneity due to factors such as age, sex, co-morbidities, and differences in the trauma. By coupling the certainty provided by the homogeneity of the mouse model, and the uncertainty provided by the heterogeneity of the human model, the inventors create a powerful tool with the potential to validate results from mouse analyses in humans. Comparing events across species can identify RNA biology events and genes that are important at both the early and late time point. These findings are compared to those found in the prospective collected data from trauma patients.


Human samples. In this sample set, all the patients are dead. Since RNA is unstable compared to DNA, adjustments in the comparisons between groups during the analysis must be made for the time it took for samples to be collected and RNA isolated. The mouse work is comparing to mice that are alive but were sacrificed. The GTEx consortium, to adjust for problems associated with deceased donors, has described multiple methods. Carithers et al., Biopreservation and Biobanking, 13(5), 311-9 (2015).


Aim 3: Enroll critically ill trauma patients and identify aspects of RNA biology that identify and predict outcomes (mortality, infection).


Rationale: A current challenge with the data from the animal models is ensuring translation to humans. This aim allows for complete translation of mouse data to humans. The human population of interest are patients admitted to the Trauma Intensive Care Unit (TICU).


Test 1: Assess RNA sequencing data and identify genes with changes in expression, alternative RNA splicing, and alternative transcription start/end in the blood can be prospectively detected and use this ‘transcriptomic phenotype’ in trauma patients on arrival and be correlated to mortality. Trauma patients are recruited from the trauma intensive care unit, which has an average of over 750 patients, admitted each year (over the last three years) and an average injury severity score (ISS) of 13, but the goal is to enroll patients with an average ISS of 25 to mimic the mouse model. Blood is collected in PAXgene tubes and stored at −80 C after informed consent is obtained. Samples are collected serially while in the ICU. Blood samples from patients are taken on admission (25 mL) and during the TICU stay when a complication is developed (25 mL). This causes the maximum for the initial 8-week period after the trauma. When the patient is recovered, at least eight weeks after the last blood draw, a final blood draw 50 mL of are done, potentially in the outpatient setting. Patients who survive the trauma are compared to patients who died. Clinical information for the trauma patients is collected from the trauma registry. The trauma registry is a database required as part of verification by the American College of Surgeons to be a trauma center. The data are standardized across the entire recruitment period. RNA is isolated using the PAXgene RNA Kit. RNA was sequenced (goal 80 to 100 million reads). RNA sequencing data are aligned to the human genome using the STAR aligner. Changes in expression, alternative RNA splicing, alternative transcription start/end, and RNA splicing entropy are identified with Whippet. Alternative transcription findings are correlated with mountainClimber.


Test 2: Assess RNA sequencing data and identify genes with changes in expression, alternative RNA splicing, and alternative transcription starts and end in the blood can be prospectively detected in trauma patients on arrival and use the ‘transcriptomic phenotype’ to correlate to outcomes and complications. Patients from the trauma intensive care unit identify differences in RNA biology between the healthy controls and trauma patients predict outcomes and complications. Outcomes and complications are recorded from the medical record and are defined in the trauma registry (and decided by trained coders). The trauma registry provides some demographic data, such as injury severity score to better quantify and adjust for the severity of the trauma across patients. Outcomes to follow and use as potential for prediction include mortality, hospital length of stay, intensive care unit length of stay, ventilator free days, and discharge disposition. Complications to be recorded again are taken from the trauma registry and include items such as infections (pneumonia, surgical site infections, urinary tract infection, bacteremia, sepsis), unplanned return to the operating room, unplanned return to the intensive care unit, tracheostomy, and feeding tube placement.


Human samples: In this sample set, all the patients are critically ill. Consenting patient who are critically ill requires a proxy and this can sometimes be difficult in the unexpected nature of trauma. The inventors have past success in consenting these patients. Human heterogeneity may make finding a significant difference between two groups difficult. Drastic difference (trauma patients in the intensive care unit survive versus die and those with complications) should allow for the identification of differences in RNA biology (‘transcriptomic phenotype’). All samples for this assay come from living patients.


Example 8
Survival Assay

All the test mice have the traumatic injury. They are maintained for fourteen days. At fourteen days all mice are sacrificed. The survival rate at fourteen days for the double hit model is 30%. The rate goes up to 70%. Monaghan et al. Annals of Surgery 255(1), 158-64 (2012). These estimates result in an effect size of h=0.823. A sample size of twenty-four per group during analysis would exceed 80% power at a 2-tailed alpha of 0.05 by a chi-square test of independent proportions, for survival analyses the inventors use twenty-four mice per group. This are done to ensure enough power to detect if RNA splicing at the initial challenge can predict survivors. Sham mice are operated (8 from each mouse background strain) at this time to procure samples at the 14-day time point.


RNA isolation and sequencing. RNA data from GTEx is extracted and sequenced per their protocols. RNA from mouse blood samples is processed using the MasterPure Complete RNA Purification (epicenter, Madison Wis., USA) kit for mice. Due to the high concentration of globin RNA in blood samples, these samples then be further processed with the GLOBINclear Kit (epicenter, Madison Wis., USA). From blood the inventors can get approximately 30-50 nanogram per microliter, with a total blood volume isolated from the mouse of about one mL. After RNA samples are processed, they are sequenced. All samples require at least 1400 nanograms of RNA for deep sequencing. Each sample are sent out (due to advancing technologies, costs of sequencing change frequently, therefore outside facility are chosen based upon cost during sample send out) for Deep RNA sequencing with a goal of 80 million to 100 million reads per sample.


Blood from trauma patients and healthy human control samples are collected using the PAXgene tubes (PreAnalytiX, Switzerland) and isolated using the PAXgene RNA kit (PreAnalytiX, Switzerland). Since it is impossible to predict the patients who die or have a complication on admission to the ICU, banked samples are used since the cost to perform RNA sequencing on the blood of all TICU patients at Rhode Island Hospital is impossible.


Assessment of clinical information. Clinical data relevant to the patient samples are collected from the trauma registry and the electronic medical record. This allows for collection of endpoints such as mortality. ICU length of stay, hospital length of stay, ventilator days, renal failure, ARDS, pneumonia, and other infectious complications. Besides data in the chart, the inventors also perform functional assessments at follow up after discharge. These would be based upon previous work in critical illness and use the 36-item short form (SF-36). The assessment is done at the 8+ week follow up.


Example 9
Alternative RNA Splicing and Alternative Transcription Start/End in Acute Respiratory Distress Syndrome

The objective of this EXAMPLE is to use RNA sequencing data and analysis to identify useful gene targets in sepsis.


Alternatively spliced RNA arises from co/post-transcriptional events facilitated by the spliceosome, introns are removed to form the mature RNA from which protein isoforms are translated. Alternatively transcribed genes are the product of changes in promoter usage, polyadenylation signals, and RNA polymerase II interactions with DNA which can lead to changes in isoform usage like alternative splicing events. These are identified from the analysis of RNA sequencing data. Significant differentially alternatively transcribed genes and alternative spliced genes were identified and were overlapped with genes reported as ARDS related. See, Reilly et al., American Journal of Respiratory and Critical Care Medicine (2017). Of 89 reported ARDS related genes, 38 were confirmed in at least one differential category confirming that the use of humans and mice with DAD/ARDS is appropriate and robust (p=1.25e−14). Eleven previously reported genes were present in all categories. These eleven genes were evaluated for the change in alternative splicing and alternative transcription GO term enrichment analysis was performed on the eleven overlapping genes, revealing twenty significant biological processes including ontology related to aging, and response to abiotic/environmental stimuli. See FIG. 1. 1639 genes show overlap in alternative splicing and alternative transcription not previously in the literature. These genes were assessed for directionality alternative splicing and alternative transcription and GO terms. See TABLE 3 and TABLE 4.


Assaying the underlying changes in RNA processing (alternative splicing and alternative transcription start/end) not expands basic knowledge only of pathogenicity, but also provides additional targets for therapeutics. The most enriched GO term from the alternative splicing set, carboxy-terminal domain protein kinase complex (GO: 0032806) refers to phosphorylation of the CTD of RNA polymerase II, which is vital in regulating transcription and RNA processing. RNA polymerase complex binding (GO: 0000993), and transport of the SLBP Independent/Dependent mature mRNA (R-HSA-159227; R-HSA-159230) are among the most enriched. Alternative pre-mRNA splicing may have the dominate role in isoform usage in genes where expressions levels do not change, whereas alternative transcription may regulate isoform usage in genes that are more dynamically expressed during critical illness. Alternative splicing and alternative transcription may have separate roles in DAD/ARDS by regulating different genes to perform distinctive functions.


In this analysis of RNA sequencing data from deceased patients with ARDS identified by DAD and a clinically relevant mouse model of ARDS, useful genes are identified.


Overview. The inventors used RNA sequencing to identify changes in mRNA processing events (RNA splicing and transcription start/end sites) can be studied with RNA sequencing data. The inventors' strategy was to use the contrast how the processing of mRNA changes in lung and blood of patients with ARDS and compare to the lung and blood of a mouse model of ARDS.


Data. For this EXAMPLE, two main approaches were taken to obtain samples. The first was to use a validated mouse model of ARDS. Ayala et al., The American Journal of Pathology, 161, 2283-2294 (2002); Monaghan et al., Molecular Medicine (Cambridge, Mass., USA), 24, 32 (2018). All experiments were done according to guidelines from the National Institutes of Health (Bethesda, Md.). For the mouse model of ARDS. C57BL/6 male mice (The Jackson Laboratory, Bar Harbor, Me., USA) between 10 and 12 weeks of age were used. ARDS was induced in the mice by hemorrhage (non-lethal shock) followed by cecal ligation and puncture (CLP). The control group was sham hemorrhage followed by sham CLP.


The second approach was to identify patients in the GTEx Project with ARDS. All patients in the GTEx projects used in this EXAMPLE are deceased. A pathologist, blinded to the specimen ID and history, identified diffuse alveolar damage in lung samples from patients in GTEx. Most cases of clinical ARDS have diffused alveolar damage (DAD) morphologically. Zander & Farver, Pulmonary pathology e-book: A volume in foundations in diagnostic pathology series. (Elsevier Health Sciences, 2016). Classic DAD was identified based histologic features (For full description, please see supplement). Patients with evidence of diffuse alveolar damage in the lung and a corresponding blood and lung sample that had undergone RNA sequencing were placed in the ARDS group. Patients who had no evidence of diffuse alveolar damage in the pathology sample and a blood and lung sample with RNA sequencing were placed in the control group. Most cases of clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) have diffused alveolar damage (DAD) morphologically, which is divided into 2 phases: the acute/exudative phase and the organizing/proliferative phase. Other histologic patterns encountered in a clinical setting of ALI/ARDS include diffuse alveolar hemorrhage, acute eosinophilic pneumonia (AEP), and the acute fibrinous and organizing pneumonia (AFOP). Eight patterns of acute lung injury are evaluated in this EXAMPLE. Zander & Farver, Pulmonary pathology e-book: A volume in foundations in diagnostic pathology series. (Elsevier Health Sciences, 2016). Classic DAD was graded 1-4 based on the histologic features. Other patterns of injury were scored using a semiquantitative system for extent and histologic characteristics. For extent, grade was assigned: grade 1 (1 point): up to 10% tissue involved, grade 2 (2 points): 11-30% tissue involved, grade 3 (3 points): 31-50% tissue involved and grade 4 (4 points): >50% tissue involved. Histologic characteristics including intra-alveolar fibrin (1 point), cellular alveolar debris (I point), type II pneumocyte hyperplasia (1 point) and capillaritis/vasculitis. Total points 6 or higher were considered as DAD. Despite this complex method for categorizing diffuse alveolar damage, using this to diagnose ARDS is a major limitation. DAD could be present in other pulmonary diseases. The value RNA sequencing data from the lungs and blood of patients can provide biologic insights despite these limitations.


Results. Alternative splicing events were observed at 2-fold higher abundance as compared to alternative transcription events, yet significant alternative transcription events between groups were observed at a 6-fold higher prevalence (p=2.2e−16). Eighty-two alternative transcription events were common across all ARDS tissues (human and mouse, blood and lung, p=2.72e−16). No significant alternative splicing events were detected across all four tissues. As alternative splicing is species and tissue specific, it is unlikely to find an event that occurs in lung tissue and blood tissue in both human and mouse. GO term analysis was also performed on the significant differentially processing events.


The full list is TABLE 3 and TABLE 4 in International patent application PCT/US2021/018218, which are incorporated by reference.


Example 10
SARS-CoV-2 Viral Load and Nucleic Acid-Based Antiviral Therapies (RIH #332).

This invention disclosure describes a specific diagnostic. Determining which COVID-19 patients are at risk for severe disease and developing better anti-coronavirus therapies are clinical priorities. The invention leverages new information from genomic studies that demonstrate very limited, highly-specific regions of the SARS-CoV-2 genome are transcriptionally active in the bloodstream of COVID-19 patients. The invention solves the problem of measuring viral load in the blood from infected patients to assess prognosis. Viral load measurements are central to the management and prognosis of patients with HIV infection. The inventors found that using SARS-CoV-2 viral load to identify patients with more severe COVID-19, track the disease's course, and follow the response to treatment. The same sequences are used to create antiviral, interfering RNAs that block viral gene expression specific for viremia. This therapy directly blocks genes for COVID-19 pathogenesis. The invention is superior to potential competitors because the genomic data informs the design of relevant oligonucleotides that increases the assay's sensitivity.


The invention measures the amount of SARS-CoV-2 circulating in patients' blood. This amount is elevated in patients critically ill with COVID-19. The results therefore provide information on the prognosis of individual patients. Interfering RNA that specifically targets these sequences reduce these genes' expression, interrupting viral replication and the downstream consequences of COVID-19. The open reading frame encoding the N protein also includes ORF9b, which has been shown to antagonize the action of antiviral type I interferon. Blocking this region of the virus enhance the host's endogenous antiviral response.


The invention can be used by all clinicians caring for COVID-19 patients. High or increasing SARS-CoV-2 viral loads identify those at the most significant risk for severe disease. The therapy is unique compared to those approved or under clinical trial.


Example 11
Deep Sequencing to Identify Targets for Detecting and Treating Pathogens

This invention disclosure describes a more general approach. Diagnostic testing for specific infections depends on a substantial understanding of the underlying pathogen. Nucleic acid amplification tests (NAT) are increasingly used in clinical medicine, but developing a test is time-consuming and may miss NAT's optimal sequences. In the setting of a new pandemic like COVID-19, delays can be fatal. This invention leverages further information from deep sequencing of RNA from patients with specific infections to develop diagnostic targets and therapeutic strategies. Deep sequencing of RNA identifies the pathogen's most abundant RNA transcripts that establish a future work foundation. The approach is especially valuable for new pathogens poorly characterized because the RNA sequencing is unbiased and analyze known and unknown sequences.


The findings with SARS-CoV-2 illustrate the invention's potential. The sequencing studies demonstrate that very limited, highly specific regions of the SARS-CoV-2 genome are transcriptionally active in the bloodstream of COVID-19 patients. The invention solves the problem of measuring viral load in the blood from infected patients to assess prognosis. Viral load measurements are central to the management and prognosis of patients with HIV infection. The inventors found that using SARS-CoV-2 viral load to identify patients with more severe COVID-19, track the disease's course, and follow the response to treatment. The same sequences can be used to create antiviral, interfering RNAs that block viral gene expression specific for viremia. This therapy directly blocks genes for COVID-19 pathogenesis. The invention is superior to potential competitors that focus on DNA sequencing, which misses all possible RNA viruses like SARS-CoV-2 and influenza. Testing the most abundant RNA sequences enhance diagnostic assays' sensitivity because there can be more target sequences to measure.


The invention is a technical approach to measure pathogen RNA expression circulating in patients' blood. Computational analysis identities sequences, and these sequences can be used to develop diagnostic tests and therapeutics, such as small interfering RNAs mentioned above.


The invention can be used by academic and industry researchers who study infectious diseases pathogenesis, diagnostics, and treatment.


Example 12
RNA Sequencing to Assess Bacterial Gene Expression of Bacteria in the Human Host During Sepsis

Attached are the genes and counts from Acinetobacter in a patient with COVID-19. The genes with the most counts are listed. Bact Gene Exp. The Out CSEQS=Aligned out bam.















TABLE 6











Out


Gene id
Chr
Start
End
Strand
Length
CSEQS





















IX87_RS10825
NZ_CP009257.1
2143428
2144498

1071
6072


IX87_RS13765
NZ_CP009257.1
2731324
2733000

1677
1621


IX87_RS06655
NZ_CP009257.1
1293290
1295281
+
1992
1486


IX87_RS04495
NZ_CP009257.1
875468
876043
+
576
1480


IX87_RS01665
NZ_CP009257.1
311888
312541

654
1213


IX87_RS06455
NZ_CP009257.1
1241219
1243858

2640
1151


IX87_RS13760
NZ_CP009257.1
2729698
2731236

1539
1120


IX87_RS18095
NZ_CP009257.1
3641468
3641941
+
474
1009


IX87_RS14290
NZ_CP009257.1
2840814
2842754

1941
1008


IX87_RS09870
NZ_CP009257.1
1960173
1963025

2853
995


IX87_RS01755
NZ_CP009257.1
329174
331312

2139
986


IX87_RS09635
NZ_CP009257.1
1887997
1889631

1635
879


IX87_RS22220
NZ_CP009257.1
1932345
1948691

16347
875


IX87_RS17835
NZ_CP009257.1
3585533
3587203
+
1671
856


IX87_RS02170
NZ_CP009257.1
400923
402596

1674
842


IX87_RS10110
NZ_CP009257.1
2012821
2014125

1305
829


IX87_RS11740
NZ_CP009257.1
2326862
2327869

1008
819


IX87_RS09895
NZ_CP009257.1
1967878
1969152
+
1275
806


IX87_RS15045
NZ_CP009257.1
3003563
3004957
+
1395
801


IX87_RS09420
NZ_CP009257.1
1842311
1843243

933
768


IX87_RS06650
NZ_CP009257.1
1292234
1293286
+
1053
764


IX87_RS17750
NZ_CP009257.1
3567691
3569478
+
1788
758


IX87_RS10025
NZ_CP009257.1
1992002
1995178
+
3177
737


IX87_RS06640
NZ_CP009257.1
1288710
1291097
+
2388
735


IX87_RS04550
NZ_CP009257.1
885563
886978

1416
693


IX87_RS08840
NZ_CP009257.1
1721583
1723820

2238
686


IX87_RS20710
NZ_CP009257.1
4164453
4166039
+
1587
683


IX87_RS15035
NZ_CP009257.1
3001041
3002585
+
1545
671


IX87_RS15670
NZ_CP009257.1
3126337
3130530
+
4194
669


IX87_RS17765
NZ_CP009257.1
3571341
3574025
+
2685
641


IX87_RS15665
NZ_CP009257.1
3122162
3126250
+
4089
621


IX87_RS17795
NZ_CP009257.1
3578320
3579918
+
1599
591


IX87_RS09425
NZ_CP009257.1
1843261
1844010

750
586


IX87_RS09880
NZ_CP009257.1
1964309
1966144

1836
574


IX87_RS15625
NZ_CP009257.1
3116997
3118187
+
1191
571


IX87_RS09760
NZ_CP009257.1
1921690
1924920
+
3231
565


IX87_RS15755
NZ_CP009257.1
3145473
3147626

2154
557


IX87_RS09730
NZ_CP009257.1
1915821
1917716

1896
553


IX87_RS06375
NZ_CP009257.1
1227725
1228243

519
542


IX87_RS13365
NZ_CP009257.1
2644473
2647190

2718
528


IX87_RS07930
NZ_CP009257.1
1538290
1539705

1416
517


IX87_RS12725
NZ_CP009257.1
2519255
2520769
+
1515
502


IX87_RS09860
NZ_CP009257.1
1957481
1958914

1434
494


IX87_RS02825
NZ_CP009257.1
524251
525132
+
882
491


IX87_RS11765
NZ_CP009257.1
2329533
2330852

1320
479


IX87_RS08365
NZ_CP009257.1
1609789
1610940
+
1152
470


IX87_RS00340
NZ_CP009257.1
44564
45673
+
1110
467


IX87_RS13230
NZ_CP009257.1
2616298
2617083
+
786
467


IX87_RS01760
NZ_CP009257.1
331491
331961

471
466


IX87_RS15655
NZ_CP009257.1
3120936
3121442
+
507
466


IX87_RS09465
NZ_CP009257.1
1852062
1853039
+
978
463


IX87_RS07885
NZ_CP009257.1
1533357
1533983
+
627
458


IX87_RS00325
NZ_CP009257.1
40294
42723
+
2430
456


IX87_RS04585
NZ_CP009257.1
893625
896204

2580
454


IX87_RS10860
NZ_CP009257.1
2150015
2152420

2406
450


IX87_RS02405
NZ_CP009257.1
443230
446997
+
3768
444


IX87_RS09605
NZ_CP009257.1
1880229
1881134
+
906
444


IX87_RS17680
NZ_CP009257.1
3556213
3559047

2835
434


IX87_RS17800
NZ_CP009257.1
3579921
3581417
+
1497
430


IX87_RS01685
NZ_CP009257.1
315690
316502
+
813
418


IX87_RS07790
NZ_CP009257.1
1508072
1508824

753
409


IX87_RS06320
NZ_CP009257.1
1215830
1217341
+
1512
405


IX87_RS13990
NZ_CP009257.1
2775687
2778371
+
2685
401


IX87_RS07865
NZ_CP009257.1
1527434
1529704
+
2271
400


IX87_RS11565
NZ_CP009257.1
2291470
2292456

987
399


IX87_RS09855
NZ_CP009257.1
1956167
1957333

1167
395


IX87_RS11835
NZ_CP009257.1
2335867
2336619

753
394


IX87_RS16040
NZ_CP009257.1
3210600
3212687
+
2088
394


IX87_RS06465
NZ_CP009257.1
1244622
1249127

4506
389


IX87_RS04525
NZ_CP009257.1
879769
880380

612
385


IX87_RS05530
NZ_CP009257.1
1072645
1075860

3216
381


IX87_RS13500
NZ_CP009257.1
2674288
2674647

360
381


IX87_RS02305
NZ_CP009257.1
425244
426281

1038
380


IX87_RS18475
NZ_CP009257.1
3699884
3702049
+
2166
380


IX87_RS11755
NZ_CP009257.1
2328932
2329288

357
379


IX87_RS11870
NZ_CP009257.1
2339714
2340025

312
376


IX87_RS16280
NZ_CP009257.1
3260688
3262844

2157
374


IX87_RS17790
NZ_CP009257.1
3576429
3578318
+
1890
374


IX87_RS09865
NZ_CP009257.1
1958977
1960173

1197
372


IX87_RS11805
NZ_CP009257.1
2333659
2334195

537
370


IX87_RS01750
NZ_CP009257.1
327889
329079

1191
365


IX87_RS13190
NZ_CP009257.1
2605354
2606253
+
900
358


IX87_RS12160
NZ_CP009257.1
2399736
2401007

1272
356


IX87_RS16715
NZ_CP009257.1
3350516
3352144
+
1629
352


IX87_RS13300
NZ_CP009257.1
2630383
2631150
+
768
347


IX87_RS15700
NZ_CP009257.1
3135012
3135602
+
591
347


IX87_RS13360
NZ_CP009257.1
2642488
2644470

1983
343


IX87_RS20715
NZ_CP009257.1
4166036
4167181
+
1146
337


IX87_RS11435
NZ_CP009257.1
2266603
2267031
+
429
335


IX87_RS21505
NZ_CP009257.1
4303748
4305118
+
1371
334


IX87_RS00440
NZ_CP009257.1
62067
63671

1605
330


IX87_RS17320
NZ_CP009257.1
3480635
3480973
+
339
330


IX87_RS16695
NZ_CP009257.1
3345765
3347618
+
1854
324


IX87_RS06750
NZ_CP009257.1
1311509
1313083
+
1575
320


IX87_RS14750
NZ_CP009257.1
2940826
2942109
+
1284
319


IX87_RS16955
NZ_CP009257.1
3402811
3405567
+
2757
304


IX87_RS15015
NZ_CP009257.1
2998731
2999606
+
876
300


IX87_RS03345
NZ_CP009257.1
627208
630690
+
3483
299


IX87_RS16235
NZ_CP009257.1
3250051
3253383

3333
295


IX87_RS12010
NZ_CP009257.1
2369134
2370084
+
951
294


IX87_RS07235
NZ_CP009257.1
1410286
1410498

213
289


IX87_RS08390
NZ_CP009257.1
1615750
1616997
+
1248
288


IX87_RS13195
NZ_CP009257.1
2606313
2608280

1968
288


IX87_RS08710
NZ_CP009257.1
1692357
1693730

1374
287


IX87_RS15645
NZ_CP009257.1
3119489
3119917
+
429
286


IX87_RS11795
NZ_CP009257.1
2332937
2333332

396
283


IX87_RS17715
NZ_CP009257.1
3563307
3563489

183
283


IX87_RS11735
NZ_CP009257.1
2326466
2326843

378
279


IX87_RS17760
NZ_CP009257.1
3569998
3571329
+
1332
279


IX87_RS17145
NZ_CP009257.1
3443650
3443844
+
195
278


IX87_RS11850
NZ_CP009257.1
2337251
2338075

825
275


IX87_RS11685
NZ_CP009257.1
2314954
2317008
+
2055
274


IX87_RS15925
NZ_CP009257.1
3177207
3179906
+
2700
274


IX87_RS21205
NZ_CP009257.1
4246489
4247538
+
1050
273


IX87_RS12715
NZ_CP009257.1
2516824
2517588
+
765
272


IX87_RS21315
NZ_CP009257.1
4268688
4269932

1245
270


IX87_RS07155
NZ_CP009257.1
1395265
1395480
+
216
266


IX87_RS06275
NZ_CP009257.1
1204344
1206950

2607
265


IX87_RS04520
NZ_CP009257.1
879360
879704
+
345
262


IX87_RS07845
NZ_CP009257.1
1521183
1522565
+
1383
254


IX87_RS13725
NZ_CP009257.1
2720466
2722304
+
1839
254


IX87_RS11745
NZ_CP009257.1
2327887
2328513

627
252


IX87_RS02665
NZ_CP009257.1
489716
490609

894
247


IX87_RS07455
NZ_CP009257.1
1456779
1458032

1254
247


IX87_RS20615
NZ_CP009257.1
4142534
4144810

2277
247


IX87_RS11095
NZ_CP009257.1
2202807
2204585
+
1779
246


IX87_RS15370
NZ_CP009257.1
3067271
3068719

1449
244


IX87_RS16880
NZ_CP009257.1
3387258
3388982
+
1725
244


IX87_RS16870
NZ_CP009257.1
3383613
3386237

2625
240


IX87_RS09920
NZ_CP009257.1
1972039
1973925
+
1887
239


IX87_RS11250
NZ_CP009257.1
2231341
2233242
+
1902
239


IX87_RS08950
NZ_CP009257.1
1748338
1749795

1458
238


IX87_RS16890
NZ_CP009257.1
3389506
3390522
+
1017
238


IX87_RS08540
NZ_CP009257.1
1651103
1653115

2013
237


IX87_RS13720
NZ_CP009257.1
2719089
2720453
+
1365
237


IX87_RS11170
NZ_CP009257.1
2216052
2216978

927
236


IX87_RS16665
NZ_CP009257.1
3336962
3338275
+
1314
236


IX87_RS07785
NZ_CP009257.1
1507059
1507934

876
235


IX87_RS06305
NZ_CP009257.1
1212164
1213336
+
1173
232


IX87_RS09415
NZ_CP009257.1
1839230
1841944

2715
232


IX87_RS16660
NZ_CP009257.1
3336255
3336860
+
606
231


IX87_RS12690
NZ_CP009257.1
2506859
2508520

1662
230


IX87_RS01775
NZ_CP009257.1
334318
335547
+
1230
229


IX87_RS10020
NZ_CP009257.1
1990739
1991989
+
1251
228


IX87_RS09755
NZ_CP009257.1
1920536
1921675
+
1140
227


IX87_RS18140
NZ_CP009257.1
3648577
3649527

951
227


IX87_RS08545
NZ_CP009257.1
1653366
1653935

570
225


IX87_RS15750
NZ_CP009257.1
3144288
3145460

1173
222


IX87_RS10030
NZ_CP009257.1
1995178
1996632
+
1455
220


IX87_RS16035
NZ_CP009257.1
3210073
3210342
+
270
218


IX87_RS08585
NZ_CP009257.1
1663238
1665856
+
2619
217


IX87_RS11770
NZ_CP009257.1
2330898
2331338

441
216


IX87_RS11920
NZ_CP009257.1
2349910
2352483
+
2574
216


IX87_RS16835
NZ_CP009257.1
3375467
3376198
+
732
212


IX87_RS09660
NZ_CP009257.1
1902424
1904256
+
1833
206


IX87_RS10865
NZ_CP009257.1
2152594
2153826

1233
206


IX87_RS13315
NZ_CP009257.1
2633562
2634899

1338
206


IX87_RS14635
NZ_CP009257.1
2913027
2914694
+
1668
205


IX87_RS17670
NZ_CP009257.1
3554601
3555884

1284
203


IX87_RS11030
NZ_CP009257.1
2186586
2187758
+
1173
202


IX87_RS13385
NZ_CP009257.1
2649792
2650967

1176
201


IX87_RS11820
NZ_CP009257.1
2334999
2335256

258
200


IX87_RS11055
NZ_CP009257.1
2192544
2194346
+
1803
199


IX87_RS17690
NZ_CP009257.1
3559580
3560296
+
717
199


IX87_RS08995
NZ_CP009257.1
1757654
1758889
+
1236
198


IX87_RS12585
NZ_CP009257.1
2488594
2488893
+
300
198


IX87_RS12435
NZ_CP009257.1
2453324
2457799

4476
197


IX87_RS16740
NZ_CP009257.1
3357561
3359744
+
2184
196


IX87_RS09850
NZ_CP009257.1
1955262
1956152

891
195


IX87_RS15720
NZ_CP009257.1
3139270
3140409

1140
195


IX87_RS11815
NZ_CP009257.1
2334538
2334906

369
194


IX87_RS15030
NZ_CP009257.1
3000458
3000994
+
537
194


IX87_RS10940
NZ_CP009257.1
2166865
2169588

2724
192


IX87_RS13215
NZ_CP009257.1
2610192
2611907

1716
192


IX87_RS14160
NZ_CP009257.1
2816591
2818351
+
1761
191


IX87_RS06350
NZ_CP009257.1
1224434
1224943
+
510
190


IX87_RS11965
NZ_CP009257.1
2359642
2360235

594
190


IX87_RS14455
NZ_CP009257.1
2873551
2874168
+
618
190


IX87_RS15435
NZ_CP009257.1
3081320
3082621

1302
190


IX87_RS00480
NZ_CP009257.1
70857
72470

1614
189


IX87_RS04615
NZ_CP009257.1
900663
901442

780
189


IX87_RS06685
NZ_CP009257.1
1297940
1298386
+
447
189


IX87_RS10790
NZ_CP009257.1
2135042
2135473

432
189


IX87_RS12710
NZ_CP009257.1
2513820
2516168

2349
188


IX87_RS15040
NZ_CP009257.1
3002663
3003532
+
870
188


IX87_RS12270
NZ_CP009257.1
2421741
2422973
+
1233
187


IX87_RS02435
NZ_CP009257.1
450849
451439

591
186


IX87_RS12720
NZ_CP009257.1
2517606
2519063
+
1458
186


IX87_RS13755
NZ_CP009257.1
2728221
2729633

1413
186


IX87_RS12420
NZ_CP009257.1
2450049
2450639

591
185


IX87_RS09490
NZ_CP009257.1
1856624
1859032

2409
184


IX87_RS08860
NZ_CP009257.1
1728937
1729419
+
483
183


IX87_RS09135
NZ_CP009257.1
1782073
1782822

750
183


IX87_RS11655
NZ_CP009257.1
2308487
2311087
+
2601
182


IX87_RS14375
NZ_CP009257.1
2856528
2859365

2838
182


IX87_RS15650
NZ_CP009257.1
3119921
3120616
+
696
182


IX87_RS08735
NZ_CP009257.1
1697312
1698382

1071
181


IX87_RS10935
NZ_CP009257.1
2166291
2166734

444
181


IX87_RS12840
NZ_CP009257.1
2535806
2536249
+
444
181


IX87_RS13745
NZ_CP009257.1
2726033
2726953

921
181


IX87_RS17695
NZ_CP009257.1
3560386
3561978
+
1593
181


IX87_RS08730
NZ_CP009257.1
1696205
1697299

1095
180


IX87_RS16655
NZ_CP009257.1
3334728
3336062
+
1335
180


IX87_RS16680
NZ_CP009257.1
3339859
3341385

1527
180


IX87_RS10510
NZ_CP009257.1
2078576
2080054
+
1479
179


IX87_RS11680
NZ_CP009257.1
2312388
2314820
+
2433
179


IX87_RS18070
NZ_CP009257.1
3638267
3638827
+
561
179


IX87_RS11585
NZ_CP009257.1
2297154
2298197
+
1044
178


IX87_RS13895
NZ_CP009257.1
2757634
2757996
+
363
176


IX87_RS20755
NZ_CP009257.1
4171530
4171889

360
175


IX87_RS16760
NZ_CP009257.1
3362171
3362602
+
432
173


IX87_RS08660
NZ_CP009257.1
1678795
1679757

963
172


IX87_RS15920
NZ_CP009257.1
3175712
3177196
+
1485
172


IX87_RS06380
NZ_CP009257.1
1228326
1229270

945
171


IX87_RS10975
NZ_CP009257.1
2175630
2176433

804
171


IX87_RS17200
NZ_CP009257.1
3453025
3453351

327
171


IX87_RS18660
NZ_CP009257.1
3739463
3741328
+
1866
171


IX87_RS13850
NZ_CP009257.1
2750180
2750782
+
603
170


IX87_RS15425
NZ_CP009257.1
3078971
3080017
+
1047
170


IX87_RS11865
NZ_CP009257.1
2339018
2339656

639
169


IX87_RS18655
NZ_CP009257.1
3739059
3739331
+
273
169


IX87_RS03230
NZ_CP009257.1
603458
605602

2145
168


IX87_RS16685
NZ_CP009257.1
3341612
3343756

2145
168


IX87_RS17180
NZ_CP009257.1
3447929
3450310
+
2382
168


IX87_RS21240
NZ_CP009257.1
4252339
4254843

2505
167


IX87_RS07335
NZ_CP009257.1
1429692
1432088
+
2397
166


IX87_RS13845
NZ_CP009257.1
2749271
2750164
+
894
166


IX87_RS20560
NZ_CP009257.1
4131167
4132804

1638
166


IX87_RS11800
NZ_CP009257.1
2333344
2333649

306
165


IX87_RS18190
NZ_CP009257.1
3656538
3657695

1158
165


IX87_RS09250
NZ_CP009257.1
1804710
1805273
+
564
163


IX87_RS09200
NZ_CP009257.1
1791383
1795216

3834
161


IX87_RS14515
NZ_CP009257.1
2885960
2886682

723
161


IX87_RS15660
NZ_CP009257.1
3121485
3121856
+
372
161


IX87_RS17120
NZ_CP009257.1
3438324
3440246
+
1923
161


IX87_RS10970
NZ_CP009257.1
2174737
2175633

897
158


IX87_RS04625
NZ_CP009257.1
901999
903318

1320
156


IX87_RS07245
NZ_CP009257.1
1411252
1412118
+
867
156


IX87_RS14125
NZ_CP009257.1
2808766
2811234

2469
156


IX87_RS15020
NZ_CP009257.1
2999691
2999936
+
246
155


IX87_RS01765
NZ_CP009257.1
332121
332495

375
154


IX87_RS06110
NZ_CP009257.1
1173040
1174029
+
990
154


IX87_RS22850
NZ_CP009257.1
2073253
2073426

174
154


IX87_RS12310
NZ_CP009257.1
2429566
2429934

369
154


IX87_RS12535
NZ_CP009257.1
2476050
2478605
+
2556
154


IX87_RS17755
NZ_CP009257.1
3569492
3570001
+
510
154


IX87_RS05460
NZ_CP009257.1
1057857
1059215
+
1359
152


IX87_RS14520
NZ_CP009257.1
2886874
2889060

2187
152


IX87_RS16435
NZ_CP009257.1
3292673
3295309
+
2637
151


IX87_RS01705
NZ_CP009257.1
317960
320992

3033
149


IX87_RS14765
NZ_CP009257.1
2943766
2945205
+
1440
149


IX87_RS15050
NZ_CP009257.1
3004975
3005394
+
420
149


IX87_RS08830
NZ_CP009257.1
1719220
1720476

1257
148


IX87_RS13320
NZ_CP009257.1
2635049
2636515

1467
148


IX87_RS13675
NZ_CP009257.1
2711283
2711762

480
148


IX87_RS17125
NZ_CP009257.1
3440252
3440803
+
552
148


IX87_RS09455
NZ_CP009257.1
1848695
1850101

1407
147


IX87_RS03755
NZ_CP009257.1
721468
722127
+
660
146


IX87_RS15960
NZ_CP009257.1
3183759
3186608

2850
146


IX87_RS04610
NZ_CP009257.1
899555
900604
+
1050
145


IX87_RS16625
NZ_CP009257.1
3326659
3327201

543
143


IX87_RS10500
NZ_CP009257.1
2077034
2078071

1038
142


IX87_RS20465
NZ_CP009257.1
4110862
4111329

468
141


IX87_RS02175
NZ_CP009257.1
402701
403387

687
140


IX87_RS16640
NZ_CP009257.1
3329080
3330777

1698
140


IX87_RS15710
NZ_CP009257.1
3136243
3138162
+
1920
139


IX87_RS05995
NZ_CP009257.1
1145226
1146089

864
138


IX87_RS08615
NZ_CP009257.1
1669829
1670977
+
1149
138


IX87_RS14975
NZ_CP009257.1
2991571
2993268
+
1698
138


IX87_RS06660
NZ_CP009257.1
1295286
1295906
+
621
137


IX87_RS03320
NZ_CP009257.1
620495
622096
+
1602
135


IX87_RS15025
NZ_CP009257.1
2999975
3000445
+
471
135


IX87_RS06965
NZ_CP009257.1
1353187
1354422

1236
134


IX87_RS15430
NZ_CP009257.1
3080125
3081264

1140
134


IX87_RS16720
NZ_CP009257.1
3352250
3353515

1266
134


IX87_RS18795
NZ_CP009257.1
3772739
3773848

1110
134


IX87_RS17060
NZ_CP009257.1
3426348
3428654
+
2307
133


IX87_RS06730
NZ_CP009257.1
1308625
1308855
+
231
132


IX87_RS08705
NZ_CP009257.1
1690822
1692354

1533
132


IX87_RS14295
NZ_CP009257.1
2842908
2843462

555
131


IX87_RS16550
NZ_CP009257.1
3312463
3312984

522
131


IX87_RS10930
NZ_CP009257.1
2164914
2166224
+
1311
130


IX87_RS02445
NZ_CP009257.1
452115
454103

1989
129


IX87_RS09640
NZ_CP009257.1
1889690
1889980

291
129


IX87_RS12080
NZ_CP009257.1
2383005
2385074
+
2070
129


IX87_RS13095
NZ_CP009257.1
2583282
2583908
+
627
129


IX87_RS17885
NZ_CP009257.1
3596806
3597306
+
501
129


IX87_RS02300
NZ_CP009257.1
423815
425125
+
1311
128


IX87_RS06470
NZ_CP009257.1
1249154
1251829

2676
127


IX87_RS16115
NZ_CP009257.1
3227602
3229314

1713
126


IX87_RS04995
NZ_CP009257.1
956206
957486
+
1281
125


IX87_RS14760
NZ_CP009257.1
2943286
2943603
+
318
125


IX87_RS14980
NZ_CP009257.1
2993314
2994234

921
124


IX87_RS17630
NZ_CP009257.1
3539555
3546541
+
6987
124


IX87_RS09875
NZ_CP009257.1
1963584
1964294

711
123


IX87_RS10795
NZ_CP009257.1
2135729
2137564

1836
123


IX87_RS14655
NZ_CP009257.1
2918661
2919875

1215
123


IX87_RS15160
NZ_CP009257.1
3026335
3027261
+
927
123


IX87_RS15275
NZ_CP009257.1
3050378
3050905
+
528
123


IX87_RS00435
NZ_CP009257.1
61525
62004
+
480
122


IX87_RS07295
NZ_CP009257.1
1419309
1421579

2271
122


IX87_RS08590
NZ_CP009257.1
1665915
1666844

930
122


IX87_RS10455
NZ_CP009257.1
2068632
2070062
+
1431
122


IX87_RS12380
NZ_CP009257.1
2441953
2444058
+
2106
121


IX87_RS13690
NZ_CP009257.1
2714044
2715351
+
1308
121


IX87_RS20550
NZ_CP009257.1
4128943
4130232

1290
121


IX87_RS04605
NZ_CP009257.1
898687
899394
+
708
120


IX87_RS09590
NZ_CP009257.1
1877109
1877492

384
120


IX87_RS09885
NZ_CP009257.1
1966157
1966522

366
120


IX87_RS13390
NZ_CP009257.1
2651132
2652394

1263
120


IX87_RS14100
NZ_CP009257.1
2802986
2803993

1008
120


IX87_RS16630
NZ_CP009257.1
3327243
3327836

594
119


IX87_RS04640
NZ_CP009257.1
906120
908756
+
2637
118


IX87_RS06680
NZ_CP009257.1
1297704
1297931
+
228
118


IX87_RS07400
NZ_CP009257.1
1444132
1445502
+
1371
118


IX87_RS15060
NZ_CP009257.1
3006201
3006746

546
118


IX87_RS10515
NZ_CP009257.1
2080054
2081523
+
1470
117


IX87_RS13085
NZ_CP009257.1
2580394
2581731

1338
117


IX87_RS08565
NZ_CP009257.1
1658954
1659178

225
116


IX87_RS08885
NZ_CP009257.1
1734034
1735878
+
1845
116


IX87_RS16810
NZ_CP009257.1
3372292
3372750

459
116


IX87_RS04195
NZ_CP009257.1
817667
818509

843
115


IX87_RS11860
NZ_CP009257.1
2338404
2339006

603
114


IX87_RS14755
NZ_CP009257.1
2942130
2943233
+
1104
114


IX87_RS17195
NZ_CP009257.1
3451435
3452703

1269
114


IX87_RS18000
NZ_CP009257.1
3624857
3625321
+
465
114


IX87_RS18630
NZ_CP009257.1
3734930
3736147

1218
114


IX87_RS09330
NZ_CP009257.1
1819197
1820213

1017
113


IX87_RS15235
NZ_CP009257.1
3040750
3042342
+
1593
113


IX87_RS17080
NZ_CP009257.1
3430924
3432357
+
1434
113


IX87_RS21350
NZ_CP009257.1
4274918
4275925

1008
113


IX87_RS03330
NZ_CP009257.1
622921
624912
+
1992
112


IX87_RS08795
NZ_CP009257.1
1710271
1713033

2763
112


IX87_RS10715
NZ_CP009257.1
2121848
2123563
+
1716
112


IX87_RS11810
NZ_CP009257.1
2334211
2334528

318
112


IX87_RS11970
NZ_CP009257.1
2360310
2360990

681
112


IX87_RS16710
NZ_CP009257.1
3349831
3350343
+
513
112


IX87_RS01795
NZ_CP009257.1
338085
339710
+
1626
111


IX87_RS06755
NZ_CP009257.1
1313209
1314495
+
1287
110


IX87_RS07940
NZ_CP009257.1
1541978
1543780
+
1803
110


IX87_RS00445
NZ_CP009257.1
64260
65249
+
990
109


IX87_RS21500
NZ_CP009257.1
4303312
4303731
+
420
109


IX87_RS10720
NZ_CP009257.1
2123617
2123958

342
108


IX87_RS00360
NZ_CP009257.1
49127
49789

663
107


IX87_RS13140
NZ_CP009257.1
2592881
2593462

582
107


IX87_RS16705
NZ_CP009257.1
3348455
3349813
+
1359
107


IX87_RS17740
NZ_CP009257.1
3566443
3566922
+
480
107


IX87_RS18875
NZ_CP009257.1
3790043
3790456

414
107


IX87_RS06760
NZ_CP009257.1
1314745
1315611
+
867
106


IX87_RS08595
NZ_CP009257.1
1666946
1667776

831
106


IX87_RS10595
NZ_CP009257.1
2096829
2099003
+
2175
106


IX87_RS11785
NZ_CP009257.1
2332025
2332375

351
106


IX87_RS14270
NZ_CP009257.1
2836727
2837935
+
1209
106


IX87_RS00465
NZ_CP009257.1
68138
69475
+
1338
105


IX87_RS17150
NZ_CP009257.1
3443856
3444215
+
360
105


IX87_RS14035
NZ_CP009257.1
2787999
2789477

1479
104


IX87_RS15840
NZ_CP009257.1
3162682
3163236

555
104


IX87_RS17275
NZ_CP009257.1
3470263
3470784

522
104


IX87_RS18080
NZ_CP009257.1
3639240
3640226
+
987
103


IX87_RS09625
NZ_CP009257.1
1886378
1887340

963
102


IX87_RS10060
NZ_CP009257.1
1999726
2002605
+
2880
102


IX87_RS02755
NZ_CP009257.1
505355
505744
+
390
101


IX87_RS09155
NZ_CP009257.1
1785453
1785869
+
417
101


IX87_RS13485
NZ_CP009257.1
2670961
2672775

1815
101


IX87_RS04010
NZ_CP009257.1
775754
777007

1254
100


IX87_RS11305
NZ_CP009257.1
2242018
2242506
+
489
100


IX87_RS15260
NZ_CP009257.1
3047644
3049323
+
1680
100


IX87_RS21125
NZ_CP009257.1
4231824
4233266

1443
100


IX87_RS08640
NZ_CP009257.1
1674171
1675559
+
1389
99


IX87_RS09310
NZ_CP009257.1
1815280
1816473

1194
99


IX87_RS11750
NZ_CP009257.1
2328526
2328912

387
99


IX87_RS17600
NZ_CP009257.1
3533883
3534926
+
1044
99


IX87_RS02125
NZ_CP009257.1
393451
394593

1143
98


IX87_RS02760
NZ_CP009257.1
505846
507063
+
1218
98


IX87_RS02805
NZ_CP009257.1
517579
518646
+
1068
98


IX87_RS09735
NZ_CP009257.1
1917851
1918501

651
98


IX87_RS12000
NZ_CP009257.1
2366196
2368100

1905
98


IX87_RS09140
NZ_CP009257.1
1783117
1783938
+
822
97


IX87_RS11575
NZ_CP009257.1
2293388
2295331

1944
97


IX87_RS18135
NZ_CP009257.1
3648181
3648477

297
96


IX87_RS00670
NZ_CP009257.1
116504
117649
+
1146
95


IX87_RS11175
NZ_CP009257.1
2217003
2219753

2751
95


IX87_RS13400
NZ_CP009257.1
2653312
2654238

927
95


IX87_RS13890
NZ_CP009257.1
2756711
2757448
+
738
95


IX87_RS14675
NZ_CP009257.1
2923401
2926007
+
2607
95


IX87_RS00485
NZ_CP009257.1
72501
73409

909
94


IX87_RS14625
NZ_CP009257.1
2910229
2911245
+
1017
93


IX87_RS14930
NZ_CP009257.1
2982645
2984213
+
1569
93


IX87_RS17745
NZ_CP009257.1
3566929
3567606
+
678
93


IX87_RS01680
NZ_CP009257.1
314924
315619
+
696
92


IX87_RS10010
NZ_CP009257.1
1987843
1989903
+
2061
92


IX87_RS11885
NZ_CP009257.1
2342407
2343954
+
1548
92


IX87_RS12385
NZ_CP009257.1
2444179
2444562
+
384
92


IX87_RS12590
NZ_CP009257.1
2489010
2490518
+
1509
92


IX87_RS14670
NZ_CP009257.1
2922244
2923401
+
1158
92


IX87_RS14970
NZ_CP009257.1
2989294
2991084

1791
92


IX87_RS18090
NZ_CP009257.1
3641042
3641278
+
237
92


IX87_RS09245
NZ_CP009257.1
1803402
1804682
+
1281
91


IX87_RS13470
NZ_CP009257.1
2668102
2668539

438
91


IX87_RS14650
NZ_CP009257.1
2916882
2918612
+
1731
91


IX87_RS17780
NZ_CP009257.1
3575606
3576124
+
519
90


IX87_RS06095
NZ_CP009257.1
1169856
1171424
+
1569
89


IX87_RS06675
NZ_CP009257.1
1297309
1297692
+
384
89


IX87_RS09680
NZ_CP009257.1
1909301
1909723
+
423
89


IX87_RS20555
NZ_CP009257.1
4130278
4131135

858
89


IX87_RS00490
NZ_CP009257.1
73790
75232

1443
88


IX87_RS01650
NZ_CP009257.1
307560
308978

1419
88


IX87_RS05485
NZ_CP009257.1
1061573
1062607
+
1035
88


IX87_RS06345
NZ_CP009257.1
1222538
1224265

1728
88


IX87_RS08975
NZ_CP009257.1
1752635
1754656

2022
88


IX87_RS09075
NZ_CP009257.1
1769856
1771247

1392
88


IX87_RS10875
NZ_CP009257.1
2155164
2156321
+
1158
88


IX87_RS14360
NZ_CP009257.1
2854844
2855386

543
88


IX87_RS15480
NZ_CP009257.1
3090991
3091527

537
88


IX87_RS16010
NZ_CP009257.1
3197970
3198476

507
88


IX87_RS17595
NZ_CP009257.1
3532875
3533861
+
987
88


IX87_RS20650
NZ_CP009257.1
4150285
4151832
+
1548
88


IX87_RS11790
NZ_CP009257.1
2332390
2332923

534
87


IX87_RS17770
NZ_CP009257.1
3574029
3575045
+
1017
87


IX87_RS04490
NZ_CP009257.1
871270
875127

3858
86


IX87_RS12035
NZ_CP009257.1
2374539
2376362
+
1824
86


IX87_RS17020
NZ_CP009257.1
3417125
3417478

354
86


IX87_RS18560
NZ_CP009257.1
3721481
3721747

267
86


IX87_RS07820
NZ_CP009257.1
1514528
1515940

1413
85


IX87_RS08715
NZ_CP009257.1
1694198
1694899
+
702
85


IX87_RS10855
NZ_CP009257.1
2148205
2149848

1644
85


IX87_RS16690
NZ_CP009257.1
3343800
3345002

1203
85


IX87_RS09840
NZ_CP009257.1
1952706
1953629

924
84


IX87_RS11255
NZ_CP009257.1
2233251
2234216
+
966
84


IX87_RS16485
NZ_CP009257.1
3302680
3302916

237
84


IX87_RS21235
NZ_CP009257.1
4251794
4252297

504
84


IX87_RS05000
NZ_CP009257.1
957733
957987
+
255
83


IX87_RS09675
NZ_CP009257.1
1907853
1909184
+
1332
83


IX87_RS10520
NZ_CP009257.1
2081711
2082271
+
561
83


IX87_RS11840
NZ_CP009257.1
2336621
2336950

330
83


IX87_RS02810
NZ_CP009257.1
518862
522425
+
3564
82


IX87_RS11060
NZ_CP009257.1
2194514
2196295
+
1782
82


IX87_RS13750
NZ_CP009257.1
2726964
2728169

1206
82


IX87_RS20670
NZ_CP009257.1
4155197
4158151

2955
82


IX87_RS03675
NZ_CP009257.1
702370
704472
+
2103
81


IX87_RS06540
NZ_CP009257.1
1266239
1267537

1299
81


IX87_RS07215
NZ_CP009257.1
1406727
1407800

1074
81


IX87_RS09365
NZ_CP009257.1
1827626
1828567
+
942
81


IX87_RS15385
NZ_CP009257.1
3071159
3072706
+
1548
81


IX87_RS15950
NZ_CP009257.1
3181583
3183394

1812
81


IX87_RS17285
NZ_CP009257.1
3471971
3472720

750
81


IX87_RS00525
NZ_CP009257.1
79790
80971
+
1182
80


IX87_RS12315
NZ_CP009257.1
2430142
2430882

741
80


IX87_RS12565
NZ_CP009257.1
2483874
2485706

1833
80


IX87_RS17175
NZ_CP009257.1
3446916
3447896
+
981
80


IX87_RS18085
NZ_CP009257.1
3640223
3640957
+
735
80


IX87_RS22975
NZ_CP009257.1
3898396
3898572
+
177
80


IX87_RS06045
NZ_CP009257.1
1155722
1156966

1245
79


IX87_RS09940
NZ_CP009257.1
1975763
1976947
+
1185
79


IX87_RS09975
NZ_CP009257.1
1983125
1983913

789
79


IX87_RS13620
NZ_CP009257.1
2699364
2700518
+
1155
79


IX87_RS14015
NZ_CP009257.1
2783359
2785188

1830
79


IX87_RS17190
NZ_CP009257.1
3450774
3451019

246
79


IX87_RS21225
NZ_CP009257.1
4250227
4250712

486
79


IX87_RS01625
NZ_CP009257.1
302849
303916

1068
78


IX87_RS09510
NZ_CP009257.1
1862092
1862697
+
606
78


IX87_RS02660
NZ_CP009257.1
488779
489621

843
77


IX87_RS07825
NZ_CP009257.1
1516122
1517150
+
1029
77


IX87_RS12415
NZ_CP009257.1
2448945
2450027

1083
77


IX87_RS00620
NZ_CP009257.1
101838
103385
+
1548
76


IX87_RS06670
NZ_CP009257.1
1296246
1297124
+
879
76


IX87_RS09205
NZ_CP009257.1
1795526
1796866
+
1341
76


IX87_RS13105
NZ_CP009257.1
2585008
2586456

1449
76


IX87_RS17210
NZ_CP009257.1
3455170
3455991
+
822
76


IX87_RS20565
NZ_CP009257.1
4133028
4133516
+
489
76


IX87_RS02765
NZ_CP009257.1
507091
509754
+
2664
75


IX87_RS17040
NZ_CP009257.1
3420181
3422988

2808
75


IX87_RS17775
NZ_CP009257.1
3575064
3575606
+
543
75


IX87_RS21215
NZ_CP009257.1
4248502
4249386
+
885
75


IX87_RS05445
NZ_CP009257.1
1054064
1054942

879
74


IX87_RS05620
NZ_CP009257.1
1091422
1091982
+
561
74


IX87_RS08700
NZ_CP009257.1
1689115
1690545

1431
74


IX87_RS08845
NZ_CP009257.1
1724221
1725924

1704
74


IX87_RS21265
NZ_CP009257.1
4259038
4259592

555
74


IX87_RS02795
NZ_CP009257.1
513691
515121
+
1431
73


IX87_RS13405
NZ_CP009257.1
2654276
2655724

1449
73


IX87_RS00535
NZ_CP009257.1
81977
82885
+
909
72


IX87_RS02395
NZ_CP009257.1
441109
442599
+
1491
72


IX87_RS05555
NZ_CP009257.1
1080881
1081588

708
72


IX87_RS09970
NZ_CP009257.1
1981735
1983006

1272
72


IX87_RS10470
NZ_CP009257.1
2071838
2073223
+
1386
72


IX87_RS12820
NZ_CP009257.1
2532619
2533308
+
690
72


IX87_RS17340
NZ_CP009257.1
3483415
3484704
+
1290
72


IX87_RS07750
NZ_CP009257.1
1501495
1502496
+
1002
71


IX87_RS13310
NZ_CP009257.1
2632895
2633560

666
71


IX87_RS13695
NZ_CP009257.1
2715590
2716711
+
1122
71


IX87_RS08750
NZ_CP009257.1
1700458
1703295

2838
70


IX87_RS17465
NZ_CP009257.1
3509353
3510573
+
1221
70


IX87_RS02625
NZ_CP009257.1
482924
483484
+
561
69


IX87_RS03315
NZ_CP009257.1
619298
620470
+
1173
69


IX87_RS07830
NZ_CP009257.1
1517434
1519899
+
2466
69


IX87_RS08690
NZ_CP009257.1
1686702
1688423

1722
69


IX87_RS10155
NZ_CP009257.1
2022241
2023596
+
1356
69


IX87_RS10945
NZ_CP009257.1
2169996
2170637
+
642
69


IX87_RS12265
NZ_CP009257.1
2419952
2421361

1410
69


IX87_RS13395
NZ_CP009257.1
2652455
2653309

855
69


IX87_RS14525
NZ_CP009257.1
2889080
2889508

429
69


IX87_RS18075
NZ_CP009257.1
3638902
3639087
+
186
69


IX87_RS03740
NZ_CP009257.1
719517
719951

435
68


IX87_RS07755
NZ_CP009257.1
1502835
1503404
+
570
68


IX87_RS09350
NZ_CP009257.1
1824482
1825717

1236
68


IX87_RS11780
NZ_CP009257.1
2331525
2332022

498
68


IX87_RS11605
NZ_CP009257.1
2300717
2301430
+
714
67


IX87_RS14440
NZ_CP009257.1
2871148
2871894

747
67


IX87_RS00495
NZ_CP009257.1
75422
76984

1563
66


IX87_RS01770
NZ_CP009257.1
332696
333967

1272
66


IX87_RS02295
NZ_CP009257.1
421374
423815
+
2442
66


IX87_RS12375
NZ_CP009257.1
2441466
2441744
+
279
66


IX87_RS13225
NZ_CP009257.1
2612425
2615922
+
3498
66


IX87_RS13260
NZ_CP009257.1
2621249
2623198

1950
66


IX87_RS15455
NZ_CP009257.1
3085152
3087005
+
1854
66


IX87_RS15470
NZ_CP009257.1
3088809
3090005
+
1197
66


IX87_RS17230
NZ_CP009257.1
3458791
3461562

2772
66


IX87_RS18925
NZ_CP009257.1
3796144
3797355
+
1212
66


IX87_RS03335
NZ_CP009257.1
624909
625814
+
906
65


IX87_RS12560
NZ_CP009257.1
2482371
2483870

1500
65


IX87_RS17100
NZ_CP009257.1
3434566
3435417
+
852
65


IX87_RS19190
NZ_CP009257.1
3849925
3851097

1173
65


IX87_RS10760
NZ_CP009257.1
2129379
2130488

1110
64


IX87_RS12020
NZ_CP009257.1
2371092
2373395

2304
64


IX87_RS12395
NZ_CP009257.1
2445211
2445675
+
465
64


IX87_RS16105
NZ_CP009257.1
3226225
3227034

810
64


IX87_RS16285
NZ_CP009257.1
3263359
3265653

2295
64


IX87_RS09045
NZ_CP009257.1
1764296
1765318

1023
63


IX87_RS09785
NZ_CP009257.1
1927221
1927937
+
717
63


IX87_RS11560
NZ_CP009257.1
2291062
2291307

246
63


IX87_RS12130
NZ_CP009257.1
2392685
2393446
+
762
63


IX87_RS12215
NZ_CP009257.1
2410904
2411479
+
576
63


IX87_RS12845
NZ_CP009257.1
2536305
2538182

1878
63


IX87_RS14645
NZ_CP009257.1
2915463
2916614
+
1152
63


IX87_RS15530
NZ_CP009257.1
3100915
3102348

1434
63


IX87_RS17880
NZ_CP009257.1
3594456
3596519

2064
63


IX87_RS17905
NZ_CP009257.1
3600653
3601246
+
594
63


IX87_RS17990
NZ_CP009257.1
3621435
3622472
+
1038
63


IX87_RS19455
NZ_CP009257.1
3905950
3907644
+
1695
63


IX87_RS02195
NZ_CP009257.1
405539
406252

714
62


IX87_RS02450
NZ_CP009257.1
454627
455793
+
1167
62


IX87_RS06220
NZ_CP009257.1
1193517
1194752

1236
62


IX87_RS09925
NZ_CP009257.1
1974023
1974310
+
288
62


IX87_RS11180
NZ_CP009257.1
2219822
2221090

1269
62


IX87_RS16475
NZ_CP009257.1
3300654
3302363

1710
62


IX87_RS16930
NZ_CP009257.1
3397274
3398137
+
864
62


IX87_RS18865
NZ_CP009257.1
3787983
3788573
+
591
62


IX87_RS02500
NZ_CP009257.1
463106
464107
+
1002
61


IX87_RS11845
NZ_CP009257.1
2336962
2337237

276
61


IX87_RS13180
NZ_CP009257.1
2599787
2602621
+
2835
61


IX87_RS13490
NZ_CP009257.1
2672804
2673571

768
61


IX87_RS16865
NZ_CP009257.1
3383076
3383585

510
61


IX87_RS17950
NZ_CP009257.1
3612346
3613755
+
1410
61


IX87_RS06625
NZ_CP009257.1
1283074
1284903

1830
60


IX87_RS08930
NZ_CP009257.1
1744251
1745384

1134
60


IX87_RS10710
NZ_CP009257.1
2118691
2121789
+
3099
60


IX87_RS12075
NZ_CP009257.1
2382028
2383005
+
978
60


IX87_RS13680
NZ_CP009257.1
2712016
2712351

336
60


IX87_RS15640
NZ_CP009257.1
3118847
3119380
+
534
60


IX87_RS15965
NZ_CP009257.1
3186923
3188305

1383
60


IX87_RS16100
NZ_CP009257.1
3224669
3226228

1560
60


IX87_RS16390
NZ_CP009257.1
3283775
3285061
+
1287
60


IX87_RS16820
NZ_CP009257.1
3373047
3373463

417
60


IX87_RS03995
NZ_CP009257.1
772521
774104

1584
59


IX87_RS09315
NZ_CP009257.1
1816609
1817679
+
1071
59


IX87_RS16795
NZ_CP009257.1
3368708
3369853
+
1146
59


IX87_RS18880
NZ_CP009257.1
3790475
3790744

270
59


IX87_RS06310
NZ_CP009257.1
1213531
1214499
+
969
58


IX87_RS06665
NZ_CP009257.1
1295906
1296235
+
330
58


IX87_RS13650
NZ_CP009257.1
2706154
2707296

1143
58


IX87_RS14245
NZ_CP009257.1
2832150
2833523

1374
58


IX87_RS17330
NZ_CP009257.1
3481370
3482626
+
1257
58


IX87_RS17430
NZ_CP009257.1
3503197
3504018
+
822
58


IX87_RS20825
NZ_CP009257.1
4182393
4185251
+
2859
58


IX87_RS21285
NZ_CP009257.1
4263239
4264732
+
1494
58


IX87_RS00865
NZ_CP009257.1
158091
159731
+
1641
57


IX87_RS07300
NZ_CP009257.1
1421664
1422773

1110
57


IX87_RS09270
NZ_CP009257.1
1807663
1808277
+
615
57


IX87_RS10135
NZ_CP009257.1
2018253
2019107
+
855
57


IX87_RS13700
NZ_CP009257.1
2716723
2717193
+
471
57


IX87_RS15490
NZ_CP009257.1
3092555
3093181

627
57


IX87_RS16330
NZ_CP009257.1
3271712
3272302
+
591
57


IX87_RS20805
NZ_CP009257.1
4179757
4180176
+
420
57


IX87_RS00825
NZ_CP009257.1
147950
148150
+
201
56


IX87_RS06785
NZ_CP009257.1
1319089
1320387

1299
56


IX87_RS11700
NZ_CP009257.1
2317849
2320044

2196
56


IX87_RS11825
NZ_CP009257.1
2335253
2335450

198
56


IX87_RS11880
NZ_CP009257.1
2341173
2342363
+
1191
56


IX87_RS13145
NZ_CP009257.1
2593514
2594878

1365
56


IX87_RS15570
NZ_CP009257.1
3108763
3109089
+
327
56


IX87_RS15985
NZ_CP009257.1
3192206
3193825

1620
56


IX87_RS03325
NZ_CP009257.1
622106
622909
+
804
55


IX87_RS06020
NZ_CP009257.1
1150241
1151659
+
1419
55


IX87_RS06070
NZ_CP009257.1
1163738
1165216

1479
55


IX87_RS13965
NZ_CP009257.1
2768781
2769893

1113
55


IX87_RS15100
NZ_CP009257.1
3014121
3014651
+
531
55


IX87_RS15485
NZ_CP009257.1
3091738
3092550

813
55


IX87_RS17280
NZ_CP009257.1
3470887
3471855

969
55


IX87_RS18520
NZ_CP009257.1
3712399
3714432
+
2034
55


IX87_RS18625
NZ_CP009257.1
3734477
3734863

387
55


IX87_RS19380
NZ_CP009257.1
3891187
3893262
+
2076
55


IX87_RS00450
NZ_CP009257.1
65373
66698
+
1326
54


IX87_RS04485
NZ_CP009257.1
870069
871175

1107
54


IX87_RS08310
NZ_CP009257.1
1594313
1597078

2766
54


IX87_RS08935
NZ_CP009257.1
1745400
1746620

1221
54


IX87_RS09150
NZ_CP009257.1
1784756
1785439
+
684
54


IX87_RS12550
NZ_CP009257.1
2479843
2480961

1119
54


IX87_RS12760
NZ_CP009257.1
2523736
2524284
+
549
54


IX87_RS13410
NZ_CP009257.1
2655736
2656833

1098
54


IX87_RS13855
NZ_CP009257.1
2750820
2751539
+
720
54


IX87_RS17090
NZ_CP009257.1
3432882
3433691
+
810
54


IX87_RS17110
NZ_CP009257.1
3435686
3436222
+
537
54


IX87_RS17785
NZ_CP009257.1
3576124
3576432
+
309
54


IX87_RS02190
NZ_CP009257.1
404418
405542

1125
53


IX87_RS04000
NZ_CP009257.1
774137
774943

807
53


IX87_RS06090
NZ_CP009257.1
1168229
1169620

1392
53


IX87_RS02770
NZ_CP009257.1
509780
510949
+
1170
52


IX87_RS11455
NZ_CP009257.1
2268707
2269363
+
657
52


IX87_RS12145
NZ_CP009257.1
2395858
2397327

1470
52


IX87_RS14395
NZ_CP009257.1
2862452
2863072

621
52


IX87_RS14510
NZ_CP009257.1
2885213
2885920

708
52


IX87_RS16735
NZ_CP009257.1
3356349
3357368

1020
52


IX87_RS17235
NZ_CP009257.1
3461717
3464524
+
2808
52


IX87_RS21245
NZ_CP009257.1
4254902
4256257

1356
52


IX87_RS00575
NZ_CP009257.1
91348
91986

639
51


IX87_RS02650
NZ_CP009257.1
487342
488085

744
51


IX87_RS03305
NZ_CP009257.1
616730
618424

1695
51


IX87_RS04005
NZ_CP009257.1
774955
775719

765
51


IX87_RS04230
NZ_CP009257.1
825773
826321

549
51


IX87_RS10745
NZ_CP009257.1
2126638
2127348
+
711
51


IX87_RS12155
NZ_CP009257.1
2398377
2399591

1215
51


IX87_RS14640
NZ_CP009257.1
2914714
2915466
+
753
51


IX87_RS16785
NZ_CP009257.1
3366689
3367981
+
1293
51


IX87_RS21495
NZ_CP009257.1
4302839
4303294
+
456
51


IX87_RS02200
NZ_CP009257.1
406303
406899

597
50


IX87_RS07160
NZ_CP009257.1
1395507
1395953
+
447
50


IX87_RS07185
NZ_CP009257.1
1401319
1402860

1542
50


IX87_RS11960
NZ_CP009257.1
2359343
2359630

288
50


IX87_RS11975
NZ_CP009257.1
2360990
2361766

777
50


IX87_RS13370
NZ_CP009257.1
2647441
2648133

693
50


IX87_RS17095
NZ_CP009257.1
3433695
3434543
+
849
50


IX87_RS18115
NZ_CP009257.1
3644670
3646451
+
1782
50


IX87_RS19200
NZ_CP009257.1
3852689
3853330

642
50


IX87_RS07315
NZ_CP009257.1
1425256
1426614

1359
49


IX87_RS12165
NZ_CP009257.1
2402043
2403476

1434
49


IX87_RS12205
NZ_CP009257.1
2408903
2409547
+
645
49


IX87_RS14770
NZ_CP009257.1
2945576
2947006
+
1431
49


IX87_RS17910
NZ_CP009257.1
3601361
3601930
+
570
49


IX87_RS20800
NZ_CP009257.1
4178264
4179565
+
1302
49


IX87_RS01670
NZ_CP009257.1
312786
313712
+
927
48


IX87_RS02655
NZ_CP009257.1
488099
488776

678
48


IX87_RS07385
NZ_CP009257.1
1440676
1441455
+
780
48


IX87_RS07850
NZ_CP009257.1
1522637
1523473
+
837
48


IX87_RS08375
NZ_CP009257.1
1612960
1613430

471
48


IX87_RS08610
NZ_CP009257.1
1669280
1669702
+
423
48


IX87_RS14965
NZ_CP009257.1
2988514
2989140

627
48


IX87_RS18590
NZ_CP009257.1
3725600
3729061
+
3462
48


IX87_RS19165
NZ_CP009257.1
3844727
3846145

1419
48


IX87_RS07170
NZ_CP009257.1
1397617
1398582

966
47


IX87_RS12140
NZ_CP009257.1
2394497
2395840

1344
47


IX87_RS15600
NZ_CP009257.1
3114826
3116319
+
1494
47


IX87_RS16815
NZ_CP009257.1
3372778
3373035

258
47


IX87_RS16885
NZ_CP009257.1
3388982
3389473
+
492
47


IX87_RS17130
NZ_CP009257.1
3441010
3441630
+
621
47


IX87_RS01710
NZ_CP009257.1
321262
322209
+
948
46


IX87_RS01720
NZ_CP009257.1
323079
323894
+
816
46


IX87_RS02160
NZ_CP009257.1
400074
400439

366
46


IX87_RS02315
NZ_CP009257.1
426770
427957

1188
46


IX87_RS02970
NZ_CP009257.1
555280
556284
+
1005
46


IX87_RS10015
NZ_CP009257.1
1990088
1990714
+
627
46


IX87_RS10505
NZ_CP009257.1
2078208
2078522
+
315
46


IX87_RS11330
NZ_CP009257.1
2245026
2245361
+
336
46


IX87_RS11545
NZ_CP009257.1
2288838
2289695

858
46


IX87_RS12150
NZ_CP009257.1
2397327
2398358

1032
46


IX87_RS12695
NZ_CP009257.1
2508819
2510096
+
1278
46


IX87_RS12870
NZ_CP009257.1
2540172
2540987
+
816
46


IX87_RS16355
NZ_CP009257.1
3274949
3275959
+
1011
46


IX87_RS18600
NZ_CP009257.1
3729749
3731218
+
1470
46


IX87_RS20780
NZ_CP009257.1
4175208
4175549
+
342
46


IX87_RS09240
NZ_CP009257.1
1801905
1803308
+
1404
45


IX87_RS09265
NZ_CP009257.1
1806727
1807503
+
777
45


IX87_RS10965
NZ_CP009257.1
2173454
2174740

1287
45


IX87_RS11580
NZ_CP009257.1
2295620
2297071
+
1452
45


IX87_RS11620
NZ_CP009257.1
2303012
2304259
+
1248
45


IX87_RS11830
NZ_CP009257.1
2335450
2335863

414
45


IX87_RS15585
NZ_CP009257.1
3111043
3113313
+
2271
45


IX87_RS16135
NZ_CP009257.1
3232226
3233242
+
1017
45


IX87_RS17410
NZ_CP009257.1
3499428
3500879
+
1452
45


IX87_RS00845
NZ_CP009257.1
151849
153471

1623
44


IX87_RS04170
NZ_CP009257.1
811981
814626
+
2646
44


IX87_RS06645
NZ_CP009257.1
1291162
1291917
+
756
44


IX87_RS07870
NZ_CP009257.1
1529796
1531034
+
1239
44


IX87_RS08765
NZ_CP009257.1
1704977
1706275

1299
44


IX87_RS09690
NZ_CP009257.1
1910652
1911500

849
44


IX87_RS10150
NZ_CP009257.1
2020674
2021861

1188
44


IX87_RS12700
NZ_CP009257.1
2510370
2511260
+
891
44


IX87_RS13705
NZ_CP009257.1
2717197
2717646
+
450
44


IX87_RS14040
NZ_CP009257.1
2790073
2790798
+
726
44


IX87_RS16645
NZ_CP009257.1
3331236
3331928

693
44


IX87_RS17985
NZ_CP009257.1
3617984
3621433
+
3450
44


IX87_RS19460
NZ_CP009257.1
3907874
3908983
+
1110
44


IX87_RS06065
NZ_CP009257.1
1161384
1163564

2181
43


IX87_RS07935
NZ_CP009257.1
1540440
1541981
+
1542
43


IX87_RS09020
NZ_CP009257.1
1760911
1761669

759
43


IX87_RS09325
NZ_CP009257.1
1818369
1819178

810
43


IX87_RS12685
NZ_CP009257.1
2506472
2506816
+
345
43


IX87_RS13600
NZ_CP009257.1
2695104
2696681

1578
43


IX87_RS14075
NZ_CP009257.1
2797731
2798963

1233
43


IX87_RS15360
NZ_CP009257.1
3066194
3066832

639
43


IX87_RS15705
NZ_CP009257.1
3135787
3136140
+
354
43


IX87_RS18735
NZ_CP009257.1
3759445
3761763
+
2319
43


IX87_RS00545
NZ_CP009257.1
83744
85822

2079
42


IX87_RS00630
NZ_CP009257.1
104927
106456

1530
42


IX87_RS02635
NZ_CP009257.1
484378
485127
+
750
42


IX87_RS04185
NZ_CP009257.1
816071
816742
+
672
42


IX87_RS04250
NZ_CP009257.1
828625
830046
+
1422
42


IX87_RS04570
NZ_CP009257.1
890142
892367
+
2226
42


IX87_RS06155
NZ_CP009257.1
1182334
1182777
+
444
42


IX87_RS06725
NZ_CP009257.1
1306512
1308392

1881
42


IX87_RS09830
NZ_CP009257.1
1950037
1951539

1503
42


IX87_RS09835
NZ_CP009257.1
1951777
1952676

900
42


IX87_RS10600
NZ_CP009257.1
2099104
2099679
+
576
42


IX87_RS10830
NZ_CP009257.1
2144880
2145395
+
516
42


IX87_RS11540
NZ_CP009257.1
2287963
2288796

834
42


IX87_RS11890
NZ_CP009257.1
2344100
2344864
+
765
42


IX87_RS14450
NZ_CP009257.1
2872658
2873371

714
42


IX87_RS14950
NZ_CP009257.1
2986338
2987285
+
948
42


IX87_RS15375
NZ_CP009257.1
3068863
3069963
+
1101
42


IX87_RS16945
NZ_CP009257.1
3400933
3401874
+
942
42


IX87_RS18515
NZ_CP009257.1
3710575
3712398
+
1824
42


IX87_RS20680
NZ_CP009257.1
4160723
4161727
+
1005
42


IX87_RS21230
NZ_CP009257.1
4250719
4251789

1071
42


IX87_RS21345
NZ_CP009257.1
4273409
4274803

1395
42


IX87_RS21510
NZ_CP009257.1
4305170
4305673

504
42


IX87_RS00855
NZ_CP009257.1
154353
155825
+
1473
41


IX87_RS02830
NZ_CP009257.1
525249
527255
+
2007
41


IX87_RS04560
NZ_CP009257.1
888440
889456

1017
41


IX87_RS06690
NZ_CP009257.1
1298587
1300032
+
1446
41


IX87_RS08555
NZ_CP009257.1
1655041
1656786
+
1746
41


IX87_RS09845
NZ_CP009257.1
1953837
1954850
+
1014
41


IX87_RS10460
NZ_CP009257.1
2070130
2070747

618
41


IX87_RS15255
NZ_CP009257.1
3045127
3047346
+
2220
41


IX87_RS07860
NZ_CP009257.1
1524349
1527197
+
2849
40


IX87_RS07875
NZ_CP009257.1
1531084
1532259

1176
40


IX87_RS09890
NZ_CP009257.1
1966522
1966923

402
40


IX87_RS09945
NZ_CP009257.1
1977213
1978598
+
1386
40


IX87_RS12430
NZ_CP009257.1
2451833
2453254

1422
40


IX87_RS12640
NZ_CP009257.1
2496176
2497132

957
40


IX87_RS13885
NZ_CP009257.1
2756381
2756539
+
159
40


IX87_RS13920
NZ_CP009257.1
2760640
2761668
+
1029
40


IX87_RS14185
NZ_CP009257.1
2822004
2822255

252
40


IX87_RS14710
NZ_CP009257.1
2932967
2933668

702
40


IX87_RS16380
NZ_CP009257.1
3280656
3281774

1119
40


IX87_RS16830
NZ_CP009257.1
3374745
3375311
+
567
40


IX87_RS17815
NZ_CP009257.1
3582583
3583470

888
40


IX87_RS18535
NZ_CP009257.1
3716546
3718276
+
1731
40


IX87_RS21200
NZ_CP009257.1
4245903
4246343
+
441
40


IX87_RS00530
NZ_CP009257.1
81071
81970
+
900
39


IX87_RS01555
NZ_CP009257.1
288317
289330
+
1014
39


IX87_RS02790
NZ_CP009257.1
513031
513450

420
39


IX87_RS06410
NZ_CP009257.1
1233674
1234378

705
39


IX87_RS06775
NZ_CP009257.1
1317562
1318293
+
732
39


IX87_RS09230
NZ_CP009257.1
1800751
1801449
+
699
39


IX87_RS09335
NZ_CP009257.1
1820350
1821333
+
984
39


IX87_RS12675
NZ_CP009257.1
2504854
2505252

399
39


IX87_RS14140
NZ_CP009257.1
2813630
2815027

1398
39


IX87_RS15345
NZ_CP009257.1
3063792
3065084
+
1293
39


IX87_RS16230
NZ_CP009257.1
3248017
3249858

1842
39


IX87_RS16290
NZ_CP009257.1
3265738
3266223

486
39


IX87_RS16470
NZ_CP009257.1
3300338
3300616
+
279
39


IX87_RS16520
NZ_CP009257.1
3307019
3308443

1425
39


IX87_RS01675
NZ_CP009257.1
313729
314775
+
1047
38


IX87_RS05610
NZ_CP009257.1
1089335
1090657

1323
38


IX87_RS06630
NZ_CP009257.1
1284903
1287341

2439
38


IX87_RS07195
NZ_CP009257.1
1403480
1404484

1005
38


IX87_RS07285
NZ_CP009257.1
1417166
1418626

1461
38


IX87_RS07740
NZ_CP009257.1
1499554
1500204
+
651
38


IX87_RS09445
NZ_CP009257.1
1847057
1848307

1251
38


IX87_RS09965
NZ_CP009257.1
1980294
1981667

1374
38


IX87_RS10840
NZ_CP009257.1
2146806
2147249
+
444
38


IX87_RS11000
NZ_CP009257.1
2180287
2181516

1230
38


IX87_RS11400
NZ_CP009257.1
2260767
2262101
+
1335
38


IX87_RS13295
NZ_CP009257.1;
2628895;
2629917;
−; −
1095
38



NZ_CP009257.1
2629919
2629990


IX87_RS13955
NZ_CP009257.1
2767310
2768131

822
38


IX87_RS14265
NZ_CP009257.1
2834833
2835954
+
1122
38


IX87_RS14460
NZ_CP009257.1
2874246
2874893

648
38


IX87_RS16065
NZ_CP009257.1
3216427
3217302

876
38


IX87_RS16070
NZ_CP009257.1
3217468
3219309

1842
38


IX87_RS18610
NZ_CP009257.1
3731624
3733483

1860
38


IX87_RS21280
NZ_CP009257.1
4262143
4263252
+
1110
38


IX87_RS00560
NZ_CP009257.1
87492
89951

2460
37


IX87_RS04365
NZ_CP009257.1
845881
846105

225
37


IX87_RS08535
NZ_CP009257.1
1650798
1651100

303
37


IX87_RS09065
NZ_CP009257.1
1767291
1769108

1818
37


IX87_RS10415
NZ_CP009257.1
2059846
2060721

876
37


IX87_RS13545
NZ_CP009257.1
2682063
2683946

1884
37


IX87_RS19385
NZ_CP009257.1
3893636
3894547
+
912
37


IX87_RS02680
NZ_CP009257.1
492032
492796

765
36


IX87_RS02735
NZ_CP009257.1
503163
503498
+
336
36


IX87_RS03245
NZ_CP009257.1
608147
608368
+
222
36


IX87_RS04245
NZ_CP009257.1
827434
828411

978
36


IX87_RS07205
NZ_CP009257.1
1405053
1406192

1140
36


IX87_RS08900
NZ_CP009257.1
1737908
1739044

1137
36


IX87_RS12135
NZ_CP009257.1
2393510
2394484

975
36


IX87_RS12770
NZ_CP009257.1
2525107
2525838
+
732
36


IX87_RS13665
NZ_CP009257.1
2709417
2710631

1215
36


IX87_RS14620
NZ_CP009257.1
2908566
2910236
+
1671
36


IX87_RS15465
NZ_CP009257.1
3087438
3088784
+
1347
36


IX87_RS15635
NZ_CP009257.1
3118399
3118839
+
441
36


IX87_RS17025
NZ_CP009257.1
3417608
3418402

795
36


IX87_RS17470
NZ_CP009257.1
3510720
3511784
+
1065
36


IX87_RS18010
NZ_CP009257.1
3626878
3628272

1395
36


IX87_RS19005
NZ_CP009257.1
3808773
3809864
+
1092
36


IX87_RS20740
NZ_CP009257.1
4169103
4169699

597
36


IX87_RS02270
NZ_CP009257.1
417143
418030

888
35


IX87_RS06780
NZ_CP009257.1
1318650
1318853
+
204
35


IX87_RS11900
NZ_CP009257.1
2345496
2346272
+
777
35


IX87_RS12555
NZ_CP009257.1
2480962
2482362

1401
35


IX87_RS13640
NZ_CP009257.1
2704006
2704716
+
711
35


IX87_RS14150
NZ_CP009257.1
2815862
2816254
+
393
35


IX87_RS15995
NZ_CP009257.1
3194518
3195465

948
35


IX87_RS16365
NZ_CP009257.1
3276791
3277762

972
35


IX87_RS17890
NZ_CP009257.1
3597452
3598681
+
1230
35


IX87_RS18635
NZ_CP009257.1
3736149
3736622

474
35


IX87_RS20770
NZ_CP009257.1
4173290
4173721
+
432
35


IX87_RS20835
NZ_CP009257.1
4186200
4187918
+
1719
35


IX87_RS01535
NZ_CP009257.1
282437
284401

1965
34


IX87_RS02165
NZ_CP009257.1
400464
400766

303
34


IX87_RS02345
NZ_CP009257.1
432377
433579
+
1203
34


IX87_RS04305
NZ_CP009257.1
838139
838954

816
34


IX87_RS04630
NZ_CP009257.1
903383
904549

1167
34


IX87_RS08780
NZ_CP009257.1
1707595
1709058
+
1464
34


IX87_RS09375
NZ_CP009257.1
1830264
1831751
+
1488
34


IX87_RS10465
NZ_CP009257.1
2070902
2071666
+
765
34


IX87_RS10575
NZ_CP009257.1
2092143
2093618

1476
34


IX87_RS11390
NZ_CP009257.1
2258128
2259753
+
1626
34


IX87_RS11855
NZ_CP009257.1
2338087
2338407

321
34


IX87_RS11950
NZ_CP009257.1
2357521
2358102

582
34


IX87_RS11990
NZ_CP009257.1
2362985
2364832

1848
34


IX87_RS12180
NZ_CP009257.1
2404776
2406053

1278
34


IX87_RS15000
NZ_CP009257.1
2996594
2997058

465
34


IX87_RS15800
NZ_CP009257.1
3155209
3155796
+
588
34


IX87_RS15970
NZ_CP009257.1
3188329
3189831

1503
34


IX87_RS16180
NZ_CP009257.1
3238496
3239794

1299
34


IX87_RS16765
NZ_CP009257.1
3362725
3363957
+
1233
34


IX87_RS16825
NZ_CP009257.1
3373561
3374619

1059
34


IX87_RS16935
NZ_CP009257.1
3398341
3399933
+
1593
34


IX87_RS18060
NZ_CP009257.1
3636801
3637418

618
34


IX87_RS19195
NZ_CP009257.1
3851163
3852572

1410
34


IX87_RS21250
NZ_CP009257.1
4256259
4257455

1197
34


IX87_RS00800
NZ_CP009257.1
141775
143769

1995
33


IX87_RS01615
NZ_CP009257.1
302073
302471
+
399
33


IX87_RS01660
NZ_CP009257.1
309655
311694

2040
33


IX87_RS03860
NZ_CP009257.1
746078
746581

504
33


IX87_RS04235
NZ_CP009257.1
826305
826853

549
33


IX87_RS05395
NZ_CP009257.1
1044136
1047255

3120
33


IX87_RS06050
NZ_CP009257.1
1157192
1158349
+
1158
33


IX87_RS08980
NZ_CP009257.1
1754836
1755627
+
792
33


IX87_RS11635
NZ_CP009257.1
2305603
2306244

642
33


IX87_RS12115
NZ_CP009257.1
2389861
2390292
+
432
33


IX87_RS13415
NZ_CP009257.1
2657071
2658015

945
33


IX87_RS13610
NZ_CP009257.1
2697449
2698012
+
564
33


IX87_RS15845
NZ_CP009257.1
3163363
3165030

1668
33


IX87_RS16335
NZ_CP009257.1
3272335
3273414
+
1080
33


IX87_RS16775
NZ_CP009257.1
3364764
3365555
+
792
33


IX87_RS17205
NZ_CP009257.1
3453631
3455151
+
1521
33


IX87_RS18975
NZ_CP009257.1
3803509
3803814
+
306
33


IX87_RS18985
NZ_CP009257.1
3804223
3805074
+
852
33


IX87_RS19205
NZ_CP009257.1
3853332
3854036

705
33


IX87_RS20765
NZ_CP009257.1
4172817
4173149
+
333
33


IX87_RS00860
NZ_CP009257.1
155921
157579
+
1659
32


IX87_RS02420
NZ_CP009257.1
449014
449244
+
231
32


IX87_RS03175
NZ_CP009257.1
591047
591331

285
32


IX87_RS03990
NZ_CP009257.1
770803
772521

1719
32


IX87_RS04190
NZ_CP009257.1
816882
817550
+
669
32


IX87_RS04540
NZ_CP009257.1
884059
884685
+
627
32


IX87_RS06825
NZ_CP009257.1
1327527
1329194

1668
32


IX87_RS07350
NZ_CP009257.1
1433718
1433888
+
171
32


IX87_RS09080
NZ_CP009257.1
1771463
1773106
+
1644
32


IX87_RS09165
NZ_CP009257.1
1786664
1787125
+
462
32


IX87_RS10740
NZ_CP009257.1
2125770
2126492
+
723
32


IX87_RS10750
NZ_CP009257.1
2127531
2128355
+
825
32


IX87_RS11570
NZ_CP009257.1
2292668
2293330

663
32


IX87_RS11610
NZ_CP009257.1
2301503
2302078
+
576
32


IX87_RS12285
NZ_CP009257.1
2424915
2425358

444
32


IX87_RS13270
NZ_CP009257.1
2624181
2625161
+
981
32


IX87_RS13460
NZ_CP009257.1
2666433
2667257
+
825
32


IX87_RS13590
NZ_CP009257.1
2691026
2694409

3384
32


IX87_RS14380
NZ_CP009257.1
2859427
2860428

1002
32


IX87_RS15200
NZ_CP009257.1
3034747
3035100

354
32


IX87_RS15760
NZ_CP009257.1
3148198
3149112
+
915
32


IX87_RS16925
NZ_CP009257.1
3396371
3396943

573
32


IX87_RS17605
NZ_CP009257.1
3535112
3535603
+
492
32


IX87_RS17945
NZ_CP009257.1
3611396
3612205

810
32


IX87_RS18760
NZ_CP009257.1
3765132
3767234
+
2103
32


IX87_RS18960
NZ_CP009257.1
3802092
3802358
+
267
32


IX87_RS02785
NZ_CP009257.1
512549
513034

486
31


IX87_RS06365
NZ_CP009257.1
1226044
1226697
+
654
31


IX87_RS13685
NZ_CP009257.1
2712761
2713984

1224
31


IX87_RS14445
NZ_CP009257.1
2871960
2872661

702
31


IX87_RS15010
NZ_CP009257.1
2998228
2998626
+
399
31


IX87_RS15990
NZ_CP009257.1
3193838
3194506

669
31


IX87_RS17055
NZ_CP009257.1
3424926
3426317
+
1392
31


IX87_RS17220
NZ_CP009257.1
3457303
3458139
+
837
31


IX87_RS18065
NZ_CP009257.1
3637508
3638080

573
31


IX87_RS18935
NZ_CP009257.1
3798035
3798364
+
330
31


IX87_RS21275
NZ_CP009257.1
4260458
4261801

1344
31


IX87_RS05025
NZ_CP009257.1
961029
962348

1320
30


IX87_RS08970
NZ_CP009257.1
1751954
1752541

588
30


IX87_RS09260
NZ_CP009257.1
1805699
1806670
+
972
30


IX87_RS10480
NZ_CP009257.1
2073566
2075020

1455
30


IX87_RS12705
NZ_CP009257.1
2511328
2513517

2190
30


IX87_RS14240
NZ_CP009257.1
2830830
2832080
+
1251
30


IX87_RS15380
NZ_CP009257.1
3069963
3071033
+
1071
30


IX87_RS15475
NZ_CP009257.1
3090056
3090988

933
30


IX87_RS15590
NZ_CP009257.1
3113354
3113983
+
630
30


IX87_RS15850
NZ_CP009257.1
3165183
3166454
+
1272
30


IX87_RS16020
NZ_CP009257.1
3202305
3205985
+
3681
30


IX87_RS16445
NZ_CP009257.1
3296293
3296865
+
573
30


IX87_RS16450
NZ_CP009257.1
3296982
3298961
+
1980
30


IX87_RS16840
NZ_CP009257.1
3376305
3377138
+
834
30


IX87_RS17170
NZ_CP009257.1
3445757
3446758

1002
30


IX87_RS18595
NZ_CP009257.1
3729262
3729696
+
435
30


IX87_RS18620
NZ_CP009257.1
3734126
3734446

321
30


IX87_RS21115
NZ_CP009257.1
4229107
4231200
+
2094
30


IX87_RS03080
NZ_CP009257.1
574567
575193
+
627
29


IX87_RS04080
NZ_CP009257.1
794600
795550

951
29


IX87_RS04580
NZ_CP009257.1
893079
893567
+
489
29


IX87_RS06025
NZ_CP009257.1
1151701
1152729

1029
29


IX87_RS07135
NZ_CP009257.1
1390331
1391839

1509
29


IX87_RS09320
NZ_CP009257.1
1817676
1818305
+
630
29


IX87_RS09935
NZ_CP009257.1
1975228
1975761
+
534
29


IX87_RS10925
NZ_CP009257.1
2164138
2164779
+
642
29


IX87_RS12015
NZ_CP009257.1
2370258
2371046
+
789
29


IX87_RS13375
NZ_CP009257.1
2648241
2648681
+
441
29


IX87_RS14135
NZ_CP009257.1
2812384
2813133

750
29


IX87_RS20635
NZ_CP009257.1
4147315
4148835
+
1521
29


IX87_RS00375
NZ_CP009257.1
51997
54015
+
2019
28


IX87_RS02330
NZ_CP009257.1
429103
430266
+
1164
28


IX87_RS02720
NZ_CP009257.1
500533
501624
+
1092
28


IX87_RS05335
NZ_CP009257.1
1029021
1030466
+
1446
28


IX87_RS06300
NZ_CP009257.1
1210221
1211933

1713
28


IX87_RS06695
NZ_CP009257.1
1300065
1301135
+
1071
28


IX87_RS07140
NZ_CP009257.1
1392018
1392899
+
882
28


IX87_RS07210
NZ_CP009257.1
1406215
1406670

456
28


IX87_RS07230
NZ_CP009257.1
1409031
1410200

1170
28


IX87_RS09980
NZ_CP009257.1
1984041
1984688

648
28


IX87_RS10705
NZ_CP009257.1
2117557
2118675
+
1119
28


IX87_RS10960
NZ_CP009257.1
2172393
2173463

1071
28


IX87_RS11040
NZ_CP009257.1
2189378
2190064

687
28


IX87_RS11045
NZ_CP009257.1
2190084
2191742

1659
28


IX87_RS11555
NZ_CP009257.1
2290486
2291013
+
528
28


IX87_RS11980
NZ_CP009257.1
2361763
2362581

819
28


IX87_RS12005
NZ_CP009257.1
2368404
2369006
+
603
28


IX87_RS12320
NZ_CP009257.1
2430928
2431476

549
28


IX87_RS12610
NZ_CP009257.1
2492421
2493305
+
885
28


IX87_RS13380
NZ_CP009257.1
2648779
2649681

903
28


IX87_RS13495
NZ_CP009257.1
2673584
2674129

546
28


IX87_RS14130
NZ_CP009257.1
2811287
2812369

1083
28


IX87_RS15105
NZ_CP009257.1
3014688
3015116
+
429
28


IX87_RS15195
NZ_CP009257.1
3034100
3034600
+
501
28


IX87_RS15440
NZ_CP009257.1
3082866
3083681

816
28


IX87_RS16045
NZ_CP009257.1
3212772
3213983
+
1212
28


IX87_RS16160
NZ_CP009257.1
3236100
3236510
+
411
28


IX87_RS16410
NZ_CP009257.1
3288317
3290227

1911
28


IX87_RS16650
NZ_CP009257.1
3332025
3334313

2289
28


IX87_RS17050
NZ_CP009257.1
3424098
3424916
+
819
28


IX87_RS18105
NZ_CP009257.1
3642853
3643527
+
675
28


IX87_RS20645
NZ_CP009257.1
4149512
4150183

672
28


IX87_RS00365
NZ_CP009257.1
49867
51117

1251
27


IX87_RS01630
NZ_CP009257.1
304069
304524

456
27


IX87_RS03765
NZ_CP009257.1
722980
724137

1158
27


IX87_RS03815
NZ_CP009257.1
732520
735201

2682
27


IX87_RS05490
NZ_CP009257.1
1062592
1063254
+
663
27


IX87_RS05615
NZ_CP009257.1
1090725
1091357

633
27


IX87_RS06385
NZ_CP009257.1
1229277
1231226

1950
27


IX87_RS06560
NZ_CP009257.1
1271031
1272167

1137
27


IX87_RS08805
NZ_CP009257.1
1714120
1715514

1395
27


IX87_RS11395
NZ_CP009257.1
2259754
2260563

810
27


IX87_RS12495
NZ_CP009257.1
2468319
2468978

660
27


IX87_RS13465
NZ_CP009257.1
2667713
2668063
+
351
27


IX87_RS13605
NZ_CP009257.1
2696850
2697389
+
540
27


IX87_RS15540
NZ_CP009257.1
3103545
3104279
+
735
27


IX87_RS16400
NZ_CP009257.1
3286484
3287419

936
27


IX87_RS16530
NZ_CP009257.1
3309296
3310186
+
891
27


IX87_RS16565
NZ_CP009257.1
3314709
3315551

843
27


IX87_RS18945
NZ_CP009257.1
3799276
3800400
+
1125
27


IX87_RS20795
NZ_CP009257.1
4177117
4177911

795
27


IX87_RS01645
NZ_CP009257.1
306637
307545

909
26


IX87_RS02255
NZ_CP009257.1
414290
416017

1728
26


IX87_RS02800
NZ_CP009257.1
515587
516894
+
1308
26


IX87_RS04225
NZ_CP009257.1
825027
825773

747
26


IX87_RS05300
NZ_CP009257.1
1021581
1022816

1236
26


IX87_RS05540
NZ_CP009257.1
1077605
1079248
+
1644
26


IX87_RS07020
NZ_CP009257.1
1363028
1363261
+
234
26


IX87_RS07225
NZ_CP009257.1
1408613
1408993
+
381
26


IX87_RS07260
NZ_CP009257.1
1412820
1413605
+
786
26


IX87_RS08325
NZ_CP009257.1
1601239
1602045
+
807
26


IX87_RS08850
NZ_CP009257.1
1726097
1727416
+
1320
26


IX87_RS09745
NZ_CP009257.1
1919039
1919575
+
537
26


IX87_RS09985
NZ_CP009257.1
1984977
1985234

258
26


IX87_RS12245
NZ_CP009257.1
2417012
2417380

369
26


IX87_RS12365
NZ_CP009257.1
2439691
2440641

951
26


IX87_RS13950
NZ_CP009257.1
2766605
2767258

654
26


IX87_RS14610
NZ_CP009257.1
2906314
2907189
+
876
26


IX87_RS14630
NZ_CP009257.1
2911289
2912659

1371
26


IX87_RS14925
NZ_CP009257.1
2981040
2982257

1218
26


IX87_RS15890
NZ_CP009257.1
3173363
3174166
+
804
26


IX87_RS16055
NZ_CP009257.1
3214571
3215527

957
26


IX87_RS16195
NZ_CP009257.1
3242618
3243913

1296
26


IX87_RS16850
NZ_CP009257.1
3378625
3380619

1995
26


IX87_RS17240
NZ_CP009257.1
3464514
3465431

918
26


IX87_RS18210
NZ_CP009257.1
3660381
3660854

474
26


IX87_RS18685
NZ_CP009257.1
3746588
3747961

1374
26


IX87_RS18940
NZ_CP009257.1
3798374
3798970
+
597
26


IX87_RS20760
NZ_CP009257.1
4172105
4172338
+
234
26


IX87_RS21220
NZ_CP009257.1
4249442
4250230

789
26


IX87_RS21355
NZ_CP009257.1
4275991
4276359
+
369
26


IX87_RS01800
NZ_CP009257.1
339703
340731
+
1029
25


IX87_RS02275
NZ_CP009257.1
418027
418809

783
25


IX87_RS02555
NZ_CP009257.1
473120
474037
+
918
25


IX87_RS05550
NZ_CP009257.1
1080014
1080877

864
25


IX87_RS08630
NZ_CP009257.1
1672235
1673368
+
1134
25


IX87_RS08880
NZ_CP009257.1
1732783
1734033
+
1251
25


IX87_RS09215
NZ_CP009257.1
1797566
1798570
+
1005
25


IX87_RS09345
NZ_CP009257.1
1823803
1824489

687
25


IX87_RS09655
NZ_CP009257.1
1901094
1902032

939
25


IX87_RS10005
NZ_CP009257.1
1986851
1987828
+
978
25


IX87_RS11370
NZ_CP009257.1
2254737
2255240
+
504
25


IX87_RS12500
NZ_CP009257.1
2468994
2470076

1083
25


IX87_RS13615
NZ_CP009257.1
2698026
2699336
+
1311
25


IX87_RS13975
NZ_CP009257.1
2770515
2773640

3126
25


IX87_RS16005
NZ_CP009257.1
3196529
3197947
+
1419
25


IX87_RS16275
NZ_CP009257.1
3259569
3260621
+
1053
25


IX87_RS16635
NZ_CP009257.1
3327836
3328996

1161
25


IX87_RS18120
NZ_CP009257.1
3646451
3647011
+
561
25


IX87_RS18900
NZ_CP009257.1
3792449
3792649
+
201
25


IX87_RS20660
NZ_CP009257.1
4152646
4153983
+
1338
25


IX87_RS02320
NZ_CP009257.1
428096
428479
+
384
24


IX87_RS03665
NZ_CP009257.1
700843
701157

315
24


IX87_RS04315
NZ_CP009257.1
839662
839877

216
24


IX87_RS04590
NZ_CP009257.1
896505
897311
+
807
24


IX87_RS06080
NZ_CP009257.1
1165968
1167227

1260
24


IX87_RS06770
NZ_CP009257.1
1316709
1317404
+
696
24


IX87_RS07165
NZ_CP009257.1
1396045
1397472

1428
24


IX87_RS07310
NZ_CP009257.1
1423947
1425092

1146
24


IX87_RS07795
NZ_CP009257.1
1509034
1509861
+
828
24


IX87_RS08835
NZ_CP009257.1
1720677
1721465
+
789
24


IX87_RS09370
NZ_CP009257.1
1828805
1829884

1080
24


IX87_RS09595
NZ_CP009257.1
1877699
1878604

906
24


IX87_RS09775
NZ_CP009257.1
1926318
1926755
+
438
24


IX87_RS09790
NZ_CP009257.1
1927934
1929658

1725
24


IX87_RS10050
NZ_CP009257.1
1998020
1998826

807
24


IX87_RS11080
NZ_CP009257.1
2198122
2199585

1464
24


IX87_RS11425
NZ_CP009257.1
2264611
2265423

813
24


IX87_RS11915
NZ_CP009257.1
2348762
2349634

873
24


IX87_RS12965
NZ_CP009257.1
2556772
2557653

882
24


IX87_RS13120
NZ_CP009257.1
2589460
2590902

1443
24


IX87_RS13815
NZ_CP009257.1
2742868
2743647
+
780
24


IX87_RS14025
NZ_CP009257.1
2786496
2787800
+
1305
24


IX87_RS14915
NZ_CP009257.1
2979708
2980349

642
24


IX87_RS15390
NZ_CP009257.1
3072722
3073906
+
1185
24


IX87_RS15975
NZ_CP009257.1
3189841
3190614

774
24


IX87_RS16015
NZ_CP009257.1
3198648
3202283
+
3636
24


IX87_RS17315
NZ_CP009257.1
3478991
3480466
+
1476
24


IX87_RS17335
NZ_CP009257.1
3482626
3483309
+
684
24


IX87_RS17425
NZ_CP009257.1
3502154
3502840
+
687
24


IX87_RS17805
NZ_CP009257.1
3581518
3582153
+
636
24


IX87_RS17855
NZ_CP009257.1
3589778
3590923

1146
24


IX87_RS17930
NZ_CP009257.1
3606721
3609171
+
2451
24


IX87_RS18165
NZ_CP009257.1
3650001
3650834

834
24


IX87_RS18185
NZ_CP009257.1
3654514
3656379

1866
24


IX87_RS18510
NZ_CP009257.1
3708769
3710559
+
1791
24


IX87_RS18980
NZ_CP009257.1
3803807
3804193
+
387
24


IX87_RS19000
NZ_CP009257.1
3807756
3808760
+
1005
24


IX87_RS20605
NZ_CP009257.1
4140685
4141740

1056
24


IX87_RS20665
NZ_CP009257.1
4154025
4155176

1152
24


IX87_RS03670
NZ_CP009257.1
701166
702104

939
23


IX87_RS05310
NZ_CP009257.1
1023693
1025123
+
1431
23


IX87_RS05545
NZ_CP009257.1
1079248
1079991
+
744
23


IX87_RS05625
NZ_CP009257.1
1091979
1092263
+
285
23


IX87_RS07220
NZ_CP009257.1
1407834
1408409

576
23


IX87_RS08625
NZ_CP009257.1
1671742
1672230
+
489
23


IX87_RS08855
NZ_CP009257.1
1727515
1728801
+
1287
23


IX87_RS09060
NZ_CP009257.1
1766393
1767220

828
23


IX87_RS09910
NZ_CP009257.1
1970874
1971398

525
23


IX87_RS09930
NZ_CP009257.1
1974494
1975147
+
654
23


IX87_RS11430
NZ_CP009257.1
2265447
2266430

984
23


IX87_RS13110
NZ_CP009257.1
2586453
2587745

1293
23


IX87_RS13265
NZ_CP009257.1
2623493
2624068
+
576
23


IX87_RS14370
NZ_CP009257.1
2856005
2856535

531
23


IX87_RS15495
NZ_CP009257.1
3093257
3095134

1878
23


IX87_RS16755
NZ_CP009257.1
3361857
3362057
+
201
23


IX87_RS16780
NZ_CP009257.1
3365577
3366692
+
1116
23


IX87_RS18525
NZ_CP009257.1
3714445
3715383
+
939
23


IX87_RS18550
NZ_CP009257.1
3719775
3720632
+
858
23


IX87_RS20745
NZ_CP009257.1
4169889
4170995

1107
23


IX87_RS20810
NZ_CP009257.1
4180436
4180681
+
246
23


IX87_RS00625
NZ_CP009257.1
103429
104763

1335
22


IX87_RS02130
NZ_CP009257.1
394677
395654

978
22


IX87_RS03500
NZ_CP009257.1
667769
668491

723
22


IX87_RS03760
NZ_CP009257.1
722445
722900
+
456
22


IX87_RS03865
NZ_CP009257.1
746631
748112

1482
22


IX87_RS04180
NZ_CP009257.1
815567
815890
+
324
22


IX87_RS04260
NZ_CP009257.1
830546
831175

630
22


IX87_RS04555
NZ_CP009257.1
887192
888436

1245
22


IX87_RS05605
NZ_CP009257.1
1088095
1089303

1209
22


IX87_RS06000
NZ_CP009257.1
1146413
1146985
+
573
22


IX87_RS06745
NZ_CP009257.1
1311150
1311419
+
270
22


IX87_RS06805
NZ_CP009257.1
1323261
1324628

1368
22


IX87_RS09130
NZ_CP009257.1
1781059
1781982
+
924
22


IX87_RS09145
NZ_CP009257.1
1784017
1784727
+
711
22


IX87_RS09650
NZ_CP009257.1
1900355
1901113

759
22


IX87_RS10590
NZ_CP009257.1
2095487
2096701

1215
22


IX87_RS11245
NZ_CP009257.1
2230960
2231289
+
330
22


IX87_RS11290
NZ_CP009257.1
2239186
2239665
+
480
22


IX87_RS12400
NZ_CP009257.1
2445716
2447344

1629
22


IX87_RS13645
NZ_CP009257.1
2704726
2706084
+
1359
22


IX87_RS13660
NZ_CP009257.1
2708418
2709266

849
22


IX87_RS13870
NZ_CP009257.1
2753075
2754340

1266
22


IX87_RS14115
NZ_CP009257.1
2807693
2808250
+
558
22


IX87_RS14325
NZ_CP009257.1
2848112
2848597
+
486
22


IX87_RS14365
NZ_CP009257.1
2855521
2856003

483
22


IX87_RS15330
NZ_CP009257.1
3060680
3062077
+
1398
22


IX87_RS15555
NZ_CP009257.1
3106078
3106917
+
840
22


IX87_RS15955
NZ_CP009257.1
3183394
3183762

369
22


IX87_RS16430
NZ_CP009257.1
3292188
3292637
+
450
22


IX87_RS16540
NZ_CP009257.1
3311378
3311998
+
621
22


IX87_RS18175
NZ_CP009257.1
3651436
3653073

1638
22


IX87_RS18640
NZ_CP009257.1
3736733
3737380

648
22


IX87_RS20290
NZ_CP009257.1
4076022
4076738
+
717
22


IX87_RS20630
NZ_CP009257.1
4146077
4147132

1056
22


IX87_RS20790
NZ_CP009257.1
4176163
4177065
+
903
22


IX87_RS00840
NZ_CP009257.1
149665
151731

2067
21


IX87_RS04175
NZ_CP009257.1
814691
815221
+
531
21


IX87_RS06620
NZ_CP009257.1
1281827
1283074

1248
21


IX87_RS06815
NZ_CP009257.1
1325905
1326633

729
21


IX87_RS09275
NZ_CP009257.1
1808267
1808587
+
321
21


IX87_RS10495
NZ_CP009257.1
2076160
2077017

858
21


IX87_RS10555
NZ_CP009257.1
2086872
2087870

999
21


IX87_RS10775
NZ_CP009257.1
2133402
2134226
+
825
21


IX87_RS11240
NZ_CP009257.1
2229728
2230861
+
1134
21


IX87_RS11945
NZ_CP009257.1
2357105
2357506

402
21


IX87_RS12210
NZ_CP009257.1
2409670
2410788
+
1119
21


IX87_RS13860
NZ_CP009257.1
2751732
2751935
+
204
21


IX87_RS15935
NZ_CP009257.1
3180364
3180768

405
21


IX87_RS16670
NZ_CP009257.1
3338423
3339139
+
717
21


IX87_RS16700
NZ_CP009257.1
3347639
3348259
+
621
21


IX87_RS16790
NZ_CP009257.1
3368010
3368708
+
699
21


IX87_RS00850
NZ_CP009257.1
153725
154360
+
636
20


IX87_RS02465
NZ_CP009257.1
456673
457233

561
20


IX87_RS03235
NZ_CP009257.1
605657
607066

1410
20


IX87_RS03680
NZ_CP009257.1
704516
705895

1380
20


IX87_RS04075
NZ_CP009257.1
793538
793996

459
20


IX87_RS05010
NZ_CP009257.1
958689
959078

390
20


IX87_RS06040
NZ_CP009257.1
1154918
1155421

504
20


IX87_RS06715
NZ_CP009257.1
1303340
1304890

1551
20


IX87_RS07240
NZ_CP009257.1
1410873
1411118
+
246
20


IX87_RS07340
NZ_CP009257.1
1432109
1432660
+
552
20


IX87_RS09305
NZ_CP009257.1
1814561
1815259

699
20


IX87_RS09615
NZ_CP009257.1
1881832
1884927

3096
20


IX87_RS09740
NZ_CP009257.1
1918701
1919024
+
324
20


IX87_RS09765
NZ_CP009257.1
1925008
1925484
+
477
20


IX87_RS10125
NZ_CP009257.1
2016851
2017657
+
807
20


IX87_RS10435
NZ_CP009257.1
2064195
2064995
+
801
20


IX87_RS10580
NZ_CP009257.1
2094041
2094244

204
20


IX87_RS10665
NZ_CP009257.1
2106785
2107921
+
1137
20


IX87_RS10810
NZ_CP009257.1
2140199
2141659
+
1461
20


IX87_RS10835
NZ_CP009257.1
2145504
2146679
+
1176
20


IX87_RS10880
NZ_CP009257.1
2156493
2157698
+
1206
20


IX87_RS11155
NZ_CP009257.1
2213291
2214046

756
20


IX87_RS11340
NZ_CP009257.1
2247266
2248639
+
1374
20


IX87_RS11905
NZ_CP009257.1
2346396
2347346
+
951
20


IX87_RS12370
NZ_CP009257.1
2440764
2441393
+
630
20


IX87_RS12605
NZ_CP009257.1
2490884
2492302
+
1419
20


IX87_RS12805
NZ_CP009257.1
2529934
2530692
+
759
20


IX87_RS13150
NZ_CP009257.1
2595025
2596107

1083
20


IX87_RS14080
NZ_CP009257.1
2799025
2800152
+
1128
20


IX87_RS14320
NZ_CP009257.1
2846826
2847896
+
1071
20


IX87_RS14780
NZ_CP009257.1
2948111
2949628
+
1518
20


IX87_RS15190
NZ_CP009257.1
3031408
3033786
+
2379
20


IX87_RS15725
NZ_CP009257.1
3140768
3141472

705
20


IX87_RS16240
NZ_CP009257.1
3254106
3255038
+
933
20


IX87_RS16855
NZ_CP009257.1
3380622
3381959

1338
20


IX87_RS18170
NZ_CP009257.1
3650853
3651431

579
20


IX87_RS18180
NZ_CP009257.1
3653234
3654517
+
1284
20


IX87_RS18650
NZ_CP009257.1
3738539
3738889
+
351
20


IX87_RS21120
NZ_CP009257.1
4231326
4231769
+
444
20


IX87_RS01655
NZ_CP009257.1
309178
309630

453
19


IX87_RS01690
NZ_CP009257.1
316505
316777
+
273
19


IX87_RS02325
NZ_CP009257.1
428479
429072
+
594
19


IX87_RS02440
NZ_CP009257.1
451654
452061
+
408
19


IX87_RS03300
NZ_CP009257.1
616001
616672

672
19


IX87_RS03310
NZ_CP009257.1
618536
619129

594
19


IX87_RS06255
NZ_CP009257.1
1201373
1201930

558
19


IX87_RS06290
NZ_CP009257.1
1208869
1209696
+
828
19


IX87_RS06565
NZ_CP009257.1
1272186
1272956

771
19


IX87_RS07855
NZ_CP009257.1
1523492
1524214
+
723
19


IX87_RS08575
NZ_CP009257.1
1660477
1660878

402
19


IX87_RS08665
NZ_CP009257.1
1679905
1680762

858
19


IX87_RS08775
NZ_CP009257.1
1707046
1707429

384
19


IX87_RS08925
NZ_CP009257.1
1743568
1744224
+
657
19


IX87_RS09385
NZ_CP009257.1
1832949
1834019
+
1071
19


IX87_RS09450
NZ_CP009257.1
1848330
1848554

225
19


IX87_RS11375
NZ_CP009257.1
2255369
2256469
+
1101
19


IX87_RS12185
NZ_CP009257.1
2406181
2406975
+
795
19


IX87_RS12745
NZ_CP009257.1
2521886
2522269

384
19


IX87_RS12750
NZ_CP009257.1
2522372
2522965
+
594
19


IX87_RS13210
NZ_CP009257.1
2609332
2610012

681
19


IX87_RS13555
NZ_CP009257.1
2684754
2686097
+
1344
19


IX87_RS13625
NZ_CP009257.1
2700607
2701992
+
1386
19


IX87_RS15110
NZ_CP009257.1
3015189
3017303
+
2115
19


IX87_RS16260
NZ_CP009257.1
3257191
3257868

678
19


IX87_RS16465
NZ_CP009257.1
3299692
3300225
+
534
19


IX87_RS16535
NZ_CP009257.1
3310617
3311333
+
717
19


IX87_RS17995
NZ_CP009257.1
3622567
3624603
+
2037
19


IX87_RS18195
NZ_CP009257.1
3657767
3658819
+
1053
19


IX87_RS18580
NZ_CP009257.1
3724097
3725029
+
933
19


IX87_RS20655
NZ_CP009257.1
4151977
4152627
+
651
19


IX87_RS21260
NZ_CP009257.1
4258280
4259032

753
19


IX87_RS00345
NZ_CP009257.1
45729
47132

1404
18


IX87_RS00580
NZ_CP009257.1
92247
93272
+
1026
18


IX87_RS00830
NZ_CP009257.1
148262
148777

516
18


IX87_RS02355
NZ_CP009257.1
434269
434805
+
537
18


IX87_RS03625
NZ_CP009257.1
692808
694097

1290
18


IX87_RS05535
NZ_CP009257.1
1076093
1077472
+
1380
18


IX87_RS06085
NZ_CP009257.1
1167300
1168154

855
18


IX87_RS06225
NZ_CP009257.1
1195205
1197475
+
2271
18


IX87_RS06400
NZ_CP009257.1
1232832
1233140
+
309
18


IX87_RS06475
NZ_CP009257.1
1252040
1253362
+
1323
18


IX87_RS06545
NZ_CP009257.1
1267596
1268372

777
18


IX87_RS06880
NZ_CP009257.1
1339625
1341112
+
1488
18


IX87_RS07330
NZ_CP009257.1
1428598
1429506

909
18


IX87_RS08305
NZ_CP009257.1
1593642
1594217
+
576
18


IX87_RS08635
NZ_CP009257.1
1673373
1674116
+
744
18


IX87_RS08910
NZ_CP009257.1
1740194
1741240
+
1047
18


IX87_RS10800
NZ_CP009257.1
2137743
2139101
+
1359
18


IX87_RS10805
NZ_CP009257.1
2139164
2140177
+
1014
18


IX87_RS11300
NZ_CP009257.1
2241612
2241926

315
18


IX87_RS11440
NZ_CP009257.1
2267044
2267430
+
387
18


IX87_RS11730
NZ_CP009257.1
2324794
2326284

1491
18


IX87_RS11910
NZ_CP009257.1
2347389
2348654

1266
18


IX87_RS12045
NZ_CP009257.1
2377336
2377590
+
255
18


IX87_RS12280
NZ_CP009257.1
2424047
2424907
+
861
18


IX87_RS13710
NZ_CP009257.1
2717662
2718579
+
918
18


IX87_RS13995
NZ_CP009257.1
2778672
2779967
+
1296
18


IX87_RS14425
NZ_CP009257.1
2868500
2869855

1356
18


IX87_RS14995
NZ_CP009257.1
2995833
2996621

789
18


IX87_RS15055
NZ_CP009257.1
3005456
3006055

600
18


IX87_RS15420
NZ_CP009257.1
3078123
3078758

636
18


IX87_RS15545
NZ_CP009257.1
3104368
3105297
+
930
18


IX87_RS15740
NZ_CP009257.1
3142867
3143514
+
648
18


IX87_RS16170
NZ_CP009257.1
3237555
3237887

333
18


IX87_RS16405
NZ_CP009257.1
3287539
3288171

633
18


IX87_RS16975
NZ_CP009257.1
3408238
3408747

510
18


IX87_RS17255
NZ_CP009257.1
3467904
3468335

432
18


IX87_RS17510
NZ_CP009257.1
3516339
3517559
+
1221
18


IX87_RS18690
NZ_CP009257.1
3748198
3748476

279
18


IX87_RS21270
NZ_CP009257.1
4259678
4260406

729
18


IX87_RS00685
NZ_CP009257.1
119799
121121

1323
17


IX87_RS00795
NZ_CP009257.1
140502
141761

1260
17


IX87_RS01695
NZ_CP009257.1
316861
317148
+
288
17


IX87_RS01860
NZ_CP009257.1
351716
352207

492
17


IX87_RS03585
NZ_CP009257.1
684169
685185

1017
17


IX87_RS04155
NZ_CP009257.1
808403
809752

1350
17


IX87_RS06735
NZ_CP009257.1
1309012
1309917
+
906
17


IX87_RS07320
NZ_CP009257.1
1427114
1428127
+
1014
17


IX87_RS07735
NZ_CP009257.1
1498718
1499530
+
813
17


IX87_RS08695
NZ_CP009257.1
1688558
1689043
+
486
17


IX87_RS08870
NZ_CP009257.1
1731160
1731900
+
741
17


IX87_RS10145
NZ_CP009257.1
2019603
2020514

912
17


IX87_RS10850
NZ_CP009257.1
2147727
2148212

486
17


IX87_RS11320
NZ_CP009257.1
2243500
2243937

438
17


IX87_RS11380
NZ_CP009257.1
2256484
2256963
+
480
17


IX87_RS11600
NZ_CP009257.1
2299888
2300559
+
672
17


IX87_RS11935
NZ_CP009257.1
2354429
2356474
+
2046
17


IX87_RS11955
NZ_CP009257.1
2358260
2359273
+
1014
17


IX87_RS12220
NZ_CP009257.1
2411674
2413824
+
2151
17


IX87_RS12680
NZ_CP009257.1
2505401
2506093
+
693
17


IX87_RS13220
NZ_CP009257.1
2611909
2612241

333
17


IX87_RS13475
NZ_CP009257.1
2668689
2669600
+
912
17


IX87_RS13840
NZ_CP009257.1
2748297
2748941

645
17


IX87_RS14120
NZ_CP009257.1
2808336
2808728

393
17


IX87_RS23185
NZ_CP009257.1
2813130
2813532

403
17


IX87_RS15365
NZ_CP009257.1
3066871
3067278

408
17


IX87_RS15560
NZ_CP009257.1
3107008
3108120
+
1113
17


IX87_RS16125
NZ_CP009257.1
3230161
3231027
+
867
17


IX87_RS16395
NZ_CP009257.1
3285118
3286218

1101
17


IX87_RS17245
NZ_CP009257.1
3465441
3466262

822
17


IX87_RS17415
NZ_CP009257.1
3500848
3501696
+
849
17


IX87_RS18055
NZ_CP009257.1
3635781
3636548

768
17


IX87_RS20600
NZ_CP009257.1
4139721
4140638
+
918
17


IX87_RS20725
NZ_CP009257.1
4167297
4167596
+
300
17


IX87_RS01560
NZ_CP009257.1
289356
290471
+
1116
16


IX87_RS02150
NZ_CP009257.1
398301
399212
+
912
16


IX87_RS02335
NZ_CP009257.1
430604
431170
+
567
16


IX87_RS02390
NZ_CP009257.1
439995
440702
+
708
16


IX87_RS02470
NZ_CP009257.1
457632
458456
+
825
16


IX87_RS02560
NZ_CP009257.1
474150
474614
+
465
16


IX87_RS03835
NZ_CP009257.1
737468
741292

3825
16


IX87_RS03955
NZ_CP009257.1
765035
765466
+
432
16


IX87_RS04340
NZ_CP009257.1
842645
843316
+
672
16


IX87_RS05020
NZ_CP009257.1
959919
960917

999
16


IX87_RS06740
NZ_CP009257.1
1309931
1310773
+
843
16


IX87_RS07030
NZ_CP009257.1
1364909
1366477

1569
16


IX87_RS07745
NZ_CP009257.1
1500333
1501475
+
1143
16


IX87_RS08320
NZ_CP009257.1
1600180
1601229
+
1050
16


IX87_RS08550
NZ_CP009257.1
1654009
1655025
+
1017
16


IX87_RS08820
NZ_CP009257.1
1718217
1718627
+
411
16


IX87_RS08865
NZ_CP009257.1
1729523
1730965
+
1443
16


IX87_RS08875
NZ_CP009257.1
1731900
1732796
+
897
16


IX87_RS08985
NZ_CP009257.1
1755797
1757233
+
1437
16


IX87_RS09180
NZ_CP009257.1
1788588
1789387
+
800
16


IX87_RS09440
NZ_CP009257.1
1846206
1847051

846
16


IX87_RS09750
NZ_CP009257.1
1919635
1920222

588
16


IX87_RS09995
NZ_CP009257.1
1985661
1985954
+
294
16


IX87_RS10430
NZ_CP009257.1
2063021
2063839

819
16


IX87_RS10605
NZ_CP009257.1
2099837
2102383
+
2547
16


IX87_RS11005
NZ_CP009257.1
2181500
2182159

660
16


IX87_RS11035
NZ_CP009257.1
2187872
2189314
+
1443
16


IX87_RS11145
NZ_CP009257.1
2211485
2212519

1035
16


IX87_RS11225
NZ_CP009257.1
2226677
2227714
+
1038
16


IX87_RS11590
NZ_CP009257.1
2298207
2298683
+
477
16


IX87_RS11710
NZ_CP009257.1
2320876
2321961

1086
16


IX87_RS11775
NZ_CP009257.1
2331342
2331518

177
16


IX87_RS23140
NZ_CP009257.1
2362708
2362878

171
16


IX87_RS12340
NZ_CP009257.1
2432811
2436569

3759
16


IX87_RS13100
NZ_CP009257.1
2583974
2584903
+
930
16


IX87_RS13875
NZ_CP009257.1
2754446
2755567

1122
16


IX87_RS14210
NZ_CP009257.1
2824359
2825684

1326
16


IX87_RS14480
NZ_CP009257.1
2878199
2878915
+
717
16


IX87_RS14795
NZ_CP009257.1
2952273
2953400
+
1128
16


IX87_RS14890
NZ_CP009257.1
2976866
2977174
+
309
16


IX87_RS14900
NZ_CP009257.1
2977655
2978497
+
843
16


IX87_RS15320
NZ_CP009257.1
3059777
3060004

228
16


IX87_RS15515
NZ_CP009257.1
3098158
3099489
+
1332
16


IX87_RS15695
NZ_CP009257.1
3133259
3134683
+
1425
16


IX87_RS15980
NZ_CP009257.1
3190768
3192081

1314
16


IX87_RS16075
NZ_CP009257.1
3219386
3221614

2229
16


IX87_RS16420
NZ_CP009257.1
3290553
3291563

1011
16


IX87_RS16555
NZ_CP009257.1
3313085
3314140

1056
16


IX87_RS16580
NZ_CP009257.1
3316480
3317298

819
16


IX87_RS16725
NZ_CP009257.1
3353833
3355128
+
1296
16


IX87_RS16800
NZ_CP009257.1
3370041
3371450
+
1410
16


IX87_RS16895
NZ_CP009257.1
3390853
3392907
+
2055
16


IX87_RS17045
NZ_CP009257.1
3423152
3424075
+
924
16


IX87_RS17225
NZ_CP009257.1
3458161
3458730
+
570
16


IX87_RS17420
NZ_CP009257.1
3501697
3501969

273
16


IX87_RS17860
NZ_CP009257.1
3590964
3592607

1644
16


IX87_RS17925
NZ_CP009257.1
3606002
3606727
+
726
16


IX87_RS18545
NZ_CP009257.1
3719097
3719465

369
16


IX87_RS18855
NZ_CP009257.1
3786513
3787406

894
16


IX87_RS19390
NZ_CP009257.1
3894556
3895314
+
759
16


IX87_RS20590
NZ_CP009257.1
4136998
4139022

2025
16


IX87_RS20750
NZ_CP009257.1
4171103
4171429

327
16


IX87_RS21255
NZ_CP009257.1
4257456
4258280

825
16


IX87_RS21290
NZ_CP009257.1
4265008
4265661
+
654
16


IX87_RS02285
NZ_CP009257.1
419551
420240

690
15


IX87_RS02415
NZ_CP009257.1
447680
448765
+
1086
15


IX87_RS06390
NZ_CP009257.1
1231219
1231692

474
15


IX87_RS06580
NZ_CP009257.1
1274979
1276067

1089
15


IX87_RS07290
NZ_CP009257.1
1418798
1419181

384
15


IX87_RS09990
NZ_CP009257.1
1985253
1985564

312
15


IX87_RS11295
NZ_CP009257.1
2239689
2241560
+
1872
15


IX87_RS11410
NZ_CP009257.1
2262526
2263200
+
675
15


IX87_RS13280
NZ_CP009257.1
2625845
2627137

1293
15


IX87_RS13715
NZ_CP009257.1
2718557
2719072
+
516
15


IX87_RS14010
NZ_CP009257.1
2781756
2783045

1290
15


IX87_RS14905
NZ_CP009257.1
2978508
2978894
+
387
15


IX87_RS15215
NZ_CP009257.1
3037314
3038705

1392
15


IX87_RS15595
NZ_CP009257.1
3114049
3114717
+
669
15


IX87_RS16385
NZ_CP009257.1
3281964
3283085
+
1122
15


IX87_RS16770
NZ_CP009257.1
3364006
3364773
+
768
15


IX87_RS18530
NZ_CP009257.1
3715391
3716533
+
1143
15


IX87_RS18825
NZ_CP009257.1
3779494
3780669
+
1176
15


IX87_RS20620
NZ_CP009257.1
4144820
4145233

414
15


IX87_RS20830
NZ_CP009257.1
4185266
4186213
+
948
15


IX87_RS00385
NZ_CP009257.1
54608
55177

570
14


IX87_RS00835
NZ_CP009257.1
149039
149653

615
14


IX87_RS02250
NZ_CP009257.1
413277
414287

1011
14


IX87_RS02370
NZ_CP009257.1
436066
437913
+
1848
14


IX87_RS02425
NZ_CP009257.1
449280
450026

747
14


IX87_RS02960
NZ_CP009257.1
552370
553188

819
14


IX87_RS03725
NZ_CP009257.1
715654
716337

684
14


IX87_RS04135
NZ_CP009257.1
804011
804448
+
438
14


IX87_RS04240
NZ_CP009257.1
826891
827430

540
14


IX87_RS04600
NZ_CP009257.1
897825
898247

423
14


IX87_RS05345
NZ_CP009257.1
1032352
1032711
+
360
14


IX87_RS05525
NZ_CP009257.1
1070794
1072506

1713
14


IX87_RS06315
NZ_CP009257.1
1214496
1215686

1191
14


IX87_RS06480
NZ_CP009257.1
1253366
1254001
+
636
14


IX87_RS06635
NZ_CP009257.1
1287727
1288563

837
14


IX87_RS06820
NZ_CP009257.1
1326827
1327537

711
14


IX87_RS07305
NZ_CP009257.1
1422959
1423903
+
945
14


IX87_RS08330
NZ_CP009257.1
1602055
1602750
+
696
14


IX87_RS08350
NZ_CP009257.1
1607890
1608438
+
549
14


IX87_RS08745
NZ_CP009257.1
1699385
1700401
+
1017
14


IX87_RS08945
NZ_CP009257.1
1747454
1748188

735
14


IX87_RS08990
NZ_CP009257.1
1757267
1757446

180
14


IX87_RS09290
NZ_CP009257.1
1811508
1812737

1230
14


IX87_RS09585
NZ_CP009257.1
1875905
1877017
+
1113
14


IX87_RS09600
NZ_CP009257.1
1879195
1879971
+
777
14


IX87_RS10055
NZ_CP009257.1
1998852
1999529

678
14


IX87_RS10420
NZ_CP009257.1
2060924
2061922

999
14


IX87_RS10885
NZ_CP009257.1
2157719
2159854
+
2136
14


IX87_RS11085
NZ_CP009257.1
2199661
2201736

2076
14


IX87_RS11270
NZ_CP009257.1
2236415
2237326
+
912
14


IX87_RS11280
NZ_CP009257.1
2238230
2238844
+
615
14


IX87_RS11895
NZ_CP009257.1
2344950
2345387
+
438
14


IX87_RS11930
NZ_CP009257.1
2353593
2354408

816
14


IX87_RS12630
NZ_CP009257.1
2494742
2495545

804
14


IX87_RS12835
NZ_CP009257.1
2534471
2535574

1104
14


IX87_RS13550
NZ_CP009257.1
2683961
2684542

582
14


IX87_RS13630
NZ_CP009257.1
2702049
2702882

834
14


IX87_RS14090
NZ_CP009257.1
2801180
2801515

336
14


IX87_RS14505
NZ_CP009257.1
2883617
2885167
+
1551
14


IX87_RS14730
NZ_CP009257.1
2936463
2936843
+
381
14


IX87_RS14910
NZ_CP009257.1
2979110
2979700
+
591
14


IX87_RS15080
NZ_CP009257.1
3009761
3010681
+
921
14


IX87_RS15500
NZ_CP009257.1
3095393
3096454

1062
14


IX87_RS15575
NZ_CP009257.1
3109422
3110165
+
744
14


IX87_RS15690
NZ_CP009257.1
3132276
3133154
+
879
14


IX87_RS15895
NZ_CP009257.1
3174179
3174508
+
330
14


IX87_RS16085
NZ_CP009257.1
3222992
3223573
+
582
14


IX87_RS17105
NZ_CP009257.1
3435372
3435683
+
312
14


IX87_RS17250
NZ_CP009257.1
3466359
3467849
+
1491
14


IX87_RS17665
NZ_CP009257.1
3550841
3553765

2925
14


IX87_RS17820
NZ_CP009257.1
3583557
3584318
+
762
14


IX87_RS17955
NZ_CP009257.1
3613807
3614541

735
14


IX87_RS18045
NZ_CP009257.1
3634223
3635146

924
14


IX87_RS18830
NZ_CP009257.1
3780666
3781313

648
14


IX87_RS18995
NZ_CP009257.1
3806314
3807519
+
1206
14


IX87_RS19015
NZ_CP009257.1
3811511
3812263
+
753
14


IX87_RS19045
NZ_CP009257.1
3818492
3819895
+
1404
14


IX87_RS19185
NZ_CP009257.1
3848969
3849865
+
897
14


IX87_RS19220
NZ_CP009257.1
3855898
3856725
+
828
14


IX87_RS19250
NZ_CP009257.1
3860208
3861551
+
1344
14


IX87_RS19425
NZ_CP009257.1
3899825
3901384

1560
14


IX87_RS19445
NZ_CP009257.1
3903984
3904349
+
366
14


IX87_RS19840
NZ_CP009257.1
3987786
3988604
+
819
14


IX87_RS21295
NZ_CP009257.1
4265774
4266694
+
921
14


IX87_RS21410
NZ_CP009257.1
4283395
4284435

1041
14


IX87_RS00370
NZ_CP009257.1
51242
51760

519
13


IX87_RS00585
NZ_CP009257.1
93299
94306
+
1008
13


IX87_RS02225
NZ_CP009257.1
409724
410332

609
13


IX87_RS02290
NZ_CP009257.1
420240
421253

1014
13


IX87_RS03295
NZ_CP009257.1
614474
615757

1284
13


IX87_RS05315
NZ_CP009257.1
1025152
1025922
+
771
13


IX87_RS05505
NZ_CP009257.1
1065705
1066949

1245
13


IX87_RS06355
NZ_CP009257.1
1224959
1225678
+
720
13


IX87_RS06460
NZ_CP009257.1
1244117
1244479

363
13


IX87_RS08920
NZ_CP009257.1
1742438
1743601
+
1164
13


IX87_RS09380
NZ_CP009257.1
1831764
1832885
+
1122
13


IX87_RS09685
NZ_CP009257.1
1909743
1910411

669
13


IX87_RS11150
NZ_CP009257.1
2212527
2213294

768
13


IX87_RS11415
NZ_CP009257.1
2263285
2263728
+
444
13


IX87_RS11690
NZ_CP009257.1
2317049
2317258
+
210
13


IX87_RS11925
NZ_CP009257.1
2352527
2353513

987
13


IX87_RS12410
NZ_CP009257.1
2448391
2448951

561
13


IX87_RS13285
NZ_CP009257.1
2627306
2628364

1059
13


IX87_RS13970
NZ_CP009257.1
2769998
2770375

378
13


IX87_RS14145
NZ_CP009257.1
2815698
2815832
+
135
13


IX87_RS14960
NZ_CP009257.1
2987802
2988470
+
669
13


IX87_RS15350
NZ_CP009257.1
3065127
3065786
+
660
13


IX87_RS15525
NZ_CP009257.1
3100636
3100905

270
13


IX87_RS15915
NZ_CP009257.1
3175150
3175674
+
525
13


IX87_RS16320
NZ_CP009257.1
3269500
3270933
+
1434
13


IX87_RS16525
NZ_CP009257.1
3308556
3309248
+
693
13


IX87_RS16860
NZ_CP009257.1
3382067
3383056

990
13


IX87_RS17010
NZ_CP009257.1
3414546
3416000
+
1455
13


IX87_RS17085
NZ_CP009257.1
3432354
3432836
+
483
13


IX87_RS00335
NZ_CP009257.1
43617
44393
+
777
12


IX87_RS00475
NZ_CP009257.1
70257
70805
+
549
12


IX87_RS00550
NZ_CP009257.1
85927
86604

678
12


IX87_RS00595
NZ_CP009257.1
96763
97401

639
12


IX87_RS00770
NZ_CP009257.1
137106
137918
+
813
12


IX87_RS00785
NZ_CP009257.1
139109
139897
+
789
12


IX87_RS01620
NZ_CP009257.1
302526
302849

324
12


IX87_RS01635
NZ_CP009257.1
304777
305625

849
12


IX87_RS01855
NZ_CP009257.1
351451
351714

264
12


IX87_RS02375
NZ_CP009257.1
437913
438353
+
441
12


IX87_RS02780
NZ_CP009257.1
511704
512549

846
12


IX87_RS02890
NZ_CP009257.1
537206
538096
+
891
12


IX87_RS02965
NZ_CP009257.1
553842
555287
+
1446
12


IX87_RS03085
NZ_CP009257.1
575227
576087
+
861
12


IX87_RS03155
NZ_CP009257.1
587823
588683

861
12


IX87_RS03350
NZ_CP009257.1
630752
631555

804
12


IX87_RS03580
NZ_CP009257.1
683587
684156

570
12


IX87_RS03620
NZ_CP009257.1
691789
692754

966
12


IX87_RS03645
NZ_CP009257.1
697691
698464

774
12


IX87_RS05280
NZ_CP009257.1
1017741
1019147

1407
12


IX87_RS05305
NZ_CP009257.1
1022952
1023374
+
423
12


IX87_RS05320
NZ_CP009257.1
1025982
1026701
+
720
12


IX87_RS05455
NZ_CP009257.1
1055561
1057591

2031
12


IX87_RS05515
NZ_CP009257.1
1068702
1069712

1011
12


IX87_RS06125
NZ_CP009257.1
1175449
1176621
+
1173
12


IX87_RS06550
NZ_CP009257.1
1268542
1269120
+
579
12


IX87_RS06765
NZ_CP009257.1
1315687
1316712
+
1026
12


IX87_RS07880
NZ_CP009257.1
1532453
1533211
+
759
12


IX87_RS08560
NZ_CP009257.1
1656783
1658891
+
2109
12


IX87_RS08570
NZ_CP009257.1
1659372
1660343

972
12


IX87_RS08620
NZ_CP009257.1
1671077
1671622
+
546
12


IX87_RS08685
NZ_CP009257.1
1685182
1686561

1380
12


IX87_RS09090
NZ_CP009257.1
1773716
1774315

600
12


IX87_RS09095
NZ_CP009257.1
1774325
1775395

1071
12


IX87_RS09175
NZ_CP009257.1
1787888
1788478

591
12


IX87_RS09195
NZ_CP009257.1
1790095
1791261

1167
12


IX87_RS10130
NZ_CP009257.1
2017763
2018224
+
462
12


IX87_RS10525
NZ_CP009257.1
2082349
2082804

456
12


IX87_RS10560
NZ_CP009257.1
2088139
2089332

1194
12


IX87_RS10645
NZ_CP009257.1
2104382
2104885

504
12


IX87_RS11275
NZ_CP009257.1
2237334
2238185

852
12


IX87_RS11500
NZ_CP009257.1
2279953
2280516

564
12


IX87_RS11640
NZ_CP009257.1
2306284
2306781

498
12


IX87_RS11995
NZ_CP009257.1
2365243
2366073

831
12


IX87_RS12110
NZ_CP009257.1
2389347
2389766
+
420
12


IX87_RS12540
NZ_CP009257.1
2478623
2479447

825
12


IX87_RS12635
NZ_CP009257.1
2495819
2496157
+
339
12


IX87_RS12755
NZ_CP009257.1
2522965
2523582
+
618
12


IX87_RS13655
NZ_CP009257.1
2707570
2708421

852
12


IX87_RS13735
NZ_CP009257.1
2723214
2723852

639
12


IX87_RS13780
NZ_CP009257.1
2734929
2736041
+
1113
12


IX87_RS14020
NZ_CP009257.1
2785537
2786499
+
963
12


IX87_RS14465
NZ_CP009257.1
2875030
2875668

639
12


IX87_RS14665
NZ_CP009257.1
2921094
2921978
+
885
12


IX87_RS14895
NZ_CP009257.1
2977186
2977578
+
393
12


IX87_RS14955
NZ_CP009257.1
2987282
2987689
+
408
12


IX87_RS15280
NZ_CP009257.1
3051012
3052328

1317
12


IX87_RS15835
NZ_CP009257.1
3162242
3162682

441
12


IX87_RS15855
NZ_CP009257.1
3166531
3166857
+
327
12


IX87_RS15885
NZ_CP009257.1
3171369
3173081

1713
12


IX87_RS15940
NZ_CP009257.1
3180781
3181056

276
12


IX87_RS16845
NZ_CP009257.1
3377208
3378602

1395
12


IX87_RS17030
NZ_CP009257.1
3418419
3419285

867
12


IX87_RS17735
NZ_CP009257.1
3565317
3565943

627
12


IX87_RS17960
NZ_CP009257.1
3614557
3615309

753
12


IX87_RS18050
NZ_CP009257.1
3635188
3635784

597
12


IX87_RS18585
NZ_CP009257.1
3725109
3725465
+
357
12


IX87_RS18605
NZ_CP009257.1
3731267
3731605

339
12


IX87_RS18665
NZ_CP009257.1
3741368
3742333

966
12


IX87_RS18755
NZ_CP009257.1
3764136
3764756
+
621
12


IX87_RS19030
NZ_CP009257.1
3814958
3815920
+
963
12


IX87_RS19110
NZ_CP009257.1
3831820
3833169

1350
12


IX87_RS19180
NZ_CP009257.1
3847835
3848731
+
897
12


IX87_RS20580
NZ_CP009257.1
4135765
4136481

717
12


IX87_RS20625
NZ_CP009257.1
4145243
4146001

759
12


IX87_RS20775
NZ_CP009257.1
4173772
4174980

1209
12


IX87_RS21140
NZ_CP009257.1
4235999
4237177

1179
12


IX87_RS21180
NZ_CP009257.1
4243959
4244252

294
12


IX87_RS00895
NZ_CP009257.1
163669
165546

1878
11


IX87_RS01610
NZ_CP009257.1
301524
301961

438
11


IX87_RS02565
NZ_CP009257.1
474867
476282
+
1416
11


IX87_RS03280
NZ_CP009257.1
611881
612171
+
291
11


IX87_RS03635
NZ_CP009257.1
695359
696897

1539
11


IX87_RS04500
NZ_CP009257.1
876236
876451
+
216
11


IX87_RS06285
NZ_CP009257.1
1207744
1208835
+
1092
11


IX87_RS09070
NZ_CP009257.1
1769283
1769735

453
11


IX87_RS09390
NZ_CP009257.1
1834016
1835107
+
1092
11


IX87_RS09665
NZ_CP009257.1
1904298
1905815

1518
11


IX87_RS10690
NZ_CP009257.1
2115807
2116169

363
11


IX87_RS10895
NZ_CP009257.1
2160289
2161149
+
861
11


IX87_RS11495
NZ_CP009257.1
2278653
2279816

1164
11


IX87_RS11695
NZ_CP009257.1
2317270
2317701
+
432
11


IX87_RS11940
NZ_CP009257.1
2356467
2357102
+
636
11


IX87_RS12325
NZ_CP009257.1
2431496
2431747

252
11


IX87_RS12915
NZ_CP009257.1
2550523
2550933

411
11


IX87_RS13305
NZ_CP009257.1
2631194
2632894

1701
11


IX87_RS13455
NZ_CP009257.1
2665744
2666394

651
11


IX87_RS13945
NZ_CP009257.1
2765375
2766565
+
1191
11


IX87_RS14990
NZ_CP009257.1
2995020
2995829

810
11


IX87_RS15210
NZ_CP009257.1
3036478
3037236

759
11


IX87_RS15415
NZ_CP009257.1
3076544
3078067

1524
11


IX87_RS16985
NZ_CP009257.1
3410236
3411420

1185
11


IX87_RS17270
NZ_CP009257.1
3469412
3470236

825
11


IX87_RS17390
NZ_CP009257.1
3496513
3497139
+
627
11


IX87_RS18100
NZ_CP009257.1
3641988
3642755

768
11


IX87_RS18130
NZ_CP009257.1
3647579
3648160

582
11


IX87_RS18615
NZ_CP009257.1
3733522
3734040

519
11


IX87_RS18775
NZ_CP009257.1
3768473
3769528
+
1056
11


IX87_RS19255
NZ_CP009257.1
3861585
3862370
+
786
11


IX87_RS20575
NZ_CP009257.1
4134651
4135745

1095
11


IX87_RS21380
NZ_CP009257.1
4278378
4279781
+
1404
11


IX87_RS00395
NZ_CP009257.1
55826
56491

666
10


IX87_RS00820
NZ_CP009257.1
146453
147451

999
10


IX87_RS01570
NZ_CP009257.1
291456
291908

453
10


IX87_RS02185
NZ_CP009257.1
403908
404411

504
10


IX87_RS02240
NZ_CP009257.1
411514
412494

981
10


IX87_RS02385
NZ_CP009257.1
439526
439900
+
375
10


IX87_RS02430
NZ_CP009257.1
450213
450803
+
591
10


IX87_RS02610
NZ_CP009257.1
480900
481763

864
10


IX87_RS02815
NZ_CP009257.1
522464
523279
+
816
10


IX87_RS02920
NZ_CP009257.1
543306
544101

796
10


IX87_RS03135
NZ_CP009257.1
582536
584497
+
1962
10


IX87_RS03640
NZ_CP009257.1
696900
697691

792
10


IX87_RS03650
NZ_CP009257.1
698473
699534

1062
10


IX87_RS03805
NZ_CP009257.1
730021
731385

1365
10


IX87_RS04065
NZ_CP009257.1
791722
792969
+
1248
10


IX87_RS04300
NZ_CP009257.1
836916
837374

459
10


IX87_RS05220
NZ_CP009257.1
1006056
1006769
+
714
10


IX87_RS05325
NZ_CP009257.1
1026767
1027474
+
708
10


IX87_RS05580
NZ_CP009257.1
1084582
1085184
+
603
10


IX87_RS06705
NZ_CP009257.1
1301939
1302718

780
10


IX87_RS06830
NZ_CP009257.1
1329202
1330008

807
10


IX87_RS07275
NZ_CP009257.1
1415264
1415917
+
654
10


IX87_RS08645
NZ_CP009257.1
1675642
1676283
+
642
10


IX87_RS08740
NZ_CP009257.1
1698523
1699218
+
696
10


IX87_RS09810
NZ_CP009257.1
1930889
1932196

1308
10


IX87_RS09950
NZ_CP009257.1
1978637
1979197

561
10


IX87_RS10675
NZ_CP009257.1
2108418
2112938

4521
10


IX87_RS10920
NZ_CP009257.1
2163505
2164011

507
10


IX87_RS11075
NZ_CP009257.1
2197481
2197927
+
447
10


IX87_RS11260
NZ_CP009257.1
2234280
2235533

1254
10


IX87_RS11420
NZ_CP009257.1
2263771
2264610

840
10


IX87_RS11450
NZ_CP009257.1
2268261
2268689
+
429
10


IX87_RS11625
NZ_CP009257.1
2304280
2305194

915
10


IX87_RS12060
NZ_CP009257.1
2379693
2380955

1263
10


IX87_RS12240
NZ_CP009257.1
2416652
2416966
+
315
10


IX87_RS12575
NZ_CP009257.1
2486050
2486973

924
10


IX87_RS13075
NZ_CP009257.1
2579131
2579514

384
10


IX87_RS13080
NZ_CP009257.1
2579562
2580389

828
10


IX87_RS13155
NZ_CP009257.1
2596370
2597044
+
675
10


IX87_RS13505
NZ_CP009257.1
2674837
2675856
+
1020
10


IX87_RS13730
NZ_CP009257.1
2722390
2723190

801
10


IX87_RS13805
NZ_CP009257.1
2741370
2742002
+
633
10


IX87_RS13810
NZ_CP009257.1
2742020
2742568
+
549
10


IX87_RS14155
NZ_CP009257.1
2816265
2816585
+
321
10


IX87_RS14220
NZ_CP009257.1
2827087
2828247

1161
10


IX87_RS14315
NZ_CP009257.1
2846289
2846615

327
10


IX87_RS14785
NZ_CP009257.1
2949640
2950530
+
891
10


IX87_RS15085
NZ_CP009257.1
3011073
3011642

570
10


IX87_RS15445
NZ_CP009257.1
3083828
3084748

921
10


IX87_RS15790
NZ_CP009257.1
3152376
3154175
+
1800
10


IX87_RS15815
NZ_CP009257.1
3157576
3158349

774
10


IX87_RS15945
NZ_CP009257.1
3181053
3181580

528
10


IX87_RS16060
NZ_CP009257.1
3215678
3216289

612
10


IX87_RS16255
NZ_CP009257.1
3256528
3257133
+
606
10


IX87_RS16325
NZ_CP009257.1
3270952
3271599
+
648
10


IX87_RS16545
NZ_CP009257.1
3311998
3312402
+
405
10


IX87_RS17345
NZ_CP009257.1
3484774
3485859
+
1086
10


IX87_RS17435
NZ_CP009257.1
3504119
3504514
+
396
10


IX87_RS17615
NZ_CP009257.1
3537246
3538541

1296
10


IX87_RS18030
NZ_CP009257.1
3631610
3632767
+
1158
10


IX87_RS18125
NZ_CP009257.1
3647067
3647447

381
10


IX87_RS18200
NZ_CP009257.1
3658830
3659567
+
738
10


IX87_RS18555
NZ_CP009257.1
3720690
3721424
+
735
10


IX87_RS18745
NZ_CP009257.1
3762142
3763665
+
1524
10


IX87_RS18990
NZ_CP009257.1
3805090
3806277
+
1188
10


IX87_RS19210
NZ_CP009257.1
3854282
3855163

882
10


IX87_RS19960
NZ_CP009257.1
4010432
4011925

1494
10


IX87_RS20430
NZ_CP009257.1
4104684
4105805

1122
10


IX87_RS20475
NZ_CP009257.1
4114472
4115791

1320
10


IX87_RS20540
NZ_CP009257.1
4127164
4127514

351
10


IX87_RS20640
NZ_CP009257.1
4148832
4149512

681
10


IX87_RS21335
NZ_CP009257.1
4272336
4272797
+
462
10


IX87_RS21340
NZ_CP009257.1
4272979
4273275
+
297
10


IX87_RS00500
NZ_CP009257.1
77208
77696
+
489
9


IX87_RS00890
NZ_CP009257.1
162280
163614
+
1335
9


IX87_RS01590
NZ_CP009257.1
294654
298250
+
3597
9


IX87_RS02265
NZ_CP009257.1
416458
417093

636
9


IX87_RS03590
NZ_CP009257.1
685352
685945

594
9


IX87_RS03660
NZ_CP009257.1
700075
700830

756
9


IX87_RS05005
NZ_CP009257.1
958057
958623

567
9


IX87_RS05100
NZ_CP009257.1
978078
979748
+
1671
9


IX87_RS05500
NZ_CP009257.1
1063532
1065646
+
2115
9


IX87_RS06510
NZ_CP009257.1
1258118
1260772

2655
9


IX87_RS07035
NZ_CP009257.1
1366588
1367970

1383
9


IX87_RS07835
NZ_CP009257.1
1520003
1520386
+
384
9


IX87_RS08410
NZ_CP009257.1
1619982
1621577

1596
9


IX87_RS08800
NZ_CP009257.1
1713156
1713971

816
9


IX87_RS09210
NZ_CP009257.1
1796958
1797557
+
600
9


IX87_RS09770
NZ_CP009257.1
1925563
1926195
+
633
9


IX87_RS10040
NZ_CP009257.1
1997100
1997534
+
435
9


IX87_RS10140
NZ_CP009257.1
2019175
2019543

369
9


IX87_RS11020
NZ_CP009257.1
2185105
2185818
+
714
9


IX87_RS11535
NZ_CP009257.1
2286877
2287944

1068
9


IX87_RS12195
NZ_CP009257.1
2407574
2408137

564
9


IX87_RS12875
NZ_CP009257.1
2541074
2541376
+
303
9


IX87_RS13170
NZ_CP009257.1
2597907
2598884

978
9


IX87_RS13520
NZ_CP009257.1
2676804
2678171
+
1368
9


IX87_RS15205
NZ_CP009257.1
3035421
3036476

1056
9


IX87_RS15550
NZ_CP009257.1
3105302
3106069
+
768
9


IX87_RS16940
NZ_CP009257.1
3400003
3400845
+
843
9


IX87_RS17455
NZ_CP009257.1
3508405
3508725
+
321
9


IX87_RS17810
NZ_CP009257.1
3582270
3582563
+
294
9


IX87_RS17865
NZ_CP009257.1
3592604
3593173

570
9


IX87_RS18025
NZ_CP009257.1
3630328
3631608
+
1281
9


IX87_RS18495
NZ_CP009257.1
3703539
3704420

882
9


IX87_RS18570
NZ_CP009257.1
3722638
3723144
+
507
9


IX87_RS19845
NZ_CP009257.1
3988611
3989285
+
675
9


IX87_RS21135
NZ_CP009257.1
4234497
4235951
+
1455
9


IX87_RS00290
NZ_CP009257.1
29786
30103

318
8


IX87_RS00390
NZ_CP009257.1
55187
55801

615
8


IX87_RS00570
NZ_CP009257.1
90692
91315
+
624
8


IX87_RS00810
NZ_CP009257.1
144434
144964

531
8


IX87_RS01575
NZ_CP009257.1
292288
292665
+
378
8


IX87_RS01745
NZ_CP009257.1
326804
327685

882
8


IX87_RS01780
NZ_CP009257.1
335566
336018
+
453
8


IX87_RS01810
NZ_CP009257.1
341009
341923

915
8


IX87_RS01820
NZ_CP009257.1
343529
344644

1116
8


IX87_RS02205
NZ_CP009257.1
407130
408089

960
8


IX87_RS02280
NZ_CP009257.1
418831
419463

633
8


IX87_RS02495
NZ_CP009257.1
461960
463018
+
1059
8


IX87_RS02835
NZ_CP009257.1
527309
528895

1587
8


IX87_RS02910
NZ_CP009257.1
541550
542431

882
8


IX87_RS02925
NZ_CP009257.1
544111
545151

1041
8


IX87_RS02980
NZ_CP009257.1
556532
557950
+
1419
8


IX87_RS03340
NZ_CP009257.1
626062
627003

942
8


IX87_RS03850
NZ_CP009257.1
743694
745505

1812
8


IX87_RS04265
NZ_CP009257.1
831560
832153

594
8


IX87_RS05055
NZ_CP009257.1
967998
968621

624
8


IX87_RS05150
NZ_CP009257.1
990657
991115

459
8


IX87_RS06075
NZ_CP009257.1
1165342
1165920
+
579
8


IX87_RS06370
NZ_CP009257.1
1226736
1227593

858
8


IX87_RS06555
NZ_CP009257.1
1269167
1270810

1644
8


IX87_RS06700
NZ_CP009257.1
1301188
1301898

711
8


IX87_RS06710
NZ_CP009257.1
1302721
1303317

597
8


IX87_RS23040
NZ_CP009257.1
1305554
1306123
+
570
8


IX87_RS07810
NZ_CP009257.1
1513071
1514285
+
1215
8


IX87_RS08440
NZ_CP009257.1
1627450
1630317
+
2868
8


IX87_RS08650
NZ_CP009257.1
1676333
1678519

2187
8


IX87_RS08670
NZ_CP009257.1
1680821
1682191

1371
8


IX87_RS08790
NZ_CP009257.1
1709830
1710213
+
384
8


IX87_RS08890
NZ_CP009257.1
1735856
1736761
+
906
8


IX87_RS08940
NZ_CP009257.1
1746777
1747421

645
8


IX87_RS09105
NZ_CP009257.1
1776473
1777480
+
1008
8


IX87_RS09280
NZ_CP009257.1
1808577
1808966
+
390
8


IX87_RS09360
NZ_CP009257.1
1826884
1827369

486
8


IX87_RS09905
NZ_CP009257.1
1969819
1970751
+
933
8


IX87_RS10035
NZ_CP009257.1
1996742
1997092
+
351
8


IX87_RS10120
NZ_CP009257.1
2016046
2016672
+
627
8


IX87_RS10425
NZ_CP009257.1
2061969
2062862

894
8


IX87_RS10450
NZ_CP009257.1
2067335
2068033
+
699
8


IX87_RS10530
NZ_CP009257.1
2082951
2084018

1068
8


IX87_RS10540
NZ_CP009257.1
2084936
2085991

1056
8


IX87_RS10585
NZ_CP009257.1
2094755
2095459
+
705
8


IX87_RS10680
NZ_CP009257.1
2113085
2115163

2079
8


IX87_RS10765
NZ_CP009257.1
2130498
2132585

2088
8


IX87_RS10770
NZ_CP009257.1
2132760
2133326

567
8


IX87_RS11015
NZ_CP009257.1
2184454
2185032
+
579
8


IX87_RS11230
NZ_CP009257.1
2227868
2228896
+
1029
8


IX87_RS11315
NZ_CP009257.1
2243076
2243498

423
8


IX87_RS11445
NZ_CP009257.1
2267601
2268254
+
654
8


IX87_RS11485
NZ_CP009257.1
2276030
2277835

1806
8


IX87_RS11505
NZ_CP009257.1
2280536
2280886

351
8


IX87_RS11720
NZ_CP009257.1
2323127
2323372

246
8


IX87_RS13115
NZ_CP009257.1
2587857
2589401
+
1545
8


IX87_RS13235
NZ_CP009257.1
2617126
2617776

651
8


IX87_RS13595
NZ_CP009257.1
2694574
2695089

516
8


IX87_RS13795
NZ_CP009257.1
2738329
2739717

1389
8


IX87_RS13820
NZ_CP009257.1
2743713
2744768

1056
8


IX87_RS14085
NZ_CP009257.1
2800280
2801125
+
846
8


IX87_RS14110
NZ_CP009257.1
2805510
2807441
+
1932
8


IX87_RS14170
NZ_CP009257.1
2819844
2820107

264
8


IX87_RS14200
NZ_CP009257.1
2823617
2824144

528
8


IX87_RS14435
NZ_CP009257.1
2870520
2870876

357
8


IX87_RS14495
NZ_CP009257.1
2881958
2882803

846
8


IX87_RS15250
NZ_CP009257.1
3043654
3044973
+
1320
8


IX87_RS15325
NZ_CP009257.1
3060284
3060622
+
339
8


IX87_RS15340
NZ_CP009257.1
3062710
3063795
+
1086
8


IX87_RS15860
NZ_CP009257.1
3166959
3167708
+
750
8


IX87_RS15870
NZ_CP009257.1
3168655
3169251

597
8


IX87_RS16080
NZ_CP009257.1
3221763
3222968
+
1206
8


IX87_RS16295
NZ_CP009257.1
3266406
3267056
+
651
8


IX87_RS16310
NZ_CP009257.1
3268045
3268905

861
8


IX87_RS16360
NZ_CP009257.1
3275979
3276776

798
8


IX87_RS16575
NZ_CP009257.1
3316047
3316406

360
8


IX87_RS16620
NZ_CP009257.1
3325867
3326490

624
8


IX87_RS16675
NZ_CP009257.1
3339164
3339718

555
8


IX87_RS16950
NZ_CP009257.1
3401874
3402686
+
813
8


IX87_RS16980
NZ_CP009257.1
3409083
3410087

1005
8


IX87_RS17000
NZ_CP009257.1
3413080
3414261
+
1182
8


IX87_RS17075
NZ_CP009257.1
3430359
3430769
+
411
8


IX87_RS17135
NZ_CP009257.1
3441683
3442111
+
429
8


IX87_RS17185
NZ_CP009257.1
3450307
3450603
+
297
8


IX87_RS17450
NZ_CP009257.1
3507464
3508255
+
792
8


IX87_RS17495
NZ_CP009257.1
3512483
3513478

996
8


IX87_RS17550
NZ_CP009257.1
3526663
3527592

930
8


IX87_RS17825
NZ_CP009257.1
3584366
3584785

420
8


IX87_RS17830
NZ_CP009257.1
3585078
3585305
+
228
8


IX87_RS17965
NZ_CP009257.1
3615340
3616143
+
804
8


IX87_RS18565
NZ_CP009257.1
3721960
3722625
+
666
8


IX87_RS18670
NZ_CP009257.1
3742505
3743728
+
1224
8


IX87_RS18845
NZ_CP009257.1
3784215
3785339
+
1125
8


IX87_RS19010
NZ_CP009257.1
3809961
3811190

1230
8


IX87_RS19025
NZ_CP009257.1
3813607
3814593

987
8


IX87_RS19040
NZ_CP009257.1
3816955
3818481
+
1527
8


IX87_RS19055
NZ_CP009257.1
3820737
3821795
+
1059
8


IX87_RS19105
NZ_CP009257.1
3831128
3831736
+
609
8


IX87_RS19155
NZ_CP009257.1
3840662
3841948

1287
8


IX87_RS19795
NZ_CP009257.1
3979005
3979748
+
744
8


IX87_RS20315
NZ_CP009257.1
4080278
4081198
+
921
8


IX87_RS20675
NZ_CP009257.1
4158388
4160484

2097
8


IX87_RS20705
NZ_CP009257.1
4164259
4164453
+
195
8


IX87_RS21170
NZ_CP009257.1
4242876
4243325
+
450
8


IX87_RS21310
NZ_CP009257.1
4268015
4268641
+
627
8


IX87_RS21370
NZ_CP009257.1
4277076
4277387
+
312
8


IX87_RS21385
NZ_CP009257.1
4279778
4280260

483
8


IX87_RS21390
NZ_CP009257.1
4280469
4281704

1236
8


IX87_RS00350
NZ_CP009257.1
47404
48195
+
792
7


IX87_RS00470
NZ_CP009257.1
69523
70035

513
7


IX87_RS01545
NZ_CP009257.1
286256
287407

1152
7


IX87_RS01595
NZ_CP009257.1
298452
299144

693
7


IX87_RS02180
NZ_CP009257.1
403395
403838

444
7


IX87_RS02410
NZ_CP009257.1
447103
447576
+
474
7


IX87_RS02540
NZ_CP009257.1
470347
471366
+
1020
7


IX87_RS02705
NZ_CP009257.1
497884
498717
+
834
7


IX87_RS02820
NZ_CP009257.1
523272
524087
+
816
7


IX87_RS04505
NZ_CP009257.1
876516
877103

588
7


IX87_RS06030
NZ_CP009257.1
1152729
1153859

1131
7


IX87_RS06415
NZ_CP009257.1
1234479
1234697

219
7


IX87_RS07270
NZ_CP009257.1
1414385
1415158

774
7


IX87_RS08675
NZ_CP009257.1
1682215
1683594

1380
7


IX87_RS09160
NZ_CP009257.1
1785960
1786646
+
687
7


IX87_RS09460
NZ_CP009257.1
1850591
1851979
+
1389
7


IX87_RS10950
NZ_CP009257.1
2171022
2171798
+
777
7


IX87_RS10980
NZ_CP009257.1
2176678
2177727

1050
7


IX87_RS11160
NZ_CP009257.1
2214043
2215071

1029
7


IX87_RS11475
NZ_CP009257.1
2273474
2275087

1614
7


IX87_RS12190
NZ_CP009257.1
2406991
2407524
+
534
7


IX87_RS13480
NZ_CP009257.1
2669887
2670969
+
1083
7


IX87_RS14165
NZ_CP009257.1
2818442
2819797
+
1356
7


IX87_RS14230
NZ_CP009257.1
2828823
2829779

957
7


IX87_RS14725
NZ_CP009257.1
2936060
2936434
+
375
7


IX87_RS14945
NZ_CP009257.1
2985876
2986181
+
306
7


IX87_RS14985
NZ_CP009257.1
2994392
2995018
+
627
7


IX87_RS15005
NZ_CP009257.1
2997255
2998058
+
804
7


IX87_RS15270
NZ_CP009257.1
3049840
3050250
+
411
7


IX87_RS15580
NZ_CP009257.1
3110165
3111001
+
837
7


IX87_RS15685
NZ_CP009257.1
3131661
3132158

498
7


IX87_RS16000
NZ_CP009257.1
3195614
3196321

708
7


IX87_RS16120
NZ_CP009257.1
3229501
3230112
+
612
7


IX87_RS17035
NZ_CP009257.1
3419296
3420084

789
7


IX87_RS18895
NZ_CP009257.1
3791894
3792319
+
426
7


IX87_RS21305
NZ_CP009257.1
4267411
4267893

483
7


IX87_RS00295
NZ_CP009257.1
30397
30738

342
6


IX87_RS00300
NZ_CP009257.1
30998
31564
+
567
6


IX87_RS00330
NZ_CP009257.1
43025
43504
+
480
6


IX87_RS00405
NZ_CP009257.1
57030
58730

1701
6


IX87_RS00635
NZ_CP009257.1
107022
110708
+
3687
6


IX87_RS01715
NZ_CP009257.1
322329
323060
+
732
6


IX87_RS02155
NZ_CP009257.1
399209
399907

699
6


IX87_RS02230
NZ_CP009257.1
410370
411143

774
6


IX87_RS02380
NZ_CP009257.1
438462
439487
+
1026
6


IX87_RS02475
NZ_CP009257.1
458526
459071

546
6


IX87_RS02490
NZ_CP009257.1
460441
461901

1461
6


IX87_RS02640
NZ_CP009257.1
485159
485629

471
6


IX87_RS02730
NZ_CP009257.1
502283
502990
+
708
6


IX87_RS02880
NZ_CP009257.1
535481
536167

687
6


IX87_RS02940
NZ_CP009257.1
546489
547664
+
1176
6


IX87_RS03040
NZ_CP009257.1
567533
568207
+
675
6


IX87_RS03200
NZ_CP009257.1
598376
598987
+
612
6


IX87_RS03225
NZ_CP009257.1
602525
603403
+
879
6


IX87_RS03655
NZ_CP009257.1
699558
700058

501
6


IX87_RS03700
NZ_CP009257.1
711163
711915

753
6


IX87_RS03745
NZ_CP009257.1
720113
720565

453
6


IX87_RS03875
NZ_CP009257.1
748625
749317

693
6


IX87_RS03985
NZ_CP009257.1
769280
770500

1221
6


IX87_RS21960
NZ_CP009257.1
794248
794442

195
6


IX87_RS04200
NZ_CP009257.1
818665
819276

612
6


IX87_RS04290
NZ_CP009257.1
835076
836182

1107
6


IX87_RS04380
NZ_CP009257.1
847999
848355
+
357
6


IX87_RS04515
NZ_CP009257.1
877600
879186
+
1587
6


IX87_RS04635
NZ_CP009257.1
904825
905850

1026
6


IX87_RS05030
NZ_CP009257.1
962671
962868

198
6


IX87_RS05035
NZ_CP009257.1
963267
964817

1551
6


IX87_RS05165
NZ_CP009257.1
993543
994994
+
1452
6


IX87_RS05170
NZ_CP009257.1
995076
996962
+
1887
6


IX87_RS05195
NZ_CP009257.1
1000565
1001569
+
1005
6


IX87_RS05510
NZ_CP009257.1
1067135
1068724

1590
6


IX87_RS05565
NZ_CP009257.1
1082264
1083100
+
837
6


IX87_RS06215
NZ_CP009257.1
1192967
1193218

252
6


IX87_RS06280
NZ_CP009257.1
1207269
1207526
+
258
6


IX87_RS06295
NZ_CP009257.1
1209818
1210183

366
6


IX87_RS06340
NZ_CP009257.1
1221390
1222112
+
723
6


IX87_RS06420
NZ_CP009257.1
1234951
1235403
+
453
6


IX87_RS06485
NZ_CP009257.1
1254048
1254596

549
6


IX87_RS06575
NZ_CP009257.1
1274158
1274979

822
6


IX87_RS06795
NZ_CP009257.1
1321605
1322723
+
1119
6


IX87_RS06810
NZ_CP009257.1
1324979
1325890
+
912
6


IX87_RS07015
NZ_CP009257.1
1361755
1362729

975
6


IX87_RS07250
NZ_CP009257.1
1412230
1412595
+
366
6


IX87_RS07255
NZ_CP009257.1
1412609
1412806
+
198
6


IX87_RS07435
NZ_CP009257.1
1449643
1450673

1031
6


IX87_RS07460
NZ_CP009257.1
1458278
1459507

1230
6


IX87_RS07920
NZ_CP009257.1
1536780
1537658

879
6


IX87_RS08340
NZ_CP009257.1
1603751
1606126

2376
6


IX87_RS08345
NZ_CP009257.1
1606128
1607627

1500
6


IX87_RS08385
NZ_CP009257.1
1614377
1615450

1074
6


IX87_RS08480
NZ_CP009257.1
1640472
1642319

1848
6


IX87_RS23050
NZ_CP009257.1
1646337
1646513

177
6


IX87_RS08600
NZ_CP009257.1
1667891
1668658

768
6


IX87_RS08825
NZ_CP009257.1
1718628
1719119
+
492
6


IX87_RS09000
NZ_CP009257.1
1758942
1759352

411
6


IX87_RS09025
NZ_CP009257.1
1761964
1762608

645
6


IX87_RS09030
NZ_CP009257.1
1762615
1763340

726
6


IX87_RS09050
NZ_CP009257.1
1765330
1766022

693
6


IX87_RS09235
NZ_CP009257.1
1801449
1801901
+
453
6


IX87_RS09285
NZ_CP009257.1
1809057
1811492

2436
6


IX87_RS09340
NZ_CP009257.1
1821286
1823718

2433
6


IX87_RS09355
NZ_CP009257.1
1825965
1826873

909
6


IX87_RS23120
NZ_CP009257.1
1828601
1828747
+
147
6


IX87_RS09725
NZ_CP009257.1
1914838
1915680

843
6


IX87_RS09795
NZ_CP009257.1
1929655
1930005

351
6


IX87_RS09915
NZ_CP009257.1
1971474
1971680

207
6


IX87_RS10115
NZ_CP009257.1
2014671
2015891

1221
6


IX87_RS10570
NZ_CP009257.1
2091003
2091938

936
6


IX87_RS10655
NZ_CP009257.1
2105509
2106417
+
909
6


IX87_RS10735
NZ_CP009257.1
2125104
2125553

450
6


IX87_RS10890
NZ_CP009257.1
2160019
2160273
+
255
6


IX87_RS10985
NZ_CP009257.1
2177848
2178723
+
876
6


IX87_RS10995
NZ_CP009257.1
2179765
2180277

513
6


IX87_RS11025
NZ_CP009257.1
2185847
2186377

531
6


IX87_RS11065
NZ_CP009257.1
2196414
2196896
+
483
6


IX87_RS11235
NZ_CP009257.1
2228983
2229552
+
570
6


IX87_RS11550
NZ_CP009257.1
2289813
2290418
+
606
6


IX87_RS11705
NZ_CP009257.1
2320232
2320798

567
6


IX87_RS12290
NZ_CP009257.1
2425568
2426344

777
6


IX87_RS12505
NZ_CP009257.1
2470105
2470674

570
6


IX87_RS12580
NZ_CP009257.1
2487196
2488161

966
6


IX87_RS12825
NZ_CP009257.1
2533487
2533729

243
6


IX87_RS13000
NZ_CP009257.1
2562690
2563433

744
6


IX87_RS13015
NZ_CP009257.1
2565605
2566852
+
1248
6


IX87_RS13090
NZ_CP009257.1
2582132
2583004

873
6


IX87_RS13255
NZ_CP009257.1
2620660
2621202
+
543
6


IX87_RS13345
NZ_CP009257.1
2639019
2641184
+
2166
6


IX87_RS13635
NZ_CP009257.1
2703079
2703750
+
672
6


IX87_RS13740
NZ_CP009257.1
2723952
2725778

1827
6


IX87_RS13900
NZ_CP009257.1
2758137
2759171
+
1035
6


IX87_RS13980
NZ_CP009257.1
2773643
2774743

1101
6


IX87_RS13985
NZ_CP009257.1
2774893
2775516
+
624
6


IX87_RS14275
NZ_CP009257.1
2837985
2838371

387
6


IX87_RS14305
NZ_CP009257.1
2844627
2845493
+
867
6


IX87_RS14310
NZ_CP009257.1
2845885
2846115
+
231
6


IX87_RS14775
NZ_CP009257.1
2947064
2947945

882
6


IX87_RS14805
NZ_CP009257.1
2954208
2955233
+
1026
6


IX87_RS14860
NZ_CP009257.1
2968746
2972396
+
3651
6


IX87_RS15075
NZ_CP009257.1
3009005
3009655
+
651
6


IX87_RS15095
NZ_CP009257.1
3012844
3013998

1155
6


IX87_RS15155
NZ_CP009257.1
3025514
3026056
+
543
6


IX87_RS15165
NZ_CP009257.1
3027318
3027926

609
6


IX87_RS15335
NZ_CP009257.1
3062236
3062694
+
459
6


IX87_RS15795
NZ_CP009257.1
3154296
3155090
+
795
6


IX87_RS15810
NZ_CP009257.1
3156770
3157381
+
612
6


IX87_RS16140
NZ_CP009257.1
3233266
3233910
+
645
6


IX87_RS16145
NZ_CP009257.1
3233907
3234101

195
6


IX87_RS16370
NZ_CP009257.1
3277821
3279074

1254
6


IX87_RS16375
NZ_CP009257.1
3279143
3280507

1365
6


IX87_RS16440
NZ_CP009257.1
3295397
3296155
+
759
6


IX87_RS16595
NZ_CP009257.1
3320762
3322942

2181
6


IX87_RS16745
NZ_CP009257.1
3359883
3361181
+
1299
6


IX87_RS16970
NZ_CP009257.1
3407337
3408230
+
894
6


IX87_RS17140
NZ_CP009257.1
3442151
3443401

1251
6


IX87_RS17350
NZ_CP009257.1
3485863
3487218

1356
6


IX87_RS17395
NZ_CP009257.1
3497162
3497689
+
528
6


IX87_RS18005
NZ_CP009257.1
3625617
3626810
+
1194
6


IX87_RS18675
NZ_CP009257.1
3743848
3745053

1206
6


IX87_RS18710
NZ_CP009257.1
3752760
3754199
+
1440
6


IX87_RS18720
NZ_CP009257.1
3756062
3757972
+
1911
6


IX87_RS18840
NZ_CP009257.1
3782447
3784204
+
1758
6


IX87_RS18870
NZ_CP009257.1
3788682
3789788

1107
6


IX87_RS18920
NZ_CP009257.1
3794949
3796034

1086
6


IX87_RS18930
NZ_CP009257.1
3797533
3797769
+
237
6


IX87_RS19065
NZ_CP009257.1
3822824
3824095

1272
6


IX87_RS19095
NZ_CP009257.1
3829786
3830640
+
855
6


IX87_RS19120
NZ_CP009257.1
3834183
3835916
+
1734
6


IX87_RS19175
NZ_CP009257.1
3846836
3847057
+
222
6


IX87_RS23065
NZ_CP009257.1
3855311
3855556

246
6


IX87_RS19420
NZ_CP009257.1
3899229
3899816
+
588
6


IX87_RS19490
NZ_CP009257.1
3913584
3913958

375
6


IX87_RS19530
NZ_CP009257.1
3920822
3921196

375
6


IX87_RS19800
NZ_CP009257.1
3979780
3980853
+
1074
6


IX87_RS20470
NZ_CP009257.1
4111960
4114389

2430
6


IX87_RS20595
NZ_CP009257.1
4139158
4139718
+
561
6


IX87_RS21110
NZ_CP009257.1
4228285
4228500
+
216
6


IX87_RS21210
NZ_CP009257.1
4247592
4248074
+
483
6


IX87_RS21415
NZ_CP009257.1
4284663
4286936

2274
6


IX87_RS21425
NZ_CP009257.1
4287713
4290493

2781
6


IX87_RS21435
NZ_CP009257.1
4292147
4294681

2535
6


IX87_RS01790
NZ_CP009257.1
337140
337700
+
561
5


IX87_RS01830
NZ_CP009257.1
345673
347325

1653
5


IX87_RS02350
NZ_CP009257.1
433585
434265
+
681
5


IX87_RS03250
NZ_CP009257.1
608474
608791
+
318
5


IX87_RS03630
NZ_CP009257.1
694138
695346

1209
5


IX87_RS03825
NZ_CP009257.1
735701
736468

768
5


IX87_RS03830
NZ_CP009257.1
736471
737430

960
5


IX87_RS04620
NZ_CP009257.1
901559
901876

318
5


IX87_RS05210
NZ_CP009257.1
1003285
1004196
+
912
5


IX87_RS06055
NZ_CP009257.1
1158349
1158783
+
435
5


IX87_RS06405
NZ_CP009257.1
1233238
1233681
+
444
5


IX87_RS06985
NZ_CP009257.1
1358149
1358475
+
327
5


IX87_RS07725
NZ_CP009257.1
1497016
1497951
+
936
5


IX87_RS08475
NZ_CP009257.1
1638371
1640401
+
2031
5


IX87_RS08785
NZ_CP009257.1
1709094
1709726

633
5


IX87_RS09220
NZ_CP009257.1
1798775
1800109
+
1335
5


IX87_RS09505
NZ_CP009257.1
1861272
1862054
+
783
5


IX87_RS09580
NZ_CP009257.1
1875038
1875532

495
5


IX87_RS10095
NZ_CP009257.1
2008941
2010275

1335
5


IX87_RS10490
NZ_CP009257.1
2075682
2076173

492
5


IX87_RS10565
NZ_CP009257.1
2089570
2090805

1236
5


IX87_RS10955
NZ_CP009257.1
2171849
2172373
+
525
5


IX87_RS11140
NZ_CP009257.1
2210598
2211488
+
891
5


IX87-RS11165
NZ_CP009257.1
2215094
2215984

891
5


IX87_RS12275
NZ_CP009257.1
2423072
2423956
+
885
5


IX87_RS12470
NZ_CP009257.1
2463128
2463988

861
5


IX87_RS12985
NZ_CP009257.1
2560212
2561114
+
903
5


IX87_RS13175
NZ_CP009257.1
2598888
2599490

603
5


IX87_RS13290
NZ_CP009257.1
2628393
2628695

303
5


IX87_RS14475
NZ_CP009257.1
2876898
2878040
+
1143
5


IX87_RS15315
NZ_CP009257.1
3058224
3059711

1488
5


IX87_RS15355
NZ_CP009257.1
3065845
3066063

219
5


IX87_RS16050
NZ_CP009257.1
3214230
3214559

330
5


IX87_RS16200
NZ_CP009257.1
3243998
3244414

417
5


IX87_RS17520
NZ_CP009257.1
3519159
3520388
+
1230
5


IX87_RS17720
NZ_CP009257.1
3563636
3564466

831
5


IX87_RS22945
NZ_CP009257.1
3587332
3587502
+
171
5


IX87_RS18020
NZ_CP009257.1
3629503
3630237
+
735
5


IX87_RS18575
NZ_CP009257.1
3723169
3723951
+
783
5


IX87_RS19130
NZ_CP009257.1
3836202
3837632
+
1431
5


IX87_RS19170
NZ_CP009257.1
3846559
3846744
+
186
5


IX87_RS19395
NZ_CP009257.1
3895311
3895595
+
285
5


IX87_RS19405
NZ_CP009257.1
3896763
3897815
+
1053
5


IX87_RS19810
NZ_CP009257.1
3982048
3983076

1029
5


IX87_RS19955
NZ_CP009257.1
4009604
4010371

768
5


IX87_RS20040
NZ_CP009257.1
4027179
4028966
+
1788
5


IX87_RS20490
NZ_CP009257.1
4118218
4118847

630
5


IX87_RS20495
NZ_CP009257.1
4118862
4119587

726
5


IX87_RS20530
NZ_CP009257.1
4125461
4126132

672
5


IX87_RS20535
NZ_CP009257.1
4126482
4127198

717
5


IX87_RS21320
NZ_CP009257.1
4270344
4270835

492
5


IX87_RS21365
NZ_CP009257.1
4276772
4277056
+
285
5


IX87_RS00430
NZ_CP009257.1
61013
61321
+
309
4


IX87_RS00605
NZ_CP009257.1
98347
100023
+
1677
4


IX87_RS22750
NZ_CP009257.1
101137
101301
+
165
4


IX87_RS00695
NZ_CP009257.1
122017
123315
+
1299
4


IX87_RS00725
NZ_CP009257.1
129505
130329

825
4


IX87_RS00790
NZ_CP009257.1
140000
140404

405
4


IX87_RS00885
NZ_CP009257.1
161396
162274
+
879
4


IX87_RS01565
NZ_CP009257.1
290463
291368

906
4


IX87_RS01585
NZ_CP009257.1
293376
294644
+
1269
4


IX87_RS01600
NZ_CP009257.1
299241
300308
+
1068
4


IX87_RS01605
NZ_CP009257.1
300336
301454
+
1119
4


IX87_RS01700
NZ_CP009257.1
317191
317811

621
4


IX87_RS01725
NZ_CP009257.1
323939
324394

456
4


IX87_RS01815
NZ_CP009257.1
342013
343464

1452
4


IX87_RS01840
NZ_CP009257.1
348562
349542
+
981
4


IX87_RS02120
NZ_CP009257.1
392315
393274

960
4


IX87_RS02135
NZ_CP009257.1
395818
396792
+
975
4


IX87_RS02245
NZ_CP009257.1
412506
413267

762
4


IX87_RS23030
NZ_CP009257.1
455917
456057

141
4


IX87_RS02875
NZ_CP009257.1
533496
535370

1875
4


IX87_RS02895
NZ_CP009257.1
538135
538884

750
4


IX87_RS03050
NZ_CP009257.1
569412
570005

594
4


IX87_RS03090
NZ_CP009257.1
576125
577045

921
4


IX87_RS03150
NZ_CP009257.1
586874
587740

867
4


IX87_RS03205
NZ_CP009257.1
599059
599670

612
4


IX87_RS03210
NZ_CP009257.1
599953
600189
+
237
4


IX87_RS03285
NZ_CP009257.1
612173
613078

906
4


IX87_RS03690
NZ_CP009257.1
708069
709649
+
1581
4


IX87_RS03695
NZ_CP009257.1
709808
711097
+
1290
4


IX87_RS03735
NZ_CP009257.1
717720
718655

936
4


IX87_RS03800
NZ_CP009257.1
729197
730003

807
4


IX87_RS03810
NZ_CP009257.1
731402
732496

1095
4


IX87_RS04140
NZ_CP009257.1
804543
805847

1305
4


IX87_RS04150
NZ_CP009257.1
807340
808272

933
4


IX87_RS04165
NZ_CP009257.1
811239
811706
+
468
4


IX87_RS04355
NZ_CP009257.1
844207
845469
+
1263
4


IX87_RS04395
NZ_CP009257.1
849860
852331

2472
4


IX87_RS04400
NZ_CP009257.1
852498
852698
+
201
4


IX87_RS04470
NZ_CP009257.1
865642
866835
+
1194
4


IX87_RS04595
NZ_CP009257.1
897308
897733

426
4


IX87_RS05015
NZ_CP009257.1
959318
959875
+
558
4


IX87_RS05065
NZ_CP009257.1
970168
971001
+
834
4


IX87_RS05085
NZ_CP009257.1
974697
976184
+
1488
4


IX87_RS05275
NZ_CP009257.1
1016197
1017657
+
1461
4


IX87_RS05295
NZ_CP009257.1
1020490
1021584

1095
4


IX87_RS05340
NZ_CP009257.1
1030612
1031970
+
1359
4


IX87_RS05585
NZ_CP009257.1
1085242
1085883

642
4


IX87_RS05600
NZ_CP009257.1
1086866
1088098

1233
4


IX87_RS06015
NZ_CP009257.1
1148484
1149821
+
1338
4


IX87_RS06060
NZ_CP009257.1
1158832
1161060

2229
4


IX87_RS06105
NZ_CP009257.1
1172016
1172909
+
894
4


IX87_RS06130
NZ_CP009257.1
1176695
1177414

720
4


IX87_RS06200
NZ_CP009257.1
1191055
1191438

384
4


IX87_RS06250
NZ_CP009257.1
1200847
1201344
+
498
4


IX87_RS06270
NZ_CP009257.1
1203470
1204156

687
4


IX87_RS06520
NZ_CP009257.1
1261430
1263469

2040
4


IX87_RS06570
NZ_CP009257.1
1273122
1274150
+
1029
4


IX87_RS06590
NZ_CP009257.1
1277217
1278119
+
903
4


IX87_RS06605
NZ_CP009257.1
1279612
1280616
+
1005
4


IX87_RS06610
NZ_CP009257.1
1280763
1281326
+
564
4


IX87_RS06860
NZ_CP009257.1
1335895
1336797

903
4


IX87_RS06955
NZ_CP009257.1
1351437
1352135

699
4


IX87_RS06970
NZ_CP009257.1
1354783
1355931
+
1149
4


IX87_RS06975
NZ_CP009257.1
1356089
1356925
+
837
4


IX87_RS07010
NZ_CP009257.1
1360973
1361767

795
4


IX87_RS07130
NZ_CP009257.1
1389541
1390344

804
4


IX87_RS07200
NZ_CP009257.1
1404574
1405053

480
4


IX87_RS07265
NZ_CP009257.1
1413742
1414365

624
4


IX87_RS07345
NZ_CP009257.1
1432682
1433581

900
4


IX87_RS07355
NZ_CP009257.1
1433954
1435312

1359
4


IX87_RS07360
NZ_CP009257.1
1435309
1435971

663
4


IX87_RS07365
NZ_CP009257.1
1436079
1436438

360
4


IX87_RS07370
NZ_CP009257.1
1436520
1438277

1758
4


IX87_RS07375
NZ_CP009257.1
1438565
1439833
+
1269
4


IX87_RS07380
NZ_CP009257.1
1439843
1440571

729
4


IX87_RS07390
NZ_CP009257.1
1441510
1442379

870
4


IX87_RS07430
NZ_CP009257.1
1448683
1449468

786
4


IX87_RS07730
NZ_CP009257.1
1497948
1498721
+
774
4


IX87_RS07925
NZ_CP009257.1
1537655
1538164

510
4


IX87_RS08455
NZ_CP009257.1
1634109
1635077

969
4


IX87_RS08500
NZ_CP009257.1
1645659
1646345
+
687
4


IX87_RS08515
NZ_CP009257.1
1648046
1649026

981
4


IX87_RS08755
NZ_CP009257.1
1703440
1704078

639
4


IX87_RS08770
NZ_CP009257.1
1706318
1706929

612
4


IX87_RS08810
NZ_CP009257.1
1715712
1716593

882
4


IX87_RS08915
NZ_CP009257.1
1741284
1742309

1026
4


IX87_RS09005
NZ_CP009257.1
1759538
1759975
+
438
4


IX87_RS09035
NZ_CP009257.1
1763354
1764067

714
4


IX87_RS09100
NZ_CP009257.1
1775397
1776209

813
4


IX87_RS09110
NZ_CP009257.1
1777511
1778119
+
609
4


IX87_RS09430
NZ_CP009257.1
1844447
1845334

888
4


IX87_RS09485
NZ_CP009257.1
1855753
1856544

792
4


IX87_RS09495
NZ_CP009257.1
1859427
1860593
+
1167
4


IX87_RS09565
NZ_CP009257.1
1869643
1873641

3999
4


IX87_RS09670
NZ_CP009257.1
1905970
1907478

1509
4


IX87_RS10045
NZ_CP009257.1
1997531
1997965

435
4


IX87_RS22855
NZ_CP009257.1
2093718
2093858

141
4


IX87_RS10650
NZ_CP009257.1
2105036
2105404

369
4


IX87_RS10725
NZ_CP009257.1
2124170
2124514

345
4


IX87_RS10780
NZ_CP009257.1
2134246
2134536
+
291
4


IX87_RS11325
NZ_CP009257.1
2243938
2244834

897
4


IX87_RS11385
NZ_CP009257.1
2257011
2258021

1011
4


IX87_RS11480
NZ_CP009257.1
2275098
2276024

927
4


IX87_RS11615
NZ_CP009257.1
2302131
2302754

624
4


IX87_RS11660
NZ_CP009257.1
2311147
2311740

594
4


IX87_RS12440
NZ_CP009257.1
2458260
2458472

213
4


IX87_RS12510
NZ_CP009257.1
2470686
2472851

2166
4


IX87_RS12515
NZ_CP009257.1
2472914
2473441

528
4


IX87_RS12520
NZ_CP009257.1
2473452
2474192

741
4


IX87_RS12525
NZ_CP009257.1
2474189
2474830

642
4


IX87_RS12730
NZ_CP009257.1
2520900
2521331
+
432
4


IX87_RS12795
NZ_CP009257.1
2528229
2528858

630
4


IX87_RS12800
NZ_CP009257.1
2528871
2529821

951
4


IX87_RS13185
NZ_CP009257.1
2602655
2604361

1707
4


IX87_RS13330
NZ_CP009257.1
2637108
2637905

798
4


IX87_RS13350
NZ_CP009257.1
2641243
2641818

576
4


IX87_RS13525
NZ_CP009257.1
2678294
2679019
+
726
4


IX87_RS13770
NZ_CP009257.1
2733252
2733791

540
4


IX87_RS13775
NZ_CP009257.1
2733824
2734576

753
4


IX87_RS13785
NZ_CP009257.1
2736075
2737340

1266
4


IX87_RS13925
NZ_CP009257.1
2761671
2763095

1425
4


IX87_RS14045
NZ_CP009257.1
2790856
2791433

578
4


IX87_RS14180
NZ_CP009257.1
2821253
2821951
+
699
4


IX87_RS14225
NZ_CP009257.1
2828269
2828634

366
4


IX87_RS14250
NZ_CP009257.1
2833765
2834127
+
363
4


IX87_RS14260
NZ_CP009257.1
2834311
2834823
+
513
4


IX87_RS14485
NZ_CP009257.1
2879204
2881372
+
2169
4


IX87_RS14735
NZ_CP009257.1
2936888
2938852

1965
4


IX87_RS14855
NZ_CP009257.1
2964762
2968721
+
3960
4


IX87_RS14940
NZ_CP009257.1
2985288
2985815
+
528
4


IX87_RS15065
NZ_CP009257.1
3006868
3007632

765
4


IX87_RS15300
NZ_CP009257.1
3054994
3055872

879
4


IX87_RS15510
NZ_CP009257.1
3097157
3098062
+
906
4


IX87_RS15730
NZ_CP009257.1
3141650
3142408
+
759
4


IX87_RS15865
NZ_CP009257.1
3167744
3168658
+
915
4


IX87_RS16215
NZ_CP009257.1
3246651
3247547
+
897
4


IX87_RS16250
NZ_CP009257.1
3255783
3256478
+
696
4


IX87_RS16480
NZ_CP009257.1
3302512
3302667

156
4


IX87_RS16585
NZ_CP009257.1
3317401
3318171
+
771
4


IX87_RS16730
NZ_CP009257.1
3355181
3356023

843
4


IX87_RS16750
NZ_CP009257.1
3361206
3361757
+
552
4


IX87_RS16875
NZ_CP009257.1
3386424
3386753

330
4


IX87_RS17005
NZ_CP009257.1
3414219
3414533
+
315
4


IX87_RS17065
NZ_CP009257.1
3428699
3429472

774
4


IX87_RS17070
NZ_CP009257.1
3429584
3430390
+
807
4


IX87_RS17115
NZ_CP009257.1
3436284
3437912

1629
4


IX87_RS17215
NZ_CP009257.1
3455928
3457331
+
1404
4


IX87_RS17325
NZ_CP009257.1
3481112
3481363
+
252
4


IX87_RS17355
NZ_CP009257.1
3487576
3488418
+
843
4


IX87_RS17360
NZ_CP009257.1
3488719
3489552
+
834
4


IX87_RS17385
NZ_CP009257.1
3495850
3496398

549
4


IX87_RS17440
NZ_CP009257.1
3504555
3506489
+
1935
4


IX87_RS17870
NZ_CP009257.1
3593352
3593975
+
624
4


IX87_RS17920
NZ_CP009257.1
3603944
3605986
+
2043
4


IX87_RS18035
NZ_CP009257.1
3632764
3633513
+
750
4


IX87_RS18110
NZ_CP009257.1
3643593
3644252

660
4


IX87_RS18485
NZ_CP009257.1
3702668
3703081

414
4


IX87_RS18540
NZ_CP009257.1
3718309
3719043
+
735
4


IX87_RS18700
NZ_CP009257.1
3749529
3751313
+
1785
4


IX87_RS18705
NZ_CP009257.1
3751306
3752739
+
1434
4


IX87_RS18725
NZ_CP009257.1
3757985
3758755
+
771
4


IX87_RS18835
NZ_CP009257.1
3781432
3782454
+
1023
4


IX87_RS18910
NZ_CP009257.1
3793553
3793927
+
375
4


IX87_RS18965
NZ_CP009257.1
3802489
3802830
+
342
4


IX87_RS19020
NZ_CP009257.1
3812310
3813449

1140
4


IX87_RS19035
NZ_CP009257.1
3815934
3816953
+
1020
4


IX87_RS19160
NZ_CP009257.1
3842467
3844671
+
2205
4


IX87_RS19350
NZ_CP009257.1
3880532
3882313

1782
4


IX87_RS22560
NZ_CP009257.1
3893486
3893560
+
75
4


IX87_RS19400
NZ_CP009257.1
3895592
3896746
+
1155
4


IX87_RS19450
NZ_CP009257.1
3904427
3905590

1164
4


IX87_RS19785
NZ_CP009257.1
3974562
3977672

3111
4


IX87_RS19910
NZ_CP009257.1
3998320
3999291

972
4


IX87_RS20010
NZ_CP009257.1
4020405
4021289
+
885
4


IX87_RS20295
NZ_CP009257.1
4076806
4077567

762
4


IX87_RS20300
NZ_CP009257.1
4077682
4078596

915
4


IX87_RS20450
NZ_CP009257.1
4109024
4109890

867
4


IX87_RS20480
NZ_CP009257.1
4115851
4117302

1452
4


IX87_RS21300
NZ_CP009257.1
4266890
4267414
+
525
4


IX87_RS21395
NZ_CP009257.1
4281704
4282627

924
4


IX87_RS21400
NZ_CP009257.1
4282651
4283136

486
4


IX87_RS22740
NZ_CP009257.1
73402
73533

132
3


IX87_RS00520
NZ_CP009257.1
79533
79697
+
165
3


IX87_RS00590
NZ_CP009257.1
94329
96593

2265
3


IX87_RS00690
NZ_CP009257.1
121300
121782

483
3


IX87_RS01785
NZ_CP009257.1
336189
337049
+
861
3


IX87_RS01825
NZ_CP009257.1
344687
345661

975
3


IX87_RS02260
NZ_CP009257.1
416014
416442

429
3


IX87_RS02600
NZ_CP009257.1
479905
480468

564
3


IX87_RS02955
NZ_CP009257.1
550956
552251

1296
3


IX87_RS04545
NZ_CP009257.1
884696
885475

780
3


IX87_RS04575
NZ_CP009257.1
892394
892810

417
3


IX87_RS06035
NZ_CP009257.1
1153864
1154898

1035
3


IX87_RS06115
NZ_CP009257.1
1174102
1174752
+
651
3


IX87_RS06160
NZ_CP009257.1
1183037
1184623
+
1587
3


IX87_RS06165
NZ_CP009257.1
1184697
1184921

225
3


IX87_RS22815
NZ_CP009257.1
1186438
1186569

132
3


IX87_RS06335
NZ_CP009257.1
1220410
1221225
+
816
3


IX87_RS06615
NZ_CP009257.1
1281366
1281830

465
3


IX87_RS06800
NZ_CP009257.1
1322781
1323233

453
3


IX87_RS22130
NZ_CP009257.1
1339112
1339234
+
123
3


IX87_RS07180
NZ_CP009257.1
1399351
1401240

1890
3


IX87_RS07325
NZ_CP009257.1
1428329
1428601

273
3


IX87_RS07465
NZ_CP009257.1
1459757
1460443
+
687
3


IX87_RS08485
NZ_CP009257.1
1642714
1643574
+
861
3


IX87_RS09085
NZ_CP009257.1
1773161
1773577

417
3


IX87_RS09550
NZ_CP009257.1
1868079
1868498

420
3


IX87_RS10100
NZ_CP009257.1
2010301
2010975

675
3


IX87_RS10535
NZ_CP009257.1
2084143
2084892
+
750
3


IX87_RS10685
NZ_CP009257.1
2115210
2115746

537
3


IX87_RS10695
NZ_CP009257.1
2116193
2116576

384
3


IX87_RS10730
NZ_CP009257.1
2124606
2124962

357
3


IX87_RS23055
NZ_CP009257.1
2143160
2143303
+
144
3


IX87_RS11310
NZ_CP009257.1
2242542
2243036
+
495
3


IX87_RS11470
NZ_CP009257.1
2272274
2273431

1158
3


IX87_RS11490
NZ_CP009257.1
2278022
2278621
+
600
3


IX87_RS11760
NZ_CP009257.1
2329396
2329512

117
3


IX87_RS12200
NZ_CP009257.1
2408277
2408744

468
3


IX87_RS12300
NZ_CP009257.1
2427423
2428457
+
1035
3


IX87_RS12765
NZ_CP009257.1
2524371
2525012
+
642
3


IX87_RS14715
NZ_CP009257.1
2934471
2935172
+
702
3


IX87_RS14935
NZ_CP009257.1
2984279
2985067
+
789
3


IX87_RS15785
NZ_CP009257.1
3151712
3152242
+
531
3


IX87_RS15875
NZ_CP009257.1
3169253
3170113

861
3


IX87_RS16415
NZ_CP009257.1
3290260
3290505
+
246
3


IX87_RS16570
NZ_CP009257.1
3315674
3316036

363
3


IX87_RS17265
NZ_CP009257.1
3469020
3469397

378
3


IX87_RS22940
NZ_CP009257.1
3492449
3493825
+
1377
3


IX87_RS17400
NZ_CP009257.1
3497822
3498487
+
666
3


IX87_RS18715
NZ_CP009257.1
3754211
3756052
+
1842
3


IX87_RS20275
NZ_CP009257.1
4071722
4072720

999
3


IX87_RS20685
NZ_CP009257.1
4161744
4162052
+
309
3


IX87_RS21175
NZ_CP009257.1
4243371
4243907
+
537
3


IX87_RS21555
NZ_CP009257.1
4311526
4312824
+
1299
3


IX87_RS00305
NZ_CP009257.1
31675
32454

780
2


IX87_RS00310
NZ_CP009257.1
32512
38628

6117
2


IX87_RS00380
NZ_CP009257.1
54015
54566
+
552
2


IX87_RS00415
NZ_CP009257.1
59191
59511

321
2


IX87_RS00555
NZ_CP009257.1
86681
87490
+
810
2


IX87_RS00565
NZ_CP009257.1
89955
90647

693
2


IX87_RS00600
NZ_CP009257.1
97559
98176
+
618
2


IX87_RS00610
NZ_CP009257.1
100128
101027
+
900
2


IX87_RS00650
NZ_CP009257.1
112668
113996

1329
2


IX87_RS00675
NZ_CP009257.1
117717
118919

1203
2


IX87_RS00735
NZ_CP009257.1
130911
132134

1224
2


IX87_RS00805
NZ_CP009257.1
144006
144347

342
2


IX87_RS00900
NZ_CP009257.1
165706
166413

708
2


IX87_RS00995
NZ_CP009257.1
189648
189932
+
285
2


IX87_RS01540
NZ_CP009257.1
284726
286249

1524
2


IX87_RS21840
NZ_CP009257.1
324502
324717

216
2


IX87_RS01740
NZ_CP009257.1
325895
326566

672
2


IX87_RS02145
NZ_CP009257.1
397655
398251
+
597
2


IX87_RS02235
NZ_CP009257.1
411161
411502

342
2


IX87_RS02340
NZ_CP009257.1
431645
431953
+
309
2


IX87_RS02460
NZ_CP009257.1
456424
456609
+
186
2


IX87_RS02480
NZ_CP009257.1
459068
459661

594
2


IX87_RS02515
NZ_CP009257.1
465225
465761
+
537
2


IX87_RS02535
NZ_CP009257.1
467813
470350
+
2538
2


IX87_RS02545
NZ_CP009257.1
471943
472122
+
180
2


IX87_RS02550
NZ_CP009257.1
472162
473013

852
2


IX87_RS02575
NZ_CP009257.1
476867
477766
+
900
2


IX87_RS02630
NZ_CP009257.1
483670
484215
+
546
2


IX87_RS02700
NZ_CP009257.1
497040
497870
+
831
2


IX87_RS02725
NZ_CP009257.1
501669
502190

522
2


IX87_RS02850
NZ_CP009257.1
530235
531137
+
903
2


IX87_RS02915
NZ_CP009257.1
542440
543309

870
2


IX87_RS02985
NZ_CP009257.1
558048
558965
+
918
2


IX87_RS03030
NZ_CP009257.1
564641
566320

1680
2


IX87_RS03075
NZ_CP009257.1
573542
574447
+
906
2


IX87_RS03180
NZ_CP009257.1
591475
592434

960
2


IX87_RS03190
NZ_CP009257.1
596061
597707
+
1647
2


IX87_RS03195
NZ_CP009257.1
597764
598219

456
2


IX87_RS03215
NZ_CP009257.1
600250
601485

1236
2


IX87_RS03255
NZ_CP009257.1
608876
609097

222
2


IX87_RS03260
NZ_CP009257.1
609185
609466

282
2


IX87_RS03495
NZ_CP009257.1
666641
667678

1038
2


IX87_RS03510
NZ_CP009257.1
670023
670838
+
816
2


IX87_RS03615
NZ_CP009257.1
691197
691802

606
2


IX87_RS03770
NZ_CP009257.1
724271
725449

1179
2


IX87_RS03780
NZ_CP009257.1
725947
726594

648
2


IX87_RS03785
NZ_CP009257.1
726767
727618
+
852
2


IX87_RS03790
NZ_CP009257.1
727621
728574

954
2


IX87_RS03795
NZ_CP009257.1
728582
729184

603
2


IX87_RS03880
NZ_CP009257.1
750406
750807
+
402
2


IX87_RS03930
NZ_CP009257.1
757712
758248
+
537
2


IX87_RS03935
NZ_CP009257.1
758288
761893

3606
2


IX87_RS04015
NZ_CP009257.1
777353
778264

912
2


IX87_RS04085
NZ_CP009257.1
795801
796499
+
699
2


IX87_RS04145
NZ_CP009257.1
806112
806753

642
2


IX87_RS04160
NZ_CP009257.1
810259
811119

861
2


IX87_RS04210
NZ_CP009257.1
819961
821151

1191
2


IX87_RS04215
NZ_CP009257.1
821148
823289

2142
2


IX87_RS04325
NZ_CP009257.1
841072
841617

546
2


IX87_RS04330
NZ_CP009257.1
841655
842044

390
2


IX87_RS04385
NZ_CP009257.1
848948
849355

408
2


IX87_RS04390
NZ_CP009257.1
849383
849784

402
2


IX87_RS04445
NZ_CP009257.1
860567
861526

960
2


IX87_RS04475
NZ_CP009257.1
867303
868661
+
1359
2


IX87_RS04510
NZ_CP009257.1
877140
877358

219
2


IX87_RS04655
NZ_CP009257.1
911427
912071
+
645
2


IX87_RS04660
NZ_CP009257.1
912186
912680
+
495
2


IX87_RS04820
NZ_CP009257.1
939842
940483

642
2


IX87_RS05060
NZ_CP009257.1
969146
970105
+
960
2


IX87_RS05070
NZ_CP009257.1
971025
972548
+
1524
2


IX87_RS05080
NZ_CP009257.1
973547
974560

1014
2


IX87_RS05160
NZ_CP009257.1
992666
993505
+
840
2


IX87_RS05225
NZ_CP009257.1
1006834
1007589

756
2


IX87_RS05235
NZ_CP009257.1
1008410
1009018

609
2


IX87_RS05245
NZ_CP009257.1
1010733
1012280
+
1548
2


IX87_RS05330
NZ_CP009257.1
1027670
1029001
+
1332
2


IX87_RS05590
NZ_CP009257.1
1085949
1086350
+
402
2


IX87_RS05595
NZ_CP009257.1
1086405
1086656

252
2


IX87_RS05985
NZ_CP009257.1
1143190
1143459
+
270
2


IX87_RS05990
NZ_CP009257.1
1143465
1144727

1263
2


IX87_RS06190
NZ_CP009257.1
1188167
1190323

2157
2


IX87_RS06210
NZ_CP009257.1
1192083
1192553

471
2


IX87_RS06260
NZ_CP009257.1
1202008
1202691

684
2


IX87_RS06325
NZ_CP009257.1
1217563
1218999
+
1437
2


IX87_RS06395
NZ_CP009257.1
1231842
1232720
+
879
2


IX87_RS06435
NZ_CP009257.1
1237552
1237953

402
2


IX87_RS06440
NZ_CP009257.1
1238209
1239408
+
1200
2


IX87_RS06445
NZ_CP009257.1
1239434
1240417

984
2


IX87_RS06450
NZ_CP009257.1
1240556
1240990

435
2


IX87_RS06535
NZ_CP009257.1
1265843
1266223

381
2


IX87_RS06600
NZ_CP009257.1
1278974
1279477
+
504
2


IX87_RS06790
NZ_CP009257.1
1320816
1321382

567
2


IX87_RS06895
NZ_CP009257.1
1342847
1345345

2499
2


IX87_RS06915
NZ_CP009257.1
1347316
1347852

537
2


IX87_RS06960
NZ_CP009257.1
1352232
1353134
+
903
2


IX87_RS06995
NZ_CP009257.1
1359106
1359468

363
2


IX87_RS07005
NZ_CP009257.1
1360399
1360998

600
2


IX87_RS07025
NZ_CP009257.1
1363409
1364806

1398
2


IX87_RS07040
NZ_CP009257.1
1368068
1368985
+
918
2


IX87_RS07145
NZ_CP009257.1
1393003
1394106
+
1104
2


IX87_RS07150
NZ_CP009257.1
1394109
1395119

1011
2


IX87_RS07445
NZ_CP009257.1
1452098
1455277
+
3180
2


IX87_RS07450
NZ_CP009257.1
1455290
1456738
+
1449
2


IX87_RS22825
NZ_CP009257.1
1458093
1458248
+
156
2


IX87_RS07760
NZ_CP009257.1
1503961
1504413
+
453
2


IX87_RS07775
NZ_CP009257.1
1505584
1506408

825
2


IX87_RS07780
NZ_CP009257.1
1506507
1506992

486
2


IX87_RS07905
NZ_CP009257.1
1534603
1535046
+
444
2


IX87_RS07985
NZ_CP009257.1
1551863
1556662

4800
2


IX87_RS08020
NZ_CP009257.1
1560231
1560555

325
2


IX87_RS08380
NZ_CP009257.1
1613576
1614370

795
2


IX87_RS08395
NZ_CP009257.1
1617116
1618285

1170
2


IX87_RS08430
NZ_CP009257.1
1624698
1625567

870
2


IX87_RS08525
NZ_CP009257.1
1649867
1650292

426
2


IX87_RS08815
NZ_CP009257.1
1716708
1717868
+
1161
2


IX87_RS08905
NZ_CP009257.1
1739381
1740082
+
702
2


IX87_RS08955
NZ_CP009257.1
1750012
1750959

948
2


IX87_RS09010
NZ_CP009257.1
1759990
1760469

480
2


IX87_RS09055
NZ_CP009257.1
1765994
1766368

375
2


IX87_RS09410
NZ_CP009257.1
1837533
1839179
+
1647
2


IX87_RS09435
NZ_CP009257.1
1845497
1846120
+
624
2


IX87_RS09470
NZ_CP009257.1
1853098
1854072

975
2


IX87_RS09475
NZ_CP009257.1
1854069
1855136

1068
2


IX87_RS09480
NZ_CP009257.1
1855241
1855633

393
2


IX87_RS09500
NZ_CP009257.1
1860582
1861148

567
2


IX87_RS09610
NZ_CP009257.1
1881184
1881759

576
2


IX87_RS09620
NZ_CP009257.1
1885191
1886333
+
1143
2


IX87_RS09630
NZ_CP009257.1
1887447
1887821
+
375
2


IX87_RS09780
NZ_CP009257.1
1926810
1927139

330
2


IX87_RS09955
NZ_CP009257.1
1979314
1979694
+
381
2


IX87_RS10075
NZ_CP009257.1
2004693
2005598

906
2


IX87_RS10105
NZ_CP009257.1
2010990
2012639

1650
2


IX87_RS10485
NZ_CP009257.1
2075134
2075694

561
2


IX87_RS10660
NZ_CP009257.1
2106516
2106659
+
144
2


IX87_RS10700
NZ_CP009257.1
2116898
2117497
+
600
2


IX87_RS10755
NZ_CP009257.1
2128390
2129313

924
2


IX87_RS10815
NZ_CP009257.1
2141936
2143141
+
1206
2


IX87_RS10870
NZ_CP009257.1
2153982
2155100

1119
2


IX87_RS10905
NZ_CP009257.1
2161611
2162327

717
2


IX87_RS10990
NZ_CP009257.1
2178732
2179727

996
2


IX87_RS11070
NZ_CP009257.1
2196933
2197316

384
2


IX87_RS11265
NZ_CP009257.1
2235634
2236353
+
720
2


IX87_RS11285
NZ_CP009257.1
2238879
2239181
+
303
2


IX87_RS11405
NZ_CP009257.1
2262144
2262515
+
372
2


IX87_RS11460
NZ_CP009257.1
2269468
2271408

1941
2


IX87_RS11465
NZ_CP009257.1
2271427
2272263

837
2


IX87_RS11725
NZ_CP009257.1
2323572
2324744
+
1173
2


IX87_RS12040
NZ_CP009257.1
2376434
2377081

648
2


IX87_RS12050
NZ_CP009257.1
2377660
2378760

1101
2


IX87_RS12055
NZ_CP009257.1
2378893
2379690

798
2


IX87_RS12120
NZ_CP009257.1
2390392
2391747

1356
2


IX87_RS12125
NZ_CP009257.1
2391783
2392091

309
2


IX87_RS12230
NZ_CP009257.1
2415461
2415826

366
2


IX87_RS12235
NZ_CP009257.1
2416051
2416638
+
588
2


IX87_RS12295
NZ_CP009257.1
2426364
2427269

906
2


IX87_RS12355
NZ_CP009257.1
2438494
2439054

561
2


IX87_RS12425
NZ_CP009257.1
2450771
2451658

888
2


IX87_RS12530
NZ_CP009257.1
2474830
2475852

1023
2


IX87_RS12570
NZ_CP009257.1
2485718
2486050

333
2


IX87_RS12660
NZ_CP009257.1
2503088
2503414

327
2


IX87_RS12810
NZ_CP009257.1
2530734
2531372

639
2


IX87_RS12815
NZ_CP009257.1
2531482
2532486
+
1005
2


IX87_RS12960
NZ_CP009257.1
2556489
2556707
+
219
2


IX87_RS12990
NZ_CP009257.1
2561226
2562227
+
1002
2


IX87_RS13010
NZ_CP009257.1
2564546
2565466

921
2


IX87_RS13130
NZ_CP009257.1
2591825
2592520
+
696
2


IX87_RS13165
NZ_CP009257.1
2597488
2597841

354
2


IX87_RS13250
NZ_CP009257.1
2620141
2620554

414
2


IX87_RS13275
NZ_CP009257.1
2625141
2625848

708
2


IX87_RS13355
NZ_CP009257.1
2642067'
2642339

273
2


IX87_RS13420
NZ_CP009257.1
2658176
2658388
+
213
2


IX87_RS13530
NZ_CP009257.1
2679072
2680229

1158
2


IX87_RS13535
NZ_CP009257.1
2680429
2681439
+
1011
2


IX87_RS13560
NZ_CP009257.1
2686163
2686519

357
2


IX87_RS13570
NZ_CP009257.1
2686998
2687317
+
320
2


IX87_RS13670
NZ_CP009257.1
2710800
2711243
+
444
2


IX87_RS13880
NZ_CP009257.1
2755728
2756186

459
2


IX87_RS13905
NZ_CP009257.1
2759219
2759755
+
537
2


IX87_RS13910
NZ_CP009257.1
2759765
2760010
+
246
2


IX87_RS13940
NZ_CP009257.1
2764567
2765370
+
804
2


IX87_RS14105
NZ_CP009257.1
2804249
2805253

1005
2


IX87_RS14280
NZ_CP009257.1
2838473
2839378

906
2


IX87_RS14300
NZ_CP009257.1
2843591
2844519

929
2


IX87_RS14355
NZ_CP009257.1
2854472
2854798
+
327
2


IX87_RS14390
NZ_CP009257.1
2861851
2862417
+
567
2


IX87_RS14415
NZ_CP009257.1
2866143
2867126

984
2


IX87_RS14430
NZ_CP009257.1
2869976
2870296

321
2


IX87_RS14685
NZ_CP009257.1
2927022
2927597
+
576
2


IX87_RS14705
NZ_CP009257.1
2931641
2932870
+
1230
2


IX87_RS14720
NZ_CP009257.1
2935284
2935949
+
666
2


IX87_RS14740
NZ_CP009257.1
2939054
2940199
+
1146
2


IX87_RS14820
NZ_CP009257.1
2957391
2957807

417
2


IX87_RS14865
NZ_CP009257.1
2972393
2973667
+
1275
2


IX87_RS14875
NZ_CP009257.1
2975648
2976340
+
693
2


IX87_RS14920
NZ_CP009257.1
2980543
2980980
+
438
2


IX87_RS15070
NZ_CP009257.1
3007654
3008868

1215
2


IX87_RS15120
NZ_CP009257.1
3017633
3018847

1215
2


IX87_RS15175
NZ_CP009257.1
3028815
3029300

486
2


IX87_RS15180
NZ_CP009257.1
3029382
3029786
+
405
2


IX87_RS15230
NZ_CP009257.1
3039800
3040405

606
2


IX87_RS15245
NZ_CP009257.1
3042927
3043571
+
645
2


IX87_RS15295
NZ_CP009257.1
3054124
3054951
+
828
2


IX87_RS15305
NZ_CP009257.1
3055888
3056664

777
2


IX87_RS15535
NZ_CP009257.1
3102339
3103478
+
1140
2


IX87_RS15805
NZ_CP009257.1
3155919
3156773
+
855
2


IX87_RS15930
NZ_CP009257.1
3179906
3180307
+
402
2


IX87_RS16025
NZ_CP009257.1
3206094
3207845
+
1752
2


IX87_RS16030
NZ_CP009257.1
3208562
3209860

1299
2


IX87_RS16110
NZ_CP009257.1
3227249
3227506
+
258
2


IX87_RS16205
NZ_CP009257.1
3244577
3245731
+
1155
2


IX87_RS16210
NZ_CP009257.1
3245783
3246538

756
2


IX87_RS16315
NZ_CP009257.1
3269023
3269271

249
2


IX87_RS16560
NZ_CP009257.1
3314155
3314664

510
2


IX87_RS16615
NZ_CP009257.1
3324800
3325675
+
876
2


IX87_RS17015
NZ_CP009257.1
3416053
3416874

822
2


IX87_RS17260
NZ_CP009257.1
3468422
3468859

438
2


IX87_RS17445
NZ_CP009257.1
3506503
3507231
+
729
2


IX87_RS17460
NZ_CP009257.1
3508737
3509216
+
480
2


IX87_RS17500
NZ_CP009257.1
3513881
3515056
+
1176
2


IX87_RS17535
NZ_CP009257.1
3523126
3524055

930
2


IX87_RS17545
NZ_CP009257.1
3525074
3526384

1311
2


IX87_RS17675
NZ_CP009257.1
3556022
3556156

135
2


IX87_RS17685
NZ_CP009257.1
3559377
3559583
+
207
2


IX87_RS17845
NZ_CP009257.1
3587515
3588714

1200
2


IX87_RS17940
NZ_CP009257.1
3610367'
3611290

924
2


IX87_RS18015
NZ_CP009257.1
3628296
3629147

852
2


IX87_RS18205
NZ_CP009257.1
3659788
3660339
+
552
2


IX87_RS18490
NZ_CP009257.1
3703101
3703523

423
2


IX87_RS18695
NZ_CP009257.1
3748691
3749155
+
465
2


IX87_RS18765
NZ_CP009257.1
3767339
3767965
+
627
2


IX87_RS18770
NZ_CP009257.1
3767953
3768471
+
519
2


IX87_RS18790
NZ_CP009257.1
3771920
3772663
+
744
2


IX87_RS18800
NZ_CP009257.1
3773945
3774832

888
2


IX87_RS18815
NZ_CP009257.1
3776813
3777040

228
2


IX87_RS18860
NZ_CP009257.1
3787422
3787883
+
462
2


IX87_RS19060
NZ_CP009257.1
3821843
3822754

912
2


IX87_RS19075
NZ_CP009257.1
3824992
3826647
+
1656
2


IX87_RS19140
NZ_CP009257.1
3838523
3839362
+
840
2


IX87_RS19260
NZ_CP009257.1
3862694
3863680
+
987
2


IX87_RS19295
NZ_CP009257.1
3870370
3871428

1059
2


IX87_RS19305
NZ_CP009257.1
3872918
3873409

492
2


IX87_RS19315
NZ_CP009257.1
3875050
3875400
+
351
2


IX87_RS19330
NZ_CP009257.1
3877071
3877691
+
621
2


IX87_RS19415
NZ_CP009257.1
3898826
3899062
+
237
2


IX87_RS19430
NZ_CP009257.1
3901817
3902284
+
468
2


IX87_RS19900
NZ_CP009257.1
3997189
3997629
+
441
2


IX87_RS19920
NZ_CP009257.1
4000571
4001809

1239
2


IX87_RS19950
NZ_CP009257.1
4008136
4009488

1353
2


IX87_RS19965
NZ_CP009257.1
4011937
4012821

885
2


IX87_RS19985
NZ_CP009257.1
4015182
4015946

765
2


IX87_RS20000
NZ_CP009257.1
4018405
4019457

1053
2


IX87_RS20335
NZ_CP009257.1
4084321
4085100
+
780
2


IX87_RS20370
NZ_CP009257.1
4093669
4094406

738
2


IX87_RS20380
NZ_CP009257.1
4094913
4096190

1278
2


IX87_RS20485
NZ_CP009257.1
4117322
4118149

828
2


IX87_RS20570
NZ_CP009257.1
4133800
4134597
+
798
2


IX87_RS20690
NZ_CP009257.1
4162078
4162686
+
609
2


IX87_RS20735
NZ_CP009257.1
4168206
4168877

672
2


IX87_RS20785
NZ_CP009257.1
4175596
4175919

324
2


IX87_RS20815
NZ_CP009257.1
4180715
4181170

456
2


IX87_RS21130
NZ_CP009257.1
4233621
4234250
+
630
2


IX87_RS21155
NZ_CP009257.1
4239278
4240024

747
2


IX87_RS21360
NZ_CP009257.1
4276404
4276754
+
351
2


IX87_RS21375
NZ_CP009257.1
4277392
4278243

852
2


IX87_RS21420
NZ_CP009257.1
4287087
4287716

630
2


IX87_RS21485
NZ_CP009257.1
4299933
4300943
+
1011
2


IX87_RS21515
NZ_CP009257.1
4305821
4306984

1164
2


IX87_RS00070
NZ_CP009257.1
6580
7008

429
1


IX87_RS00950
NZ_CP009257.1
176584
177474

891
1


IX87_RS01580
NZ_CP009257.1
292739
293251

513
1


IX87_RS01890
NZ_CP009257.1
355224
361472

6249
1


IX87_RS02215
NZ_CP009257.1
408790
409170

381
1


IX87_RS02220
NZ_CP009257.1
409160
409714

555
1


IX87_RS02530
NZ_CP009257.1
467021
467761
+
741
1


IX87_RS02570
NZ_CP009257.1
476340
476777

438
1


IX87_RS02870
NZ_CP009257.1
533277
533438

162
1


IX87_RS02900
NZ_CP009257.1
539282
540751
+
1470
1


IX87_RS22760
NZ_CP009257.1
556299
556433
+
135
1


IX87_RS03750
NZ_CP009257.1
720754
721041

288
1


IX87_RS03885
NZ_CP009257.1
750903
751847
+
945
1


IX87_RS22795
NZ_CP009257.1
756062
756187

126
1


IX87_RS04345
NZ_CP009257.1
843468
843701

234
1


IX87_RS04715
NZ_CP009257.1
925346
925750

405
1


IX87_RS04720
NZ_CP009257.1
925843
926025

183
1


IX87_RS05140
NZ_CP009257.1
988872
989816
+
945
1


IX87_RS05145
NZ_CP009257.1
989858
990550

693
1


IX87_RS22030
NZ_CP009257.1
1012406
1012627
+
222
1


IX87_RS05825
NZ_CP009257.1
1123748
1124176

429
1


IX87_RS06265
NZ_CP009257.1
1202701
1203462

762
1


IX87_RS06360
NZ_CP009257.1
1225686
1225904

219
1


IX87_RS06990
NZ_CP009257.1
1358472
1358942

471
1


IX87_RS08025
NZ_CP009257.1
1560840
1561244

405
1


IX87_RS08030
NZ_CP009257.1
1561337
1561519

183
1


IX87_RS08895
NZ_CP009257.1
1736769
1737905

1137
1


IX87_RS09125
NZ_CP009257.1
1779926
1780987
+
1062
1


IX87_RS09225
NZ_CP009257.1
1800320
1800727
+
408
1


IX87_RS09960
NZ_CP009257.1
1979744
1980217

474
1


IX87_RS10785
NZ_CP009257.1
2134547
2134900

354
1


IX87_RS11050
NZ_CP009257.1
2191874
2192254
+
381
1


IX87_RS11715
NZ_CP009257.1
2322731
2323120

390
1


IX87_RS11875
NZ_CP009257.1
2340277
2341005

729
1


IX87_RS12305
NZ_CP009257.1
2428572
2429513
+
942
1


IX87_RS12545
NZ_CP009257.1
2479450
2479782

333
1


IX87_RS12645
NZ_CP009257.1
2497265
2500423

3159
1


IX87_RS12785
NZ_CP009257.1
2527485
2527796

312
1


IX87_RS12790
NZ_CP009257.1
2527803
2528192

390
1


IX87_RS13510
NZ_CP009257.1
2675956
2676459
+
504
1


IX87_RS13540
NZ_CP009257.1
2681415
2681939
+
525
1


IX87_RS14000
NZ_CP009257.1
2780047
2780937
+
891
1


IX87_RS14540
NZ_CP009257.1
2892269
2893309
+
1041
1


IX87_RS15090
NZ_CP009257.1
3011693
3012823

1131
1


IX87_RS15395
NZ_CP009257.1
3073910
3074341

432
1


IX87_RS15450
NZ_CP009257.1
3084892
3085155
+
264
1


IX87_RS16090
NZ_CP009257.1
3223840
3224184
+
345
1


IX87_RS16095
NZ_CP009257.1
3224329
3224667
+
339
1


IX87_RS16165
NZ_CP009257.1
3236746
3237126
+
381
1


IX87_RS16245
NZ_CP009257.1
3255035
3255709
+
675
1


IX87_RS16340
NZ_CP009257.1
3273468
3273875

408
1


IX87_RS16345
NZ_CP009257.1
3274044
3274412
+
369
1


IX87_RS16350
NZ_CP009257.1
3274464
3274685

222
1


IX87_RS17405
NZ_CP009257.1
3498499
3499290
+
792
1


IX87_RS18780
NZ_CP009257.1
3769521
3770120
+
600
1


IX87_RS19485
NZ_CP009257.1
3913207
3913581

375
1


IX87_RS19525
NZ_CP009257.1
3920445
3920819

375
1


IX87_RS19705
NZ_CP009257.1
3956110
3956868

759
1


IX87_RS20330
NZ_CP009257.1
4083096
4084310
+
1215
1


IX87_RS20520
NZ_CP009257.1
4123565
4124776

1212
1


IX87_RS20585
NZ_CP009257.1
4136520
4136927

408
1


IX87_RS22670
NZ_CP009257.1
4226744
4226836
+
93
1


IX87_RS21185
NZ_CP009257.1
4244367
4244603

237
1


IX87_RS21615
NZ_CP009257.1
4323255
4327616

4362
1









Example 13

RNA Sequencing to Identify Bacterial Resistance in Humans with Sepsis


Attached are the bacterial resistance genes identified in one patient with COVID-19. Resistance Gene.



















ARO







Ontology

# of

Antibiotic



ID
Mutation
Reads
Primary Species
Resistance





















Nucleotide
3002618
aadA21
2
n/a
n/a


Protein
3001028
TEM-162
2
n/a
n/a


Homolog
3002884
iri
2
n/a
n/a



3001037
TEM-171
2
n/a
n/a



3000976
TEM-113
2
n/a
n/a



3000167
tet(C)
2
n/a
n/a



3000833
evgS
2
n/a
n/a



3003548
mdtN
2
n/a
n/a



3001023
TEM-157
2
n/a
n/a



3002621
aadA24
2
n/a
n/a



3002620
aadA23
4
n/a
n/a



3000979
TEM-116
4
n/a
n/a



3002655
APH(4)-Ia
4
n/a
n/a



3002641
APH(3′)-Ia
4
n/a
n/a



3002601
aadA
4
n/a
n/a



3002619
aadA22
4
n/a
n/a



3004089
AND(3″)-IIa
4
n/a
n/a



3001044
TEM-181
4
n/a
n/a



3005036
BLMT
4
n/a
n/a



3000805
OprN
6
n/a
n/a



3002644
APH(3′)-IIa
8
n/a
n/a


Nucleotide
3004114
porin
2
n/a
n/a


Protein

OmpC


Knockout


Nucleotide
n/a
n/a
n/a
n/a
n/a


Protein


Over-


expression


Nucleotide
3003817
DNA gyrase
2

Acinetobacter

Fluoroquinolones


Protein
3003974
DNA gyrase
2

Cutibacterium

Fluoroquinolones


Variant


Nucleotide
3005083
23s rRNA
2

Thermus

Pleuromutilins


rRNA




Thermophilus




3004170
23s rRNA
4

Streptococcus

Macrolides



3003372
16S rRNA
4

Escherichia

Spectinomycin




(rrsH)



3003512
16S rRNA
6

Salmonella

Spectinomycin




(rrsD)



3004836
23S rRNA
6

Neisseria

Azithromycin



3004181
23S rRNA
8

Streptococcus

Macrolides,







streptogramins



3003493
16S rRNA
10

Pasteurella

Spectinomycin



3004058
23S rRNA
14

Staphylococcus

Linezolid



3004131
23S rRNA
16

Escherichia

Macrolides



3004149
23S rRNA
16

Escherichia

Clindamycin



3004160
23S rRNA
16

Escherichia

Clarithromycin



3004173
23S rRNA
16

Escherichia

Oxazolidinone



3004150
23s rRNA
16

Escherichia

Chloramphenicol



3003495
16S rRNA
24

Neisseria

Spectinomycin



3003499
16S rRNA
24

Cutibacterium

Tetracyclines



3004138
23S rRNA
48

Moraxella

Macrolides



3004161
23S rRNA
58

Propionibacteria

Macrolides



3003480
16S rRNA
98

Mycobacterium

Streptomycin



3004853
16S rRNA
98

Mycobacterium

Capreomycin



3003436
16S rRNA
98

Mycobacterium

Kanamycin



3003437
16S rRNA
98

Mycobacterium

Viomycin



3003481
16S rRNA
98

Mycobacterium

Amikacin



3004171
23S rRNA
284

Streptomyces

Macrolides



3003540
16S rRNA
332

Mycolicibacterium

Hygromycin B




(rrsB)



3003497
16S rRNA
436

Neisseria

Spectinomycin



3003514
16S rRNA
450

Mycobacteroides

Amikacin



3003515
16S rRNA
450

Mycobacteroides

Kanamycin A



3003516
16S rRNA
450

Mycobacteroides

Tobramycin



3003517
16S rRNA
450

Mycobacteroides

Gentamicin C



3003518
16S rRNA
450

Mycobacteroides

Neomycin



3003541
16S rRNA
452

Mycolicibacterium

Streptomycin




(rrsB)



3003542
16S rRNA
452

Mycolicibacterium

Kanamycin A




(rrsB)



3003545
16S rRNA
452

Mycolicibacterium

Neomycin




(rrsB)



3003547
16S rRNA
452

Mycolicibacterium

Viomycin




(rrsB)



3003539
16S rRNA
466

Mycolicibacterium

Hygromycin B




(rrsA)



3003543
16S rRNA
466

Mycolicibacterium

Kanamycin A




(rrsA)



3003544
16S rRNA
466

Mycolicibacterium

Neomycin




(rrsA)



3003546
16S rRNA
466

Mycolicibacterium

Viomycin




(rrsA)



3004164
23S rRNA
580

Mycobacterium

Clarithromycin







avium




3004166
23S rRNA
608

Mycobacterium

Clarithromycin







intracellulare




3004167
23S rRNA
608

Mycobacterium

Azithromycin







intracellulare




3003236
16S rRNA
770

Mycobacteroides

Kanamycin



3003237
16S rRNA
770

Mycobacteroides

Tobramycin



3003238
16S rRNA
770

Mycobacteroides

Neomycin



3003239
16S rRNA
770

Mycobacteroides

Amikacin



3003240
16S rRNA
770

Mycobacteroides

Gentamicin



3004937
23S rRNA
838

Mycobacterium

Capreomycin



3004168
23S rRNA
960

Mycobacterium

Clarithromycin



3004165
23S rRNA
1278

Mycobacteroides

Clarithromycin







chelonae




3004169
23S rRNA
1410

Mycolicibacterium

Clarithromycin



3004163
23S rRNA
1724

Mycobacteroides

Clarithromycin







abscessus










Example 14

Deep RNA Sequencing of Intensive Care Unit Patients with COVID-19


Purpose: COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19.


Methods: Single center, prospective study of patients with COVID-19 admitted to the intensive care unit where deep RNA sequencing (>100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected.


Results: The inventors enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E. NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients.


Conclusions: Current upper respiratory tract testing for COVID-19 only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies.


Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has led to millions of cases worldwide. Dong, Du, & Gardner, The Lancet Infectious Diseases (2020). Current testing is by polymerase chain reaction to detect viral RNA in the nares. Sethuraman, Jeremiah, & Ryo, JAMA (2020). This provides no insight into the host response. Patients with COVID-19 that require intensive care unit (ICU) care are sick and difficult to manage, thus, there is a need for other diagnostic tests during the hospital stay to assist the clinicians.


Deep RNA sequencing refers to a process of sequencing where (at least) 100 million reads of sequence are generated per sample. Deep sequencing allows for the study of low abundance RNA and biologic processes beyond gene expression. Typically. RNA sequencing data is aligned to the genome of interest, such as aligning to human genes when the sample comes from a human. Reads that do not align to the genome of interest are usually discarded. When the RNA sequencing is performed with this large number of reads, it could be used to identify the presence of specific pathogens in the blood by aligning the reads that would have been discarded to other genomes of interest. In COVID-19, sequencing reads of SARS-CoV-2 may provide insight into the biology of the virus during active illness. In addition, secondary infections could be identified, potentially allowing for better, pathogen-directed antibiotic treatment.


The host response to the virus is responsible for some of the morbidity and mortality observed. Bouadma et al., Journal of Clinical Immunology, 1-11 (2020). Acute respiratory distress syndrome (ARDS) is the most common complication encountered with COVID-19. Bouadma et al., Journal of Clinical Immunology, 1-11 (2020). The laboratory has shown that there are significant changes in alternative RNA splicing and transcription start and end in ARDS as assessed by deep RNA sequencing. Fredericks et al., Intensive Care Medicine (2020). These changes are thought to be due to the physiology of ARDS, e.g., hypoxia and acidosis, which are known to influence splicing. Whether this occurs in patients infected by COVID-19 is not known.


While RNA sequencing can be used to measure immune modulating gene expression, an alternative approach is the evaluation of global entropy, or disorder in the processing of RNA. Sterne-Weiler et al., Molecular Cell 72, 187-200.e186 (2018). The inventors found that this entropy metric combined with Principal Component Analysis (PCA) can be leveraged to distinguish COVID-19 patients that develop life-threatening illness from those likely to recover.


Here the inventors examine deep RNA sequencing data from patients in the ICU with COVID-19 to characterize both pathogens and host responses. The inventors evaluate the sequences for the presence of the SARS-CoV-2 virus and other potential infectious agents. The host response to COVID-19 is also characterized. The long-term goal is to combine these measurements to better assist clinical decision-making.


Study design, Population and Setting: The study enrolled ICU participants at a single tertiary care hospital evidence of SARS-CoV-2 infection based on positive PCR from the nasopharynx documented during admission. All participants, or their appropriate surrogate, provided informed consent as approved by the Institutional Review Board (Approval #: 411616). Blood samples were collected on day 0 of ICU admission. Clinical data including COVID specific therapies was collected prospectively from the electronic medical record and participants were followed until hospital discharge or death. Ordinal scale was collected as previously described by Beigel et al., New England Journal of Medicine (2020). See also sepsis and associated SOFA score. Singer et al., The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 315, 801-810 (2016). Also, with the diagnosis of ARDS. Ferguson et al., The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Medicine, 38, 1573-1582 (2012).


RNA extraction and sequencing. Whole blood was collected in PAXgene tubes (Qiagen, Germantown, Md., USA) and sent to Genewiz (South Plainfield, N.J., USA) for RNA extraction, ribosomal RNA depletion and sequencing. Sequencing was done on Illumina HiSeq machines to provide 150 base pair, paired-end reads. Libraries were prepared to have three samples per lane. Each lane provided 350 million reads ensuring each sample had >100 million reads. Raw data was returned on password protected external hard drives to ensure the security of the genomic data.


Computational Bioloqy and Statistical Analysis. All computational analysis was done blinded to the clinical data. The data was assessed for quality control using FastQC. See Andrews, A quality control tool for high throughput sequence data. FastQC. In: Editor{circumflex over ( )}Book A quality control tool for high throughput sequence data. FastQC (2014). RNA sequencing data was aligned to the human genome utilizing the STAR aligner. Dobin et al., Bioinformatics (Oxford, England) 29: 15-21 (2013). Reads that aligned to the human genome were separated and are now referred to as ‘mapped’ reads. Reads that did not align to the human genome, which are typically discarded during standard RNA sequencing analysis, were identified as ‘unmapped’ reads. The unmapped reads then aligned to the SARS-CoV-2 genome (NC_045512) and counted per sample using Magic-BLAST. Boratyn et al., BMC Bioinformatics, 20, 405 (2019). A coverage map of the SARS-CoV-2 genome was generated using al the subjects to identify the gene expression patterns of the virus in critically ill COVID-19 patients. The unmapped reads were further analyzed with Kraken2 using the PlusPFP index to identify other bacterial, fungal, archaeal, and viral pathogens. See Wood, Lu, & Langmead, Genome Biology, 20, 257 (2019).


Reads that aligned to the human genome, the mapped reads, also underwent analysis for gene expression, alternative RNA splicing, and alternative transcription start/end via Whippet. Sterne-Weiler et al., Molecular Cell 72, 187-200.e186 (2018). When comparisons were made between groups (died vs. survived) differential gene expression was set with thresholds of both p<0.05 and +/−1.5 log2 fold change. Alternative splicing was defined as core exon, alternative acceptor splice site, alternative donor splice site, retained intron, alternative first exon and alternative last exon. Alternative transcription start/end events were defined as tandem transcription start site and tandem alternative polyadenylation site. Alternative RNA splicing and alternative transcription start/end events were also compared between groups. Sterne-Weiler et al., Molecular Cell 72, 187-200.e186 (2018). Significance was set at great than 2 log 2 fold change as previously described by Fredericks et al., Intensive Care Medicine (2020). Genes identified from the analysis of mapped reads were then evaluated by GO enrichment analysis (PANTHER Overrepresentation released 20200728). See Mi, Muruganujan, Casagrande, & Thomas. Nature Protocols. 8, 1551-1566 (2013).


Whippet was also used to generate an entropy value for every identified alternative splicing and transcription event of each gene. These entropy values are created without the need for groups used in the gene expression analysis. To visualize this data a principal component analysis (PCA) was conducted to reduce the dimensionality of the dataset and to obtain an unsupervised overview of trends in entropy values among the samples. Raw entropy values from all samples were concatenated into one matrix and missing values were replaced with column means. Mortality was then overlaid onto the PCA plot to assess the ability of these raw entropy values to predict this outcome in this sample set. This analysis was done in R (version 3.6.3).


Study Population. Participant Characteristics, and RNA sequencing: Fifteen participants were enrolled and had blood samples drawn on the first day of their ICU stay. Clinical and demographic data is reported in TABLE 1. Most participants were male (73%). There was a diverse distribution in terms of race (60% not white) and ethnicity (60% Hispanic). The most common co-morbidity was hypertension, and the median BMI was almost 30. Forty percent of participants had ARDS at the time the samples was drawn, and the patients were distributed across the top of the ordinal scale with a score of 5 as the most common in 53% of the patients. Most participants required a ventilator (67%) and 20% progressed to extracorporeal membrane oxygenation (ECMO); 27% required renal replacement. The median length of hospital stay was 22 days with a mortality rate of 47%.


All samples had sufficient RNA and RNA integrity numbers (RIN) were adequate. See Fleige & Pfaffl, Molecular Aspects of Medicine, 27, 126-139 (2006). The median of sequencing was 125,687,784 reads (95% Cl 122,164,763 to 135,800,242) and greater than 90% of those reads were more than thirty bases. After using FastQC, all samples had mean quality scores over 30. The reads mapped to the human genome 62-66% of the time.


Identification of SARS-CoV-2 and other pathogens: Among the fifteen participant samples all participants had SARS-CoV-2 RNA detected. There was a total of 676 reads that align to the SARS-CoV-2 genome with each patient having between 18 and 98 reads. See FIG. 4. Most of the reads corresponded to the RNA dependent RNA polymerase and N protein genes. RNA from other pathogens including bacteria, viruses and archaea were identified in the blood of all patients. See TABLE 2. Two participants had fungal RNA identified. Despite alignment to a robust database of organisms, each participant still had hundreds of thousands of unclassified reads. TABLE 2. The taxonomy classification of “other sequences” (28384) align to elements of cellular organisms (bacterial, archaea, plant), but do not have enough specificity to identify a single species are listed in TABLE 2. The top bacterial sequences from all patients were from either Acinetobacter baumannii or Chryseobacterium gallinarum. In patients who had the most counts of C. gallinarum, A. baumannii had significantly reduced counts compared to the counts in other patients (148.1 vs. 50905.3, p<0.05). Although sequences corresponding to A. baumannii or C. gallinarum were found in all patients, none of the patients had positive blood cultures drawn around the time of these samples. No counts of bacteria, virus, archaea, (TABLE 2) or specific bacteria correlated with mortality.


Genomic differences between participants who lived and those who died. Among participants who died there were 86 genes that increased in expression and 207 that decreased in expression (top results in TABLE 3. There were 88 significant alternative splicing events occurring in 84 unique genes (Top results TABLE 3) and 2093 alternative transcription events occurring in 1769 unique genes (Top results TABLE 3). ABCA13 was the only gene that had significant expression and alternative splicing events. Twenty-seven genes had significant expression and alternative transcription start/end differences. (TABLE 3) Eighteen genes had significantly different alternative splicing and alternative transcription start/end. (TABLE 3).


The genes that were significant between groups then underwent GO term analysis to assess significant enrichment for a biological process. The top GO terms for gene expression and alternative transcription are listed in TABLE 3. There were no significant GO terms for the genes impacted by alternative splicing.


RNA entropy as a diagnostic tool. From the over 100 million RNA sequencing reads for each participant, computational analysis via Whippet assigns an entropy value for over 380,000 RNA splicing events and alternative transcription start/end events. Principal component analysis was then applied to these >380.000 entropy scores for each of the fifteen participants and the first two principal components were plotted against each other (FIG. 5). The sample points were then labeled based on their survival status. Survival status was not part of the principal component analysis itself. Participants whose PC2 value was above 0.00 had a mortality rate of 75% (6/8), up from the total group mortality of 46% (7/15) and significantly more than the 14% for those who land below that line (1/7, p=0.04).


Discussion. This project used deep RNA sequencing of whole blood from participants in the ICU with COVID-19 as a diagnostic tool. The protocol extracted RNA from the whole blood, as opposed to fractionating the whole blood specimen. Analysis of whole blood increased the breadth of RNA being sequenced, both cell associated and cell-free, and its simplicity for clinical practice. Alternatively, more complicated techniques, such as single cell sequencing may speak more to pathogenesis but adds to the complexity of the protocol and analysis. Despite its isolation from whole blood, the RNA was of high quality. A finding using RNA from whole blood from critically ill participants is that only 62-67% of the reads mapped to the human genome. This is less than the 85-97% of reads that typically map to the reference genome. See Sequencing Quality Control Consortium. Nature Biotechnology, 32, 903-914 (2014). One major drawback is the timing needed for RNA sequencing and analysis. Sequencing machines take ˜eighteen hours to generate data. The analysis can take additional time and is not yet clinically standardized. As technology advances and speed improves, this data can be increasingly accessible in the care of ICU patients.


SARS-CoV-2 RNA was identified in the unmapped reads in all patients (FIG. 1(a)). This supports that detection of SARS-CoV-2 in the serum has been associated with clinical deterioration. Chen et al., Emerging Microbes & Infections, 9, 469-473 (2020). RT-PCR identified the SARS-CoV-2 virus in the blood more often in the ICU patients than in the non-ICU patients. Fang et al., The Journal of Infection (2020). The total number of reads in the dataset did not correlate with any outcomes, including mortality, ARDS, or coagulopathy. The low number of total reads, approximately 700 from nearly two billion from all the samples, explains the lack of success from other researchers identifying the virus in the blood. In early reports. RT-PCR directed at the N protein gene identified viral RNA in the plasma in 15% of patients. Huang et al., Lancet (London, England), 395, 497-506 (2020). The data demonstrate the two most abundant genes in blood were the RNA Dependent RNA Polymerase and the N protein (FIG. 4). With this data, the inventors identified these locations (RNA dependent RNA polymerase or N protein) as potential therapeutic or diagnostic targets. See Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.


Other authors have called for robust testing for potential co-infections with SARS-CoV-2. Lai. Wang. & Hsueh, Journal of Microbiology, Immunology, and Infection, 53, 505-512 (2020). With deep sequencing and computational analysis, the inventors have identified the RNA from multiple bacteria, viruses, and archaea in all of the specimens, as well as fungal RNA in two participants. This suggests deep RNA sequencing with computational analysis may be a tool for the identification of co-infections. More data is required with comparison to gold standards such as blood culture and pathogen-specific PCR. RNA sequencing has the benefit of being able to identify all pathogens with known genomes, including both RNA and DNA based organisms. Unclassified reads that do not align to any known organism (TABLE 2) or the other sequences that have cellular organism elements (TABLE 2) could provide evidence of pathogens before a genome is sequenced or the pathogen is cultured.


Critically ill COVID-19 patients provide a difficult clinical dilemma as it pertains to antibiotics. In severely ill patients, clinicians are more likely to prescribe antibiotics despite there not being an identified pathogen. Feng et al., American Journal of Respiratory and Critical Care Medicine (2020). With identification of bacteria known to cause human disease from the RNA sequencing data, appropriate antibiotics could be prescribed to these patients. In this data set, the inventors show that there were significantly more counts of Acinetobacter baumannii in a portion of patients. This bacterium has been associated with COVID-19. Sharifipour et al., BMC Infectious Diseases, 20, 646 (2020). Using a precision medicine approach with these data, patients with significantly elevated levels may potentially be treated with directed antibiotics, in the absence of more time-consuming positive culture data. While there was no difference in survival in participants with versus without identified bacteria in this study, antibiotic use was not standardized or prescribed prospectively based upon the results. Analysis of the unmapped reads aligning to Acinetobacter baumannii (averaging over 50.000 among the six with increased reads) could provide insights into genes that are expressed in critical illness and provide useful diagnostic and therapeutic targets.


The immune response to SARS-CoV-2 has been the focus of much research since the pandemic started. Poland, Ovsyannikova, & Kennedy, Lancet (London, England) (2020). The successful use of corticosteroids in the critically ill with COVID-19 emphasizes the importance of the immune system in this disease. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. New England Journal of Medicine (2020); Prescott & Rice, JAMA, 324, 1292-1295 (2020). Because a significant proportion of COVID-19 patients do not respond to corticosteroids, there are still calls for a more precise approach. Waterer & Rello, Infectious Diseases and Therapy (2020). PD-1 expression is increased in certain cell populations in patients with COVID-19. Bellesi et al., British Journal of Haematology (2020). But the uses of immune checkpoint inhibitors in cancer patients have been associated with more severe COVID-19. Robilotti et al., Nature Medicine 26: 1218-1223 (2020). Other authors suggest that immune checkpoint inhibitors may be useful in COVID-19. Vivarelli et al., Cancers 12 (2020). The data shows that patients who died had increased expression of PD-L1 and PD-L2 (FIG. E1, CD274 and PDCD1Lg1, TABLE 3). This suggests that immune checkpoint inhibitors targeted against the PD-1 system might be considered in those patients identified to have increased expression of PD-L1 and PD-L2 because of their higher risk of death after ICU admission.


Numerous other immune targets are identified from these genomic changes. N4BP1 is induced by interferon and the interferon response has been implicated in COVID-19. Hadjadj et al., Science (New York, N.Y.), 369, 718-724 (2020); Lei et al., Nature Commun., 11, 3810 (2020). The data supports the role for interferons in COVID-19 as patients who died had 2.5-fold increase in expression of interferon 1 alpha (IFNA1). Clinical features of COVID-19 also correlate with some of the genes identified. OR6C4 is an olfactory gene which the inventors identified has exhibiting a 5 fold increased in expression in patients that died (TABLE 3). This finding suggests that loss of smell may signify milder disease among patients in the ICU. Thrombotic complications are common in COVID-19 patients (9.5%) and patients admitted to the ICU have a higher incidence of venous thromboembolism. Al-Samkari et al., Blood (2020). Patients who died have significant decrease in gene expression and multiple changes in alternative transcription end (TABLE 3) of both NRP1 and NRP2. Both these genes are associated with coagulation. See Rossignol, Gagnon, & Klagsbrun. Genomics 70: 211-222 (2000). The COVID-19 spike protein binds both these receptors. Daly et al., Science (New York, N.Y., 2020). Previous work has shown that there is increased expression in both genes in the lungs of patients with COVID-19 when compared to controls. See Ackermann et al., The New England Journal of Medicine, 383, 120-128 (2020). Here, the decrease NRP1 and NRP2 were seen in ICU patients who died compared to ICU patients who survived.


Many studies have attempted to utilize clinical data to predict mortality in COVID-19. See Tian et al., Journal of Medical Virology (2020);_Zhang et al., Journal of Thrombosis and Haemostasis (JTH), 18, 1324-1329 (2020). Some focus on cytokines. McElvaney et al., EBioMedicine 61, 103026 (2020). For simplicity all these attempt to identify a few variables to predict mortality. Here the inventors utilize over 380,000 variables with PCA to create a figure that improves mortality prediction based upon where the patient is on the graph (FIG. 5, 75% versus 14%). A limitation to this form of analysis is that the PCA cannot identify a specific gene or event most responsible for outcomes; it uses all 380.000 data points. Accurate assessment of prognosis using sequencing technology might be valuable to inform end of life care discussions in the ICU.


Despite the limitations of this single-center study with a small patient number, the inventors were still able to document that deep RNA sequencing and appropriate computational analysis yields valuable insight into the pathogenesis and host response of COVID-19 in critically ill patients. Useful drug targets were identified from SARS-CoV-2 RNA and the host response, including RNA dependent RNA polymerase, the N protein, and the PD-1 immune checkpoint pathway. The presence of pathogen RNA in the blood suggests co-infection should be reconsidered. Most importantly, PCA of the entropy of >380,000 events allowed use to group patients into those likely to die versus those likely to live, and this may be helpful in family discussions with critically ill patients. Translating these results to clinical practice can improve the diagnosis, assessment of prognosis, and therapy of COVID-19.


Example 15
Alternative RNA Splicing and Alternative Transcription Start/End in Acute Respiratory Distress Syndrome

Critically ill patients develop acute respiratory distress syndrome (ARDS) and despite the study of genomics of ARDS, there is little progress. The drop in the cost of sequencing has refocused genetic studies from DNA to RNA sequencing and methods to analyze this data have improved. The objective of this investigation is to utilize RNA sequencing data and analysis to identify useful gene targets in ARDS.


The human cohort generated from the GTEx consortium consisted of 25 deceased patients with ARDS identified by the presence of diffuse alveolar damage (DAD), and 74 deceased patients evaluated to not have DAD. The mouse ARDS cohort included C57BL/6 mice ages 10-12 in a model previously described and compared to controls.


Alternatively spliced RNA arises from co/post-transcriptional events facilitated by the spliceosome, introns are removed to form the mature RNA from which protein isoforms are translated. Alternatively transcribed genes are the product of changes in promoter usage, polyadenylation signals, and RNA polymerase II interactions with DNA which can lead to changes in isoform usage like alternative splicing events. These are identified from the analysis of RNA sequencing data. Significant differentially alternatively transcribed genes and alternative spliced genes were identified and where alternative transcription may have separate roles in DAD/ARDS by regulating different genes to perform distinctive functions.


In this analysis of RNA sequencing data from deceased patients with ARDS identified by the presence of DAD and a clinically relevant mouse model of ARDS, useful genes were identified. Future research is needed using on the mechanism of alternative RNA splicing and alternative transcription start/end seen in ARDS, overlapped with genes previously reported as ARDS related. Of 89 reported ARDS related genes, 38 were confirmed in at least one differential category confirming that the use of humans and mice with DAD/ARDS is appropriate and robust (p=1.25e−14). Eleven previously reported genes were present in all categories. These eleven genes were evaluated for the change in alternative splicing and alternative transcription. GO term enrichment analysis was performed on the 11 overlapping genes, revealing 20 significant biological processes including ontology related to aging, and response to abiotic/environmental stimuli. There are 1639 genes that show overlap in alternative splicing and alternative transcription that were not previously in the literature. These genes were assessed for directionality alternative splicing and alternative transcription and GO terms should provide the foundation for future work in ARDS.


Studying the underlying changes in RNA processing (alternative splicing and alternative transcription start/end) not only expands basic knowledge of pathogenicity, but also provides additional targets for therapeutics. The most enriched GO term from the alternative splicing set, carboxy-terminal domain protein kinase complex (GO: 0032806) refers to phosphorylation of the CTD of RNA polymerase II, which is vital in the regulation of transcription and RNA processing. In addition, RNA polymerase complex binding (GO: 0000993), and transport of the SLBP Independent/Dependent mature mRNA (R-HSA-159227; R-HSA-159230) are among the most enriched. This suggests alternative pre-mRNA splicing plays the dominate role in isoform usage in genes where expressions levels do not change, whereas alternative transcription may regulate isoform usage in genes that are more dynamically expressed during critical illness. Although it is possible the enrichment reflects down regulation through inhibitory genes, these data support the hypothesis that alternative splicing. Although it is possible the enrichment reflects down regulation through inhibitory genes, these data support the hypothesis that alternative splicing and alternative transcription may have separate roles in DAD/ARDS by regulating different genes to perform distinctive functions.


In this analysis of RNA sequencing data from deceased patients with ARDS identified by the presence of DAD and a clinically relevant mouse model of ARDS, useful genes were identified. Future research is needed using on the mechanism of alternative RNA splicing and alternative transcription start/end seen in ARDS.


Example 16
Updated Results

To translate the work described above, where SARS-CoV-2 was identified in the blood of patients using this methodology, the inventors again showed that they do this for other infections, specifically the bacterial infection Escherichia coli.


In a patient with a known Escherichia coli infection the blood of that patient was sequenced to a depth of >100 million reads. Sequencing data was aligned using STAR aligner with standard parameters to the human genome. Unmapped reads were extracted and then aligned to the Escherichia coli genome (Escherichia coli O25b:H4-ST131).


The reads aligned to Escherichia coli in a patients with an Escherichia coli infection. See TABLE 7.









TABLE 7







All E. coli reads









Start
End
Nucleic Acid Sequence





242185
242285
TGACTCTTGAAATCCATAAATTCAAGCGCAGTGCCCAGCCAT




CCCGATACTGCTGCTTTCACCAAATCCTTAGTGCTTCTTTCGT




GTTTTTCTATTGTCATAATGTTATCTCTAAAAAAGAGGTAAGAT




GCGTACTACTTACTCGCCGTT





242285
242185
TGTTATCTCTAAAAAAGAGGTAAGATGCGTACTACTTACTCGC




CGTTATTGGTATTATTCAGAAAAAGTGAGTAAGACTTTGCAGC




AATGTTTTTGATCCTGTTCAAATAAACTAATGGCATCAGCAAC




ATGCTGGAAATCAAACGTATG





1500318
1500404
CGGCCTATCAACGTCGTCGTCTTCAACGTTCCTTCAGGACTC




TCAAGGAGTCAGGGAGAACTCATCTCGGGGCAAGTTTCGTG




CTTAGATGCTTTCAGCACTTATCTCTTCCGCATTTAGCTACCG




GGCAGTGCCATTGGCATGACAACC





1500404
1500318
AGATGCTTTCAGCACTTATCTCTTCCGCATTTAGCTACCGGG




CAGTGCCATTGGCATGACAACCCGAACACCAGTGATGCGTC




CACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCCTCAGTTCT




CCAGCGCCCACGGCAGATAGGGACC 1





501520
1501548
CTTGGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTAC




GATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCA




GGGCATTTGTCGCTTCAGCACCGTAGTGCCTCGTCATCACGC




CTCAGCCTTGATTTTCCGGATTTG





1501548
1501520
TCGGTTTGGGGTACGATTTGATGTTACCTGATGCTTAGAGGC




TTTTCCTGGAAGCAGGGCATTTGTCGCTTCAGCACCGTAGTG




CCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATTTGCCTG




GAAAACCAGCCTACACGCTTAAAC





1501563
1501563
ATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCAG




GGCATTTGTCGCTTCAGCACCGTAGTGCCTCGTCATCACGC




CTCAGCCTTGATTTTCCGGATTTGCCTGGAAAACCAGCCTAC




ACGCTTAAACAGATCGGAAGAGCGT





1501563
1501563
GTGCTCTTCCGATCTATTTGATGTTACCTGATGCTTAGAGGC




TTTTCCTGGAAGCAGGGCATTTGTCGCTTCAGCACCGTAGTG




CCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATTTGCCTG




GAAAACCAGCCTACACGCTTAAAC





1501821
1501900
CACCCTGCCCCGATTAACGTTGGACAGGAACCCTTGGTCTTC




CGGCGAGCGGGCTTTTCACCCGCTTTATCGTTACTTATGTCA




GCATTCGCACTTCTGATACCTCCAGCATACCTCACAGTACAC




GTTCACAGGCTTACAGAACGCTGC





1501900
1501821
TGTCAGCATTCGCACTTCTGATACCTCCAGCATACCTCACAG




TACACCTTCACAGGCTTACAGAACGCTCCCCTACCCAACAAC




ACATAGTGTCGCTGCCGCAGCTTCGGTGCATGGTTTAGCCC




CGTTACATCTTCCGCGCAGGCCGAC





1502166
1502187
GGCGGTCTGGGTTGTTTCCCTCTTCACGACGGACGTTAGCA




CCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATTCGCA




GTTTGCATCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGA




AACAGTGCTCTACCCCCGGAGATGAA





1502166
2227814
GGCGGTCTGGGTTGTTTCCCTCTTCACGACGGACGTTAGCA




CCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATTCGCA




GTTTGCATCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGA




AACAGATCGGAAGAGCACACGTCTGA





1502166
2018481
GGCGGTCTGGGTTGTTTCCCTCTTCACGACGGACGTTAGCA




CCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATTCGCA




GTTTGCATCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGA




AACAGATCGGAAGAGCACACGTCTGA





1502176
2317776
GTTGTTTCCCTCTTCACGACGGACGTTAGCACCCGCCGTGT




GTCTCCCGTGATAACATTCTCCGGTATTCGCAGTTTGCATCG




GGTTGGTAAGTCGGGATGACCCCCTTGCCGAAACAGTGCTC




TACCCCCGGAGATGAATTCACGAGAT





1502187
1502166
CTTCACGACGGACGTTAGCACCCGCCGTGTGTCTCCCGTGA




TAACATTCTCCGGTATTCGCAGTTTGCATCGGGTTGGTAAGT




CGGGATGACCCCCTTGCCGAAACAGTGCTCTACCCCCGGAG




ATGAATTCACGAGGCGCTACCTAAAT





1502487
1502523
CGGGTCTATACCCTGCAACTTAACGCCCAGTTAAGACTCGGT




TTCCCTTCGGCTCCCCTATTCGGTTAACCTTGCTACAGAATAT




AAGTCGCTGACCCATTATACAAAAGGTACGCAGTCACCCCAT




TAAGAGGCTCCCACTGCTTGTAC





1502523
1502487
CTCGGTTTCCCTTCGGCTCCCCTATTCGGTTAACCTTGCTAC




AGAATATAAGTCGCTGACCCATTATACAAAAGGTACGCAGTC




ACCCCATTAAGAGGCTCCCACTGCTTGTACGTACACGGTTTC




AGGTTCTTTTTCACTCCCCTCGCC





1502812
1502812
TTTTTGTGTACGGGGCTGTCACCCTGTATCGCGCGCCTTTCC




AGACGCTTCCACTAACACACACACTGATTCAGGCTCTGGGCT




CCTCCCCGTTCGCTCGCCGCTACTGGGGGAATCTCGGTTGA




TTTCTTAGATCGGAAGAGCACACGT





1502812
1502812
CACGACGCTCTTCCGATCTTTTTTGTGTACGGGC5CTGTCACC




CTGTATCGCGCGCCTTTCCAGACGCTTCCACTAACACACACA




CTGATTCAGGCTCTGGGCTCCTCCCCGTTCGCTCGCCGCTA




CTGGGGGAATCTCGGTTGATTTCTT





1502923
1502923
GGAATCTCGGTTGATTTCTTTTCCTCGGGGTACTTAGATGTTT




CAGTTCCCCCGGTTCGCCTCATTAACCTATGGATTCAGTTAA




TGATAGTGTGTCGAAACACACTGGGTTTCCCCATTCGGAAAT




CGCCGAGATCGGAAGAGCACACG





1502923
1502923
ACGACGCTCTTCCGATCTGGAATCTCGGTTGATTTCTTTTCCT




CGGGGTACTTAGATGTTTCAGTTCCCCCGGTTCGCCTCATTA




ACCTATGGATTCAGTTAATGATAGTGTGTCGAAACACACTGG




GTTTCCCCATTCGGAAATCGCCG





1503664
1503684
CAAGGCCCGGGAACGTATTCACCGTGGCATTCTGATCCACG




ATTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTC




CAATCCGGACTACGACGCACTTTATGAGGTCCGCTTGCTCTC




GCAGATCGGAAGAGCACACGTCTGA





1503664
1503664
CCTACACGACGCTCTTCCGATCTCAAGGCCCGGGAACGTAT




TCACCGTGGCATTCTGATCCACGATTACTAGCGATTCCGACT




TCATGGAGTCGAGTTGCAGACTCCAATCCGGACTACGACGC




ACTTTATGAGGTCCGCTTGCTCTCGC





1503671
CGGGA
GGGGAACGTATTCACCGTGGCATTCTGATCCACGATTACTAG



ACG
CGATTCCGACTTCATGGAGTCGAGTTGCAGACTCCAATCCG




GACTACGACGCACTTTATGAGGTCCGCTTGCTCTCGCAGATC




GGAAGAGCGTCGTGTAGGGAAAGAG





1503812
1503849
CGCCATTGTAGCACGTGTGTAGCCCTGGTCGTAAGGGCCAT




GATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATCACTG




GCAGTCTCCTTTGAGTTCCCGGCCGGACCGCTGGCAACAAA




GGATAAGGGTTGCGCTCGTTGCGGGA





1503849
1503812
CCATGATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATC




ACTGGCAGTCTCCTTTGAGTTCCCGGCCGGACCGCTGGCAA




CAAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAAC




ATTTCACAACACGAGCTGACGACAGC





1503942
1503953
CGGGTTGCGCTCGTTGCGGGACTTAACCCAACATTTCACAAC




ACGAGCTGACGACAGCCATGCAGCACCTGTCTCACGGTTCC




CGAAGGCACATTCTCATCTCTGAAAACTTCCGTGGATGTCAA




GACCAGGTAAGGTTCTTCGCGTTGC





1503953
1503942
GTTGCGGGACTTAACCCAACATTTCACAACACGAGCTGACGA




CAGCCATGCAGCACCTGTCTCACGGTTCCCGAAGGCACATT




CTCATCTCTGAAAACTTCCGTGGATGTCAAGACCAGGTAAGG




TTCTTCGCGTTGCATCGAATTAAAC





1504092
1504092
TTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC




GTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAG




GCGGTCAACTTAATGCGTTAGCTGCGCCACTAAAAGCTCAAG




GCTTCCAACAGATCGGAAGAGCACA





1504092
1504092
GACGCTCTTCCGATCTTTCGAATTAAACCACATGCTCCACCG




CTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAACCTTGC




GGCCGTACTCCCCAGGCGGTCAACTTAATGCGTTAGCTGCG




CCACTAAAAGCTCAAGGCTTCCAAC





1504400
1504439
CTCAAGCTTGCCAGTATCAGATGCAGTTCCCAGGTTGAGCCC




GGGGATTTCACATCTGACTTAACAAACCGCCTGCGTGCGCTT




TACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTA




CCGCGGCTGCTGGCACGGAGTTAG





1504439
1504400
CCCGGGGATTTCACATCTGACTTAACAAACCGCCTGCGTGC




GCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGT




ATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTC




TGCGGGTAACGTCAATGAGCAAAGGT





2018481
1502166
CCTACACGACGCTCTTCCGATCTGGCGGTCTGGGTTGTTTCC




CTCTTCACGACGGACGTTAGCACCCGCCGTGTGTCTCCCGT




GATAACATTCTCCGGTATTCGCAGTTTGCATCGGGTTGGTAA




GTCGGGATGACCCCCTTGCCGAAAC





2227814
1502166
CCTACACGACGCTCTTCCGATCTGGCGGTCTGGGTTGTTTCC




CTCTTCACGACGGACGTTAGCACCCGCCGTGTGTCTCCCGT




GATAACATTCTCCGGTATTCGCAGTTTGCATCGGGTTGGTAA




GTCGGGATGACCCCCTTGCCGAAAC





2260692
2260927
GTCACGCTCAAAGACGCGGGTCATATAGCCTTTCAGCTCTTT




CGCACCCGGGCCGCTGAACTCGATGCCCAGTTGCGGCAGA




CGCCACAGCAGCGGAGCAAGATAGCAATCGACCAGGCTGAA




CTCATCGCTCAGGAAGTACGGCTTCTG





2260927
2260692
GTGTTCATCAGCGTGTACCAGTCTTTTTCGATGGGATGCATG




TACAGACGGCTTTCACCGCGAGCTACCGGGTAAACAGGCAT




CAGTGGCGGATGCGGGAAACGCTCATCCAGATAGTCCATAA




TGATGCGAGATTCCCACAGGGTCAGC





2315078
2315109
GTTGTTTGATGAGCCAACGTCGGCGCTCGATCCTGAGATGG




TGAAAGAGGTGCTGGATACGATGATTGGGCTGGCGCAGTCG




GGTATGACAATGCTGTGTGTAACACATGAGATGGGGTTTGCA




CGAACCGTCGCTGACCGGGTGATTTT





2315109
2315078
CCTGAGATGGTGAAAGAGGTGCTGGATACGATGATTGGGCT




GGCGCAGTCGGGTATGACAATGCTGTGTGTAACACATGAGA




TGGGGTTTGCACGAACCGTCGCTGACCGGGTGATTTTTATG




GATCGTGGGGAGATAGTGGAACAAGCT





2315918
2316004
CGGCCTATCAACGTCGTCGTCTTCAACGTTCCTTCAGGACTC




TCAAGGAGTCAGGGAGAACTCATCTCGGGGCAAGTTTCGTG




CTTAGATGCTTTCAGCACTTATCTCTTCCGCATTTAGCTACCG




GGCAGTGCCATTGGCATGACAACC





2316004
2315918
AGATGCTTTCAGCACTTATCTCTTCCGCATTTAGCTACCGGG




CAGTGCCATTGGCATGACAACCCGAACACCAGTGATGCGTC




CACTCCGGTCCTCTCGTACTAGGAGCAGCCCCCCTCAGTTC




TCCAGCGCCCACGGCAGATAGGGACC





2317120
2317148
CTTGGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTAC




GATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCA




GGGCATTTGTCGCTTCAGCACCGTAGTGCCTCGTCATCACG




CCTCAGCCTTGATTTTCCGGATTTG





2317148
2317120
TCGGTTTGGGGTACGATTTGATGTTACCTGATGCTTAGAGGC




TTTTCCTGGAAGCAGGGCATTTGTCGCTTCAGCACCGTAGTG




CCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATTTGCCTG




GAAAACCAGCCTACACGCTTAAAC





2317163
2317163
ATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCAG




GGCATTTGTCGCTTCAGCACCGTAGTGCCTCGTCATCACGC




CTCAGCCTTGATTTTCCGGATTTGCCTGGAAAACCAGCCTAC




ACGCTTAAACAGATCGGAAGAGCGT





2317163
2317163
GTGCTCTTCCGATCTATTTGATGTTACCTGATGCTTAGAGGC




TTTTCCTGGAAGCAGGGCATTTGTCGCTTCAGCACCGTAGTG




CCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATTTGCCTG




GAAAACCAGCCTACACGCTTAAAC





2317766
2317787
GGCGGTCTGGGTTGTTTCCCTCTTCACGACGGACGTTAGCA




CCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATTCGCA




GTTTGCATCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGA




AACAGTGCTCTACCCCCGGAGATGAA





2317776
1502176
ATCTGTTGTTTCCCTCTTCACGACGGACGTTAGCACCCGCCG




TGTGTCTCCCGTGATAACATTCTCCGGTATTCGCAGTTTGCA




TCGGGTTGGTAAGTCGGGATGACCCCCTTGCCGAAACAGTG




CTCTACCCCCGGAGATGAATTCACG





2317787
2317766
CTTCACGACGGACGTTAGCACCCGCCGTGTGTCTCCCGTGA




TAACATTCTCCGGTATTCGCAGTTTGCATCGGGTTGGTAAGT




CGGGATGACCCCCTTGCCGAAACAGTGCTCTACCCCCGGAG




ATGAATTCACGAGGCGCTACCTAAAT





2318087
2318123
CGGGTCTATACCCTGCAACTTAACGCCCAGTTAAGACTCGGT




TTCCCTTCGGCTCCCCTATTCGGTTAACCTTGCTACAGAATAT




AAGTCGCTGACCCATTATACAAAAGGTACGCAGTCACCCCAT




TAAGAGGCTCCCACTGCTTGTAC





2318123
2318087
GTCGGTTTCCCTTCGGCTCCCCTATTCGGTTAACCTTGCTAC




AGAATATAAGTCGCTGACCCATTATACAAAAGGTACGCAGTC




ACCCCATTAAGAGGCTCCCACTGCTTGTACGTACACGGTTTC




AGGTTCTTTTTCACTCCCCTCGCC





2318412
2318412
TTTTTGTGTACGGGGCTGTCACCCTGTATCGCGCGCCTTTCC




AGACGCTTCCACTAACACACACACTGATTCAGGCTCTGGGCT




CCTCCCCGTTCGCTCGCCGCTACTGGGGGAATCTCGGTTGA




TTTCTTAGATCGGAAGAGCACACGT





2318412
2318412
CACGACGCTCTTCCGATCTTTTTTGTGTACGGGGCTGTCACC




CTGTATCGCGCGCCTTTCCAGACGCTTCCACTAACACACACA




CTGATTCAGGCTCTGGGCTCCTCCCCGTTCGCTCGCCGCTA




CTGGGGGAATCTCGGTTGATTTCTT





2318523
2318523
GGAATCTCGGTTGATTTCTTTTCCTCGGGGTACTTAGATGTTT




CAGTTCCCCCGGTTCGCCTCATTAACCTATGGATTCAGTTAA




TGATAGTGTGTCGAAACACACTGGGTTTCCCCATTCGGAAAT




CGCCGAGATCGGAAGAGCACACG





2318523
2318523
ACGACGCTCTTCCGATCTGGAATCTCGGTTGATTTCTTTTCCT




CGGGGTACTTAGATGTTTCAGTTCCCCCGGTTCGCCTCATTA




ACCTATGGATTCAGTTAATGATAGTGTGTCGAAACACACTGG




GTTTCCCCATTCGGAAATCGCCG





2319355
2319355
CAAGGCCCGGGAACGTATTCACCGTGGCATTCTGATCCACG




ATTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTC




CAATCCGGACTACGACGCACTTTATGAGGTCCGCTTGCTCTC




GCAGATCGGAAGAGCACACGTCTGA





2319355
2319355
CCTACACGACGCTCTTCCGATCTCAAGGCCCGGGAACGTAT




TCACCGTGGCATTCTGATCCACGATTACTAGCGATTCCGACT




TCATGGAGTCGAGTTGCAGACTCCAATCCGGACTACGACGC




ACTTTATGAGGTCCGCTTGCTCTCGC





2319362
1503671
CTGGAGTTCAGACGTGTGCTCTTCCGATCTCGGGAACGTATT




CACCGTGGCATTCTGATCCACGATTACTAGCGATTCCGACTT




CATGGAGTCGAGTTGCAGACTCCAATCCGGACTACGACGCA




CTTTATGAGGTCCGCTTGCTCTCGC





2319503
2319540
CGCCATTGTAGCACGTGTGTAGCCCTGGTCGTAAGGGCCAT




GATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATCACTG




GCAGTCTCCTTTGAGTTCCCGGCCGGACCGCTGGCAACAAA




GGATAAGGGTTGCGCTCGTTGCGGGA





2319540
2319503
CCATGATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATC




ACTGGCAGTCTCCTTTGAGTTCCCGGCCGGACCGCTGGCAA




CAAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAAC




ATTTCACAACACGAGCTGACGACAGC





2319633
2319644
CGGGTTGCGCTCGTTGCGGGACTTAACCCAACATTTCACAAC




ACGAGCTGACGACAGCCATGCAGCACCTGTCTCACGGTTCC




CGAAGGCACATTCTCATCTCTGAAAACTTCCGTGGATGTCAA




GACCAGGTAAGGTTCTTCGCGTTGC





2319644
2319633
GTTGCGGGACTTAACCCAACATTTCACAACACGAGCTGACGA




CAGCCATGCAGCACCTGTGTCACGGTTCCCGAAGGCACATT




CTCATCTCTGAAAACTTCCGTGGATGTCAAGACCAGGTAAGG




TTCTTCGCGTTGCATCGAATTAAAC





2319783
2319783
TTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCC




GTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAG




GCGGTCAACTTAATGCGTTAGCTGCGCCACTAAAAGCTCAAG




GCTTCCAACAGATCGGAAGAGCACA





2319783
2319783
GACGCTCTTCCGATCTTTCGAATTAAACCACATGCTCCACCG




CTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAACCTTGC




GGCCGTACTCCCCAGGCGGTCAACTTAATGCGTTAGCTGCG




GCACTAAAAGCTCAAGGCTTCCAAC





2320091
2320130
CTCAAGCtfGCCAGTATCAGATGCAGTTCCCAGGTTGAGCCC




GGGGATTTCACATCTGACTTAACAAACCGCCTGCGTGCGCTT




TACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTA




CCGCGGCTGCTGGCACGGAGTTAG





2320130
2320091
CCCGGGGATTTCACATCTGACTTAACAAACCGCCTGCGTGC




GCTTTACGCGCAGTAATTCCGATTAACGCTTGCACCCTCCGT




ATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTC




TGCGGGTAACGTCAATGAGCAAAGGT





2320361
2320375
GGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCC




GTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTC




ATCCTCTCAGACCAGCTAGGGATCGTCGCCTAGGTGAGCCA




TTACCCCACCTACTAGCTAATCCCATC





2320375
2320361
GTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGAC




CGTGTCTCAGTTCCAGTGTGGCTGGTCATCCTCTCAGACCAG




CTAGGGATCGTCGCCTAGGTGAGCCATTACCCCACCTACTA




GCTAATCCCATCTGGGCACATCCGAT





2345096
2345096
CGGGGAGATCAGAACAGTGAAGCGCTCTTTGCGTGTCGGCA




GCGGGATCGGACCACGGACCTGCGCACCAGTGCGCTTAGA




AGTCTCGACGATTTCCGCGGTTGCTTGATCGATCAGACGATG




ATCAAACGCTTTAGATCGGAAGAGCAC





2345096
2345096
ACGCTCTTCCGATCTCGGGGAGATCAGAACAGTGAAGCGCT




CTTTGCGTGTCGGCAGCGGGATCGGACCACGGACCTGCGC




ACCAGTGCGCTTAGCAGTCTCGACGATTTCCGCGGTTGCTT




GATCGATCAGACGATGATCAAACGCTTT





2833276
2833282
CCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCAC




ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCA





2833282
2833276
TGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA




CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGCAAGCCTG





2833511
2833550
ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGC




GTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTT




TGTTAAGTCAGATGTGAAATCCCCGGG





2833550
2833511
CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA




CTGCATCTGATACTGGCAAGCTTGAG





2833900
2833900
GTTGGAAGCCTTGAGCTTTTAGTGGCGCAGCTAACGCATTAA




GTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA




ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAAGATCGGAAGAGCGTC





2833900
2833900
TGTGCTCTTCCGATCTGTTGGAAGCCTTGAGCTTTTAGTGGC




GCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCG




CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAA





2833997
2834009
GTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGAC




ATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAAC




CGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGT




GAAATGTTGGGTTAAGTCCCGCAAC





2834009
2833997
GCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAG




TTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAG




GTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCG





2834049
2948544
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





2834049
3077599
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





2834049
3117867
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





2834101
2834138
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC




CGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAG




GTGGGGATGACGTCAAGTCATCATGG





2834138
2834101
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT




CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGA




GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAC




CAGGGCTACACACGTGCTACAATGGCG





2834151
2948646
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGAGTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





2834151
3077701
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





2834151
3117969
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





2834309
2834309
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGA




TTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCC




TTGAGATCGGAAGAGCGTCGTGTAGG





2834309
2834309
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGA




CTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGC




CACGGTGAATACGTTCCCGGGCCTTG





2835045
2835045
CGGCGATTTCCGAATGGGGAAACCCAGTGTGTTTCGACACA




CTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGG




GAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCG




AGATTCCAGATCGGAAGAGCGTCGT





2835045
2835045
CGTGTGCTCTTCCGATCTCGGCGATTTCCGAATGGGGAAAC




CCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTT




AATGAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCG




AGGAAAAGAAATCAACCGAGATTCC





2835157
2835157
AAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACG




GGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGA




AGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGT




ACACAAAAAAGATCGGAAGAGCGTCGTG





2835157
2835157
ACGTGTGCTCTTCCGATCTAAGAAATCAACCGAGATTCCCCC




AGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAAT




CAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGAT




ACAGGGTGACAGCCCCGTACACAAAAA





2835427
2835463
GGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACA




AGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACCTTTTGT




ATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGA




ATAGGGGAGCCGAAGGGAAACCGAG





2835463
2835427
GTACAAGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACC




TTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTA




ACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGG




CGTTAAGTTGCAGGGTATAGACCCG





2835763
2835784
ATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGGGTAGAGC




ACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGAT




GCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACA




CGGCGGGTGCTAACGTCCGTCGTGAAG





2835778
2950271
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





2835778
3079417
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





2835778
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





2835778
2950271
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





2835778
3079417
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





2835778
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





2835784
2835763
TTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCA




TCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGA




ATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTC




GTGAAGAGGGAAACAACCCAGACCGCC





2836402
2836402
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATAGATCGGAAGAGCAC





2836402
2836402
ACGCTCTTCCGATCTGTTTAAGCGTGTAGGCTGGTTTTCCAG




GCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCA




CTACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAG




CCTCTAAGCATCAGGTAACATCAAAT





2836402
2836430
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATCGTACCCCAAACCGA





2836430
2836402
CAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCAC




TACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAGC




CTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACA




CAGGTGGTCAGGTAGAGAATACCAAG





2837546
2837632
GGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGC




TGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGT




GTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAAT




GCGGAAGAGATAAGTGCTGAAAGCATCT





2837632
2837546
GGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGA




AGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCG




AGATGAGTTCTCCCTGACTCCTTGAGAGTCCTGAAGGAACGT




TGAAGACGACGACGTTGATAGGCCG





2947561
2947567
CTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTC




GAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTG




GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAA





2947567
2947561
TTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGG




TAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATA




ACTACTGGAAACGGTAGCTAATACCGC





2947771
2947777
CCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCAC




ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCA





2947777
2947771
TGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA




CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGCAAGCCTG





2948006
2948045
ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGC




GTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTT




TGTTAAGTCAGATGTGAAATCCCCGGG





2948045
2948006
CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA




CTGCATCTGATACTGGCAAGCTTGAG





2948395
2948395
GTTGGAAGCCTTGAGCTTTTAGTGGCGCAGCTAACGCATTAA




GTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA




ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAAGATCGGAAGAGCGTC





2948395
2948395
TGTGCTCTTCCGATCTGTTGGAAGCCTTGAGCTTTTAGTGGC




GCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCG




CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAA





2948482
2948504
GTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGAC




ATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAAC




CGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGT




GAAATGTTGGGTTAAGTCCCGCAAC





2948504
2948492
GCAACGCGAAGAACCTTACCTGGTCTTGAGATCCACGGAAG




TTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAG




GTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCG





2948544
2834049
ACACGCGTAAGAACACTCTTTCCCTACACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





2948544
3077599
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





2948544
3117867
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





2948596
2948633
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC




CGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAG




GTGGGGATGACGTCAAGTCATCATGG





2948633
2948596
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT




CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGA




GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAC




CAGGGCTACACACGTGCTACAATGGCG





2948646
2834151
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAATGGCGCATACAAAG





2948646
3077701
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





2948646
3117969
GCAACCGTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





2948804
2948804
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGA




TTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCC




TTGAGATCGGAAGAGCGTCGTGTAGG





2948804
2948804
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGA




CTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGC




CACGGTGAATACGTTCCCGGGCCTTG





2949540
2949540
CGGCGATTTCCGAATGGGGAAACCCAGTGTGTTTCGACACA




CTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGG




GAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCG




AGATTCCAGATCGGAAGAGCGTCGT





2949540
2949540
CGTGTGCTCTTCCGATCTCGGCGATTTCCGAATGGGGAAAC




CCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTT




AATGAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCG




AGGAAAAGAAATCAACCGAGATTCC





2949652
2949652
AAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACG




GGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGA




AGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGT




ACACAAAAAAGATCGGAAGAGCGTCGTG





2949652
2949652
ACGTGTGCTCTTCCGATCTAAGAAATCAACCGAGATTCCCCC




AGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAAT




CAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGAT




ACAGGGTGACAGCCCCGTACACAAAAA





2949922
2949958
GGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACA




AGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACCTTTTGT




ATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGA




ATAGGGGAGCCGAAGGGAAACCGAG





2949958
2949922
GTACAAGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACC




TTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTA




ACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGG




CGTTAAGTTGCAGGGTATAGACCCG





2950258
2950279
ATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGGGTAGAGC




ACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGAT




GCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACA




CGGCGGGTGCTAACGTCCGTCGTGAAG





2950271
2835778
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCT




ACGTCCGTCGTGAAGAGGGAAACAAC





2950271
2835778
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





2950273
3079417
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





2950273
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





2950273
3079417
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





2950273
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





2950279
2950258
TTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCA




TCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGA




ATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTC




GTGAAGAGGGAAACAACCCAGACCGCC





2950897
2950897
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATAGATCGGAAGAGCAC





2950897
2950897
ACGCTCTTCCGATCTGTTTAAGCGTGTAGGCTGGTTTTCCAG




GCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCA




CTACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAG




CCTCTAAGCATCAGGTAACATCAAAT





2950897
2950925
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATCGTACCCCAAACCGA





2950925
2950897
CAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCAC




TACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAGC




CTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACA




CAGGTGGTCAGGTAGAGAATACCAAG





2952041
2952127
GGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGC




TGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGT




GTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAAT




GCGGAAGAGATAAGTGCTGAAAGCATCT





2952127
2952041
GGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGA




AGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCG




AGATGAGTTCTCCCTGACTCCTTGAGAGTCCTGAAGGAACGT




TGAAGACGACGACGTTGATAGGCCG





3028158
3028470
AGATTTCGTTGCTTTTTCCGTGAGGTGCTCTTTTTTCGCCGC




GAAGGTGCCGGTTGGCTGCGGCGTACATAATCTCGTTGTGC




CACTATCGTTTCGCTGTATTTATTCGTTCGTCAGCCCGCCAT




GTTACTTAAGCGGCGGGCCTTTGAC





3028158
3028470
AGATTTCGTTGCTTTTTCCGTGAGGTGCTCTTTTTTCGCCGC




GAAGGTGCCGGTTGGCTGCGGCGTACATAATCTCGTTGTGC




CACTATCGTTTCGCTGTATTTATTCGTTCGTCAGCCCGCCAT




GTTACTTAAGCGGCGGGCCTTTGAC





3028470
3028158
CGCGATGGTTGTCAGCGGCGGATCACAAAATTGCGTCAGGT




CGATGTTATCAAAACCGATTATGGAAAGGTCTTCCGGGACTT




TCAGCCCCTGGCGTTTTGCCTGAGAAAGTGCGCCGAGCGCC




ATCACATCGCTATGGCAGAAGACAGC





3028470
3028158
CGCGATGGTTGTCAGCGGCGGATCACAAAATTGCGTCAGGT




CGATGTTATCAAAACCGATTATGGAAAGGTCTTCCGGGACTT




TCAGCCCCTGGCGTTTTGCCTGAGAAAGTGCGCCGAGCGCC




ATCACATCGCTATGGCAGAAGACAGC





3076616
3076622
CTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTC




GAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTG




GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAA





3076622
3076616
TTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGG




TAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATA




ACTACTGGAAACGGTAGCTAATACCGC





3076826
3076832
CCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCAC




ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCA





3076832
3076826
TGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA




CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGCAAGCCTG





3077061
3077100
ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCAGCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGC




GTTAATCGGAATTAGTGGGCGTAAAGCGCACGCAGGCGGTT




TGTTAAGTCAGATGTGAAATCCCCGGG





3077100
3077061
CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA




CTGCATCTGATACTGGCAAGCTTGAG





3077547
3077559
GTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGAC




ATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAAC




CGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGT




GAAATGTTGGGTTAAGTCCCGCAAC





3077559
3077547
GCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAG




TTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAG




GTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCG





3077599
3117867
GTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGCAACGAGCGCAAGATCGGAAGAGCACACG




TCTGAACTCCAGTCACAACCTACGATC





3077599
2948544
ACACGCGTAAGAACACTCTTTCCCTACACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





3077599
2834049
ACACGCGTAAGAACACTCTTTCCCTACACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





3077651
3077688
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC




CGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAG




GTGGGGATGACGTCAAGTCATCATGG





3077688
3077651
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT




CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGA




GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAC




CAGGGCTACACACGTGCTACAATGGCG





3077701
3117969
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGGAACT




CAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGAT




GACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAT





3077701
2948646
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAATGGCGCATACAAAG





3077701
2834151
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAA.TGGCGCATACAAAG





3077859
3077859
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGA




TTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCC




TTGAGATCGGAAGAGCGTCGTGTAGG





3077859
3077859
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGA




CTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGC




CACGGTGAATACGTTCCCGGGCCTTG





3078686
3078686
CGGCGATTTCCGAATGGGGAAACCCAGTGTGTTTCGACACA




CTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGG




GAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCG




AGATTCCAGATCGGAAGAGCGTCGT





3078686
3078686
CGTGTGCTCTTCCGATCTCGGCGATTTCCGAATGGGGAAAC




CCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTT




AATGAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCG




AGGAAAAGAAATCAACCGAGATTCC





3078798
3078798
AAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACG




GGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGA




AGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGT




ACACAAAAAAGATCGGAAGAGCGTCGTG





3078798
3078798
ACGTGTGCTCTTCCGATCTAAGAAATCAACCGAGATTCCCCC




AGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAAT




CAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGAT




ACAGGGTGACAGCCCCGTACACAAAAA





3079068
3079104
GGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACA




AGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACCTTTTGT




ATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGA




ATAGGGGAGCCGAAGGGAAACCGAG





3079104
3079068
GTACAAGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACC




TTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTA




ACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGG




CGTTAAGTTGCAGGGTATAGACCCG





3079404
3079425
ATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGGGTAGAGC




ACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGAT




GCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACA




CGGCGGGTGCTAACGTCCGTCGTGAAG





3079417
2950273
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTA




ACGTCCGTCGTGAAGAGGGAAACAAC





3079417
2835778
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTGGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTA




ACGTCCGTCGTGAAGAGGGAAACAAC





3079417
2950273
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





3079417
2835778
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





3079419
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACAGAT





3079419
3119594
CGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGG




GGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATAC




CGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACG




TCCGTCGTGAAGAGGGAAACAACCCAG





3079425
3079404
TTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCA




TCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGA




ATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTC




GTGAAGAGGGAAACAACCCAGACCGCC





3080043
3080043
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATAGATCGGAAGAGCAC





3080043
3080043
ACGCTCTTCCGATCTGTTTAAGCGTGTAGGCTGGTTTTCCAG




GCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCA




CTACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAG




CCTCTAAGCATCAGGTAACATCAAAT





3080043
3080071
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATCGTACCCCAAACCGA





3080071
3080043
CAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCAC




TACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAGC




CTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACA




CAGGTGGTCAGGTAGAGAATACCAAG





3081187
3081273
GGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGC




TGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGT




GTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAAT




GCGGAAGAGATAAGTGCTGAAAGCATCT





3081273
3081187
GGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGA




AGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCG




AGATGAGTTCTCCCTGACTCCTTGAGAGTCCTGAAGGAACGT




TGAAGACGACGACGTTGATAGGCCG





3116884
3116890
CTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTC




GAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTG




GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAA





3116890
3116884
TTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGG




TAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATA




ACTACTGGAAACGGTAGCTAATACCGC





3117094
3117100
CCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCAC




ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCA





3117100
3117094
TGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA




CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGCAAGCCTG





3117329
3117368
ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGC




GTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTT




TGTTAAGTCAGATGTGAAATCCCCGGG





3117368
3117329
CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA




CTGCATCTGATACTGGCAAGCTTGAG





3117718
3117718
GTTGGAAGCCTTGAGCTTTTAGTGGCGCAGCTAACGCATTAA




GTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA




ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAAGATCGGAAGAGCGTC





3117718
3117718
TGTGCTCTTCCGATCTGTTGGAAGCCTTGAGCTTTTAGTGGC




GCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCG




CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAA





3117815
3117827
GTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGAC




ATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAAC




CGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGT




GAAATGTTGGGTTAAGTCCCGCAAC





3117827
3117815
GCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAG




TTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAG




GTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCG





3117867
3077599
ACACGCGTAAGAACACTCTTTCCCTAGACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





3117867
2948544
ACACGCGTAAGAACACTCTTTCCCTACACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





3117867
2834049
ACACGCGTAAGAACACTCTTTCCCTACACGACGCTCTTCCGA




TCTGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGA




CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT




GGGTTAAGTCCCGCAACGAGCGCA





3117919
3117956
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC




CGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAG




GTGGGGATGACGTCAAGTCATCATGG





3117956
3117919
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT




CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGA




GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAC




CAGGGCTACACACGTGCTACAATGGCG





3117969
3077701
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAATGGCGCATACAAAG





3117969
2948646
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAATGGCGCATACAAAG





3117969
2834151
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGCCGGG




AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGG




GGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCTAC




ACACGTGCTACAATGGCGCATACAAAG





3118127
3118127
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGA




TTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCC




TTGAGATCGGAAGAGCGTCGTGTAGG





3118127
3118127
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGA




CTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGC




CACGGTGAATACGTTCCCGGGCCTTG





3118863
3118863
CGGCGATTTCCGAATGGGGAAACCCAGTGTGTTTCGACACA




CTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGG




GAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCG




AGATTCCAGATCGGAAGAGCGTCGT





3118863
3118863
CGTGTGCTCTTCCGATCTCGGCGATTTCCGAATGGGGAAAC




CCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTT




AATGAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCG




AGGAAAAGAAATCAACCGAGATTCC





3118975
3118975
AAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACG




GGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGA




AGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGT




ACACAAAAAAGATCGGAAGAGCGTCGTG





3118975
3118975
ACGTGTGCTCTTCCGATCTAAGAAATCAACCGAGATTCCCCC




AGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAAT




CAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGAT




ACAGGGTGACAGCCCCGTACACAAAAA





3119245
3119281
GGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACA




AGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACCTTTTGT




ATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGA




ATAGGGGAGCCGAAGGGAAACCGAG





3119281
3119245
GTACAAGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACC




TTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTA




ACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGG




CGTTAAGTTGCAGGGTATAGACCCG





3119581
3119602
ATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGGGTAGAGC




ACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGAT




GCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACA




CGGCGGGTGCTAACGTCCGTCGTGAAG





3119594
3079419
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTA




ACGTCCGTCGTGAAGAGGGAAACAAC





3119594
2950273
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTA




ACGTCCGTCGTGAAGAGGGAAACAAC





3119594
2835778
ATCTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCA




AGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAA




TACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTA




ACGTCCGTCGTGAAGAGGGAAACAAC





3119594
3079419
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





3119594
2950273
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





3119594
2835778
CTCGTGAATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAA




GGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAAT




ACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAA




CGTCCGTCGTGAAGAGGGAAACAACCC





3119602
3119581
TTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCA




TCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGA




ATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTC




GTGAAGAGGGAAACAACCCAGACCGCC





3120220
3120220
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATAGATCGGAAGAGCAC





3120220
3120220
ACGCTCTTCCGATCTGTTTAAGCGTGTAGGCTGGTTTTCCAG




GCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCA




CTACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAG




CCTCTAAGCATCAGGTAACATCAAAT





3120220
3120248
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATCGTACCCCAAACCGA





3120248
3120220
CAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCAC




TACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAGC




CTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACA




CAGGTGGTCAGGTAGAGAATACCAAG





3121364
3121450
GGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGC




TGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGT




GTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAAT




GCGGAAGAGATAAGTGCTGAAAGCATCT





3121450
3121364
GGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGA




AGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCG




AGATGAGTTCTCCCTGACTCCTTGAGAGTCCTGAAGGAACGT




TGAAGACGACGACGTTGATAGGCCG





3991338
3991487
CGACGCGTAATGCGTTGGGGATTCTTGGTGGGATCCCGCGC




CGTGAATTTACTCGCGACAGCATCGAAGAGAAAGTCGCTGC




CACCACGCAGGCACAATGGCCGGTTCATGCGGTGATTACCA




ACTCCACCTATGATGGCTTGCTCTACA





3991487
3991338
AACACCGACTGGATCAAACAGACGCTGGATGTCCCGTCGAT




CCACTTCGATTCCGCCTGGGTGCCGTACACCCATTTTCATCC




GATCTACCAGGGGAAAAGTGGTATGAGCGGCGAGCGTGTTG




CGGGAAAAGTGATCTTCGAAACGCAA





4004615
4004621
CTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTC




GAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTG




GCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAA





4004621
4004615
TTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGG




TAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATA




ACTACTGGAAACGGTAGCTAATACCGC





4004825
4004831
CCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCAC




ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCA





4004831
4004825
TGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA




CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGCAAGCCTG





4005060
4005099
ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGC




GTTAATCGGAATTACTGGGCGTAAA.GCGCACGCAGGCGGTT




TGTTAAGTCAGATGTGAAATCCCCGGG





4005099
4005060
CTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA




CTGCATCTGATACTGGCAAGCTTGAG





4005449
4005449
GTTGGAAGCCTTGAGCTTTTAGTGGCGCAGCTAACGCATTAA




GTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA




ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAAGATCGGAAGAGCGTC





4005449
4005449
TGTGCTCTTCCGATCTGTTGGAAGCCTTGAGCTTTTAGTGGC




GCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCG




CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAA





4005598
4005598
GTTfTCAGAGATGAGAATGTGCCTTCGGGAGCCGTGAGACA




GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG




GGTTAAGTCCCGGAACGAGCGGAACGCTTATCCAGATCGGA




AGAGCACACGTCTGAACTCCAGTCACA





4005598
4005598
GAACACTCTTTCCCTACACGACGCTCTTCCGATCTGTTTTCA




GAGATGAGAATGTGCCTTCGGGAGCCGTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGT




CCCGCAACGAGCGCAACCCTTATCC





4005650
4005687
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC




CGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAG




GTGGGGATGACGTCAAGTCATCATGG





4005687
4005650
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT




CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGA




GGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAC




CAGGGCTACACACGTGCTACAATGGCG





4005858
4005858
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGA




TTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCC




TTGAGATCGGAAGAGCGTCGTGTAGG





4005858
4005858
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGA




CTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGC




CACGGTGAATACGTTCCCGGGCCTTG





4006607
4006670
GATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCT




GCGATAAGCGTCGGTGAGGTGATATGAACCGTTATAACCGG




CGATTTCCGAATGGGGAAACCCAGTGTGATTCGTCACACTAT




CATTAACTGAATCCATAGGTTAATGA





4006670
4006607
TATGAACCGTTATAACCGGCGATTTCCGAATGGGGAAACCCA




GTGTGATTCGTCACACTATCATTAACTGAATCCATAGGTTAAT




GAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCGAGG




AAAAGAAATCAACCGAGATTCCCC





4006798
4006798
AAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACG




GGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGA




AGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGT




ACACAAAAAAGATCGGAAGAGCGTCGTG





4006798
4006798
ACGTGTGCTCTTCCGATCTAAGAAATCAACCGAGATTCCCCC




AGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAAT




CAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGAT




ACAGGGTGACAGCCCCGTACACAAAAA





4007068
4007104
GGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACA




AGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACCTTTTGT




ATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGA




ATAGGGGAGCCGAAGGGAAACCGAG





4007104
4007068
GTACAAGCAGTGGGAGCCTCTTAATGGGGTGACTGCGTACC




TTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTA




ACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGG




CGTTAAGTTGCAGGGTATAGACCCG





4007404
4007425
ATTTAGGTAGCGCCTCGTGAATTCATCTCCGGGGGTAGAGC




ACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGAT




GCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACA




CGGCGGGTGCTAACGTCCGTCGTGAAG





4007425
4007404
TTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCA




TCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGA




ATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTC




GTGAAGAGGGAAACAACCCAGACCGCC





4008043
4008043
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATAGATCGGAAGAGCAC





4008043
4008043
ACGCTCTTCCGATCTGTTTAAGCGTGTAGGCTGGTTTTCCAG




GCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCA




CTACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAG




CCTCTAAGCATCAGGTAACATCAAAT





4008043
4008071
GTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAAT




CAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGC




GACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGT




AACATCAAATCGTACCCCAAACCGA





4008071
4008043
CAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCAC




TACGGTGCTGAAGCGACAAATGCCCTGCTTCCAGGAAAAGC




CTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACA




CAGGTGGTCAGGTAGAGAATACCAAG





4009187
4009273
GGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGC




TGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGT




GTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAAT




GCGGAAGAGATAAGTGCTGAAAGCATCT





4009273
4009187
GGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGA




AGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCG




AGATGAGTTCTCCCTGACTCCTTGAGAGTCCTGAAGGAACGT




TGAAGACGACGACGTTGATAGGCCG





4527988
4527990
TTCCCTACACGACGCTCTTCCGATCTCGCCACATGATGATGG




ATTTTGGCTATCTGGAAGAAACATTCGAAGCGGGTAAACGCT




CAGCCAAAATCTCCTTTGTTATTACTGTCGTGCTTTCACTTCT




CGCAGGAGTCCTCGTATGGTAAG





4527990
4527988
CTCCACATGATGATGGATTTTGGCTATCTGGAAGAAACATTC




GAAGAGGGTAAACGATCCGCCAAAATCTCCTTTGTTATTACT




GTCGTGATTTCACTTCTCGCAGGAGTCATCTTATGTTAAGAG




ATCGGAAGAGCACACGTCTGAACT









Next, target genes were identified to create custom PCR primers for identification of the pathogen. See TABLE 8.









TABLE 8





Target genes


















wcaK
Start
End
Nucleic Acid Sequence





A01587:71
2317120
2317148
CTTGGTATTCTCTACCTGACCACCTGTGTCGGTT





TGGGGTACGATTTGATGTTACCTGATGCTTAGAG





GCTTTTCCTGGAAGCAGGGCATTTGTCGCTTCA





GCACCGTAGTGCCTCGICATCACGCCTCAGCCT





TGATTTTCCGGATTTG





A01587:71
2317148
2317120
TCGGTTTGGGGTACGATTTGATGTTACCTGATGC





TTAGAGGCTTTTCCTGGAAGCAGGGCATTTGTC





GCTTCAGCACCGTAGTGCCTCGTCATCACGCCT





CAGCCTTGATTTTCCGGATTTGCCTGGAAAACCA





GCCTACACGCTTAAAC





A01587:71
2317163
2317163
ATTTGATGITACCTGATGCTTAGAGGCTTTTCCT





GGAAGCAGGGCATTTGTCGCTTCAGCACCGTAG





TGCCTCGTCATCACGCCTCAGCCTTGATTTTCCG





GATTTGCCTGGAAAACCAGCCTACACGCTTAAAC





AGATCGGAAGAGCGT





A01587:71
2317163
2317163
GTGCTCTTCCGATCTATTTGATGTTACCTGATGC





TTAGAGGCTTTTCCTGGAAGCAGGGCATTTGTC





GCTTCAGCACCGTAGTGCCTCGTCATCACGCCT





CAGCCTTGATTTTCCGGATTTGCCTGGAAAACCA





GCCTACACGCTTAAAC





wcaJ
Start
End
Nucleic Acid Sequence





A01587:71
2319355
2319355
CAAGGCCCGGGAACGTATTCACCGTGGCATTCT





GATCCACGATTACTAGCGATTCCGACTTCATGGA





GTCGAGTTGCAGACTCCAATCCGGACTACGACG





CACTTTATGAGGTCCGCTTGCTCTCGCAGATCG





GAAGAGCACACGTCTGA





A01587:71
2319355
2319355
CCTACACGACGCTCTTCCGATCTCAAGGCCCGG





GAACGTATTCACCGTGGCATTCTGATCCACGATT





ACTAGCGATTCCGACTTCATGGAGTCGAGTTGC





AGACTCCAATCCGGACTACGACGCACTTTATGA





GGTCCGCTTGCTCTCGC





A01587:71
2319362
1503671
CTGGAGTTCAGACGTGTGCTCTTCCGATCTCGG





GAACGTATTCACCGTGGCATTCTGATCCACGATT





ACTAGCGATTCCGACTTCATGGAGTCGAGTTGC





AGACTCCAATCCGGACTACGACGCACTTTATGA





GGTCCGCTTGCTCTCGC





A01587:71
2319503
2319540
CGCCATTGTAGCACGTGTGTAGCCCTGGTCGTA





AGGGCCATGATGACTTGACGTCATCCCCACCTT





CCTCCAGTTTATCACTGGCAGTCTCCTTTGAGTT





CCCGGCCGGACCGCTGGCAACAAAGGATAAGG





GTTGCGCTCGTTGCGGGA





A01587:71
2319540
2319503
CCATGATGACTTGACGTCATCCCCACCTTCCTCC





AGTTTATCACTGGCAGTCTCCTTTGAGTTCCCGG





CCGGACCGCTGGCAACAAAGGATAAGGGTTGCG





CTCGTTGCGGGACTTAACCCAACATTTCACAACA





CGAGCTGACGACAGC





A01587:71
2319633
2319644
CGGGTTGCGCTCGTTGCGGGACTTAACCCAACA





TTTCACAACACGAGCTGACGACAGCCATGCAGC





ACCTGTCTCACGGTTCCCGAAGGCACATTCTCAT





CTCTGAAAACTTCCGTGGATGTCAAGACCAGGTA





AGGTTCTTCGCGTTGC





A01587:71
2319644
2319633
GTTGCGGGACTTAACCCAACATTTCACAACACGA





GCTGACGACAGCCATGCAGCACCTGTCTCACGG





TTCCCGAAGGCACATTCTCATCTCTGAAAACTTC





CGTGGATGTCAAGACCAGGTAAGGTTCTTCGCG





TTGCATCGAATTAAAC





A01587:71
2319783
2319783
TTCGAATTAAACCACATGCTCCACCGCTTGTGCG





GGCCCCCGTCAATTCATTTGAGTTTTAACCTTGC





GGCCGTACTCCCCAGGCGGTCAACTTAATGCGT





TAGCTGCGCCACTAAAAGCTCAAGGCTTCCAAC





AGATCGGAAGAGCACA





A01587:71
2319783
2319783
GACGCTCTTCCGATCTTTCGAATTAAACCACATG





CTCCACCGCTTGTGCGGGCCCCCGTCAATTCAT





TTGAGTTTTAACCTTGCGGCCGTACTCCCCAGG





CGGTCAACTTAATGCGTTAGCTGCGCCACTAAAA





GCTCAAGGCTTCCAAC





fdx
Star
End
Nucleic Acid Sequence





A01587:71
2833900
2833900
GTTGGAAGCCTTGAGCTTTTAGTGGCGCAGCTA





ACGCATTAAGTTGACCGCCTGGGGAGTACGGCC





GCAAGGTTAAAACTCAAATGAATTGACGGGGGC





CCGCACAAGCGGTGGAGCATGTGGTTTAATTCG





AAAGATCGGAAGAGCGTC





A01687:71
2833900
2833900
TGTGCTCTTCCGATCTGTTGGAAGCCTTGAGCTT





TTAGTGGCGCAGCTAACGCATTAAGTTGACCGC





CTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA





TGAATTGACGGGGGCCCGCACAAGCGGTGGAG





CATGTGGTTTAATTCGAA





A01587:71
2833997
2834009
GTTTAATTCGATGCAACGCGAAGAACCTTACCTG





GTCTTGACATCCACGGAAGTTTTCAGAGATGAGA





ATGTGCCTTCGGGAACCGTGAGACAGGTGCTGC





ATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTG





GGTTAAGTCCCGCAAC





A01587:71
2834009
2833997
GCAACGCGAAGAACCTTACCTGGTCTTGACATC





CACGGAAGTTTTGAGAGATGAGAATGTGCCTTC





GGGAACCGTGAGACAGGTGCTGOATGGCTGTC





GTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCC





CGCAACGAGCGCAACCCG





A01587:71
2834049
2948544
GTTTTGAGAGATGAGAATGTGCCTTCGGGAACC





GTGAGACAGGTGCTGGATGGCTGTCGTCAGCTC





GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG





AGCGCAAGATGGGAAGAGCAGACGTCTGAACTC





CAGTCACAACGTACGATC





A01587:71
2834049
3077599
GTTTTGAGAGATGAGAATGTGCCTTCGGGAACC





GTGAGACAGGTGCTGCATGGCTGTCGTCAGCTC





GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG





AGCGCAAGATCGGAAGAGCACACGTCTGAACTC





CAGTCAGAAGGTACGATC





A01587:71
2834049
3117867
GTTTTCAGAGATGAGAATGTGGGTTCGGGAACC





GTGAGACAGGTGCTGCATGGCTGTCGTCAGCTC





GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG





AGCGCAAGATCGGAAGAGCAGACGTCTGAACTC





CAGTCACAACCTACGATC





A01587:71
2834101
2834138
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTT





AAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT





TGCCAGCGGTCCGGCCGGGAACTCAAAGGAGA





CTGCCAGTGATAAACTGGAGGAAGGTGGGGATG





ACGTCAAGTCATCATGG





A01587:71
2834138
2834101
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGC





CAGCGGTCCGGCCGQGAACTCAAAGGAGACTG





CCAGTGATAAACTGGAGGAAGGTGGGGATGACG





TCAAGTCATCATGGCCCTTACGACCAGGGCTAC





ACACGTGCTACAATGGCG





A01587:71
2834151
2948646
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC





CGGGAACTCAAAGGAGACTGCCAGTGATAAACT





GGAGGAAGGTGGGGATGACGTCAAGTCATCATG





GCCCTTACGACCAGGGCTACACACGTGCTACAA





TGGCGCATACAAAGAGAT





A01587:71
2834151
3077701
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC





CGGGAACTCAAAGGAGACTGCCAGTGATAAACT





GGAGGAAGGTGGGGATGACGTCAAGTCATCATG





GCCCTTACGACCAGGGCTACACACGTGCTACAA





TGGCGCATACAAAGAGAT





A01587:71
2834151
3117969
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC





CGGGAACTCAAAGGAGACTGCCAGTGATAAACT





GGAGGAAGGTGGGGATGACGTCAAGTCATCATG





GCCCTTACGACCAGGGCTACACACGTGCTACAA





TGGCGCATACAAAGAGAT





ygaZ
Start
End
Nucleic Acid Sequence





A01587:71
2948596
2948633
GCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTT





AAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT





TGCCAGCGGTCCGGCCGGGAACTCAAAGGAGA





CTGCCAGTGATAAACTGGAGGAAGGTGGGGATG





ACGTCAAGTCATCATGG





A01587:71
2948633
2948596
TCCCGCAACGAGCGCAACCCTTATCCTTTGTTGC





CAGCGGTCCGGCCGGGAACTCAAAGGAGACTG





CCAGTGATAAACTGGAGGAAGGTGGGGATGACG





TCAAGTCATCATGGCCCTTACGACCAGGGCTAC





ACACGTGCTACAATGGCG





A01587:71
2948646
2834151
ATCTGCAACCCTTATCCTTTGTTGCCAGCGGTCC





GGCCGGGAACTCAAAGGAGACTGCCAGTGATAA





ACTGGAGGAAGGTGGGGATGACGTCAAGTCATC





ATGGCCCTTACGACCAGGGCTACACACGTGCTA





CAATGGCGCATACAAAG





A01587:71
2948646
3077701
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC





CGGGAACTCAAAGGAGACTGCCAGTGATAAACT





GGAGGAAGGTGGGGATGACGTCAAGTCATCATG





GCCCTTACGACCAGGGCTACACACGTGCTACAA





TGGCGCATACAAAGAGAT





A01587:71
2948646
3117969
GCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC





CGGGAACTCAAAGGAGACTGCCAGTGATAAACT





GGAGGAAGGTGGGGATGACGTCAAGTCATCATG





GCCCTTACGACCAGGGCTACACACGTGCTACAA





TGGCGCATACAAAGAGAT





A01587:71
2948804
2948804
GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGT





AGTCCGGATTGGAGTCTGCAACTCGACTCCATG





AAGTCGGAATCGCTAGTAATCGTGGATCAGAAT





GCCACGGTGAATACGTTCCCGGGCCTTGAGATC





GGAAGAGCGTCGTGTACG





A01587:71
2948804
2948804
TCAGACGTGTGCTCTTCCGATCTGCGAGAGCAA





GCGGACCTCATAAAGTGCGTCGTAGTCCGGATT





GGAGTCTGCAACTCGACTCCATGAAGTCGGAAT





CGCTAGTAATCGTGGATCAGAATGCCACGGTGA





ATACGTTCCCGGGCCTTG









REFERENCES

A person of ordinary skill in the biomedical art of can use these patents, patent applications, and scientific references as guidance to predictable results when making and using the invention:


Patent References



  • US20070203082A1 (Tang et al.). RNAi Agents For Anti-SARS Coronavirus Therapy. The invention provides RNA interference (RNAi) agents and delivery methods to inhibit SARS-coronavirus (SARS-CoV) activity or another virus. The invention inhibits viral production of key proteins required for replication, infection, and other functions critical to the virus lifecycle. The invention also disrupts the viral genome RNA directly. The invention provides: sequences of RNAi agent, small interfering RNA (siRNA), that can be chemically synthesized or vector expressed, in vitro transcribed and vector expressed shRNA; siRNA, miRNA and other types of siRNA molecules, having potent antiviral activity in mammalian cells and animals; agents useful for siRNA-mediated gene inhibition in mammalian cells and animal airways and lung tissues: agents useful for efficient delivery of siRNA into the airways of animal model; mechanism of action of SARS-CoV specific siRNA duplexes for inhibition of the viral infection and replication in mammals; target sequences coding for key proteins required for coronavirus replication and infection; target sequences for siRNA-mediated disruption of coronavirus viral RNA genome in coding and non-coding regions; routes and methods of delivery for nucleic acid agents and analogues for mammals; methods and reagents for RNA template-specific RNA based RT-PCR for detection of any portion of the viral RNA genome, for applications of diagnosis and prognosis; and methods for using nucleic acid agents and analogues to treat pulmonary diseases and infections.

  • U.S. Pat. No. 7,129,223B2 (Kung et al.). Inhibition of SARS-associated coronavirus (SCoV) infection and replication by RNA interference. The invention is based upon the inventor's use of gene therapy, such as RNA interference (RNAi) molecules to inhibit coronavirus infection and replication. The invention relates to using small interfering RNA (siRNA) or double-stranded RNA (dsRNA) as therapeutic agents to treat Severe Acute Respiratory Syndrome (SARS) in humans. The invention encompasses RNAi molecules that target different sites of the genome of the hSARS virus and inhibit infection and replication of the hSARS virus. Specifically, the invention encompasses siRNAs that target different sites of the replicase region of the hSARS virus and are useful to treat SARS in humans. The invention also encompasses small hairpin RNA (shRNA) containing plasmids under a promoter's control to treat SARS.

  • CA2523658A1 (Intradigm Corp.). RNAi agents for anti-SARS coronavirus therapy. This patent application is related to US20070203082A1 (Tang et al.) above.

  • US20060258611A1 (Kung et al.). Inhibition of SARS-associated coronavirus (SCoV) infection and replication by RNA interference. This patent application is related to U.S. Pat. No. 7,129,223B2 (Kung et al.) above.



Non-Patent References



  • A comprehensive assessment of RNA-seq accuracy, reproducibility, and information content by the Sequencing Quality Control Consortium. Nature Biotechnology, 32, 903-914 (2014).

  • Ackermann et al., Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. The New England Journal of Medicine, 383, 120-128 (2020).

  • Al-Samkari et al., COVID and coagulation: Bleeding and thrombotic manifestations of SARS-CoV2 infection. Blood (2020).

  • Andrews, A quality control tool for high throughput sequence data. FastQC. In: Editor{circumflex over ( )}Book, A quality control tool for high throughput sequence data. FastQC (2014).

  • Ashburner et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25-29 (2000).

  • Ayala et al., Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. The American Journal of Pathology, 161, 2283-2294 (2002).

  • Beigel et al., Remdesivir for the treatment of Covid-19—Preliminary Report. New England Journal of Medicine (2020).

  • Bellesi et al., Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients. British Journal of Haematology (2020).

  • Benz et al., Circulating microRNAs as biomarkers for sepsis. Int. J. Mol. Sci., 17(1) (Jan. 9, 2016).

  • Biron et al., Biomarkers for Sepsis, What Is and What Might Be? Biomarker Insights, 10(Suppl 4), 7-17 (Sep. 15, 2015).

  • Bloos & Reinhart, Rapid diagnosis of sepsis. Virulence, 5(1), 154-60 (Jan. 1, 2014).

  • Boratyn et al., Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20, 405 (2019).

  • Bouadma et al., Immune Alterations in a Patient with SARS-CoV-2-Related Acute Respiratory Distress Syndrome. Journal of Clinical Immunology, 1-11 (2020).

  • Carithers et al., A novel approach to high-quality postmortem tissue procurement: The GTEx Project. Biopreservation and Biobanking, 13(5), 311-9 (2015).

  • Cass & Xiao X, mountainClimber identifies alternative transcription start and polyadenylation sites in RNA-Seq. Cell Systems. 9(4), 23, 393-400.e6 (October 2019).

  • Chang et al., High-throughput binding analysis determines the binding specificity of ASF/SF2 on alternatively spliced human pre-mRNAs. Combinatorial Chemistry & High Throughput Screening, 13(3), 242-52 (2010).

  • Charles et al., The components of the immune system. Immunobiol. Immune Syst. Health Dis. 5th Ed. (2001).

  • Chen et al., Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerging Microbes & Infections 9: 469-473 (2020).

  • Chikani et al., Racial/ethnic disparities in rates of traumatic injury in Arizona, 2011-2012. Public Health Reports, 131(5), 704-10 (2016).

  • Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nature Medicine (2020)

  • Daly et al., Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science (New York, N.Y., USA) (2020).

  • Dexamethasone in hospitalized patients with Covid-19—Preliminary Report. New England Journal of Medicine (2020).

  • Dobin et al., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England), 29(1), 15-21 (January 2013).

  • Dolin et al., A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms. Shock, 49(4), 364-70 (April 2018).

  • Dong, Du, & Gardner, An interactive web-based dashboard to track COVID-19 in real time. The Lancet, Infectious Diseases (2020).

  • Duggal et al., Innate and adaptive immune dysregulation in critically ill ICU patients. Sci. Rep., 8(1), 1-11 (Jul. 5, 2018).

  • Elias & Dias, Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenvironment, 1(1),131-9 (2008).

  • Fang et al., Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. The Journal of Infection (2020).

  • Feng et al., COVID-19 with different severity: A multi-center study of clinical features. American Journal of Respiratory and Critical Care Medicine (2020).

  • Ferguson et al., The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Medicine, 38, 1573-1582 (2012).

  • Fink & Warren, Strategies to improve drug development for sepsis. Nature Reviews Drug Discovery, 13(10), 741-58 (2014).

  • Fleige & Pfaffl, RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine, 27: 126-139 (2006).

  • Fredericks et al., Alternative RNA splicing and alternative transcription start/end in acute respiratory distress syndrome. Intensive Care Medicine (2020).

  • Fredericks et al., RNA-binding proteins: Splicing factors and disease. Biomolecules, 5(2), 893-909 (2015).

  • Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature (Apr. 30, 2020).

  • Gultyaev et al., P element temperature-specific transposition, a model for possible regulation of mobile elements activity by pre-mRNA secondary structure. TSitologiia i Genetika, 48(6), 40-4 (2014).

  • Hadjadj et al., Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science (New York, N.Y.), 369, 718-724 (2020).

  • Hardwick et al., Getting the entire message: Progress in isoform sequencing. Frontiers in Genetics, 10, 709 (2019).

  • Huang et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 395: 497-606, (2020).

  • Iacobellis et al., Perforated appendicitis, assessment with multidetector computed tomography. Seminars in Ultrasound, CT, and MR, 37(1), 31-6 (2016).

  • Kasim et al., Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia. The Journal of Biological Chemistry, 289(39), 26973-88 (2014).

  • Kujawski et al., Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nature Medicine (2020).

  • Kukurba & Montgomery, RNA sequencing and analysis. Cold Spring Harb. Protoc., 2015(11), 951-69 (Apr. 13, 2015).

  • Lai, Wang, & Hsueh, Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? Journal of Microbiology, Immunology, and Infection=Wei mian yu gan ran za zhi, 53, 505-512 (2020).

  • Lee et al., The importance of standardization on analyzing circulating RNA. Mol. Diagn. Ther., 21(3), 259-68 (June 2017).

  • Lei et al., Activation and evasion of type I interferon responses by SARS-CoV-2. Nature Commun., 11, 3810 (2020).

  • Lemieux et al., A function for the hnRNP A1/A2 proteins in transcription elongation. PloS One, 10(5), e0126654 (2015).

  • Lomas-Neira et al., Blockade of endothelial growth factor, angiopoietin-2, reduces indices of ARDS and mortality in mice resulting from the dual-insults of hemorrhagic shock and sepsis. Shock, 45(2), 157-65 (2016).

  • Mahen et al., mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biology, 8(2), e1000307 (2010).

  • Mangul et al., ROP: Dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol., 19 (Feb. 15, 2018).

  • McElvaney et al., A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine, 61, 103026 (2020).

  • Mi, Muruganujan, Casagrande, & Thomas, Large-scale gene function analysis with the PANTHER classification system. Nature Protocols, 8, 1551-1566 (2013).

  • Monaghan et al. Mechanisms of indirect acute lung injury: A novel role for the coinhibitory receptor, programmed death-1. Annals of Surgery, 255(1), 158-64 (2012).

  • Monaghan et al., Changes in the process of alternative RNA splicing results in soluble B and T lymphocyte attenuator with biological and clinical implications in critical illness. Mol Med., 24(1), 32 (Jun. 18, 2018).

  • Monaghan et al., Novel anti-inflammatory mechanism in critically ill: Soluble programmed cell death receptor-1 (sPD-1). Journal of the American College of Surgeons, 213(3), S54-S5 (2011).

  • Monaghan et al., Programmed death 1 expression as a marker for immune and physiological dysfunction in the critically ill surgical patient. Shock, 38(2), 117-22 (2012).

  • Monaghan et al., Soluble programmed cell death receptor-1 (sPD-1), a potential biomarker with anti-inflammatory properties in human and experimental acute respiratory distress syndrome (ARDS). J. Transl. Med., 14(1), 312 (2016).

  • Pan et al., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40(12), 1413-5 (2008).

  • Poland, Ovsyannikova, & Kennedy, SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet (London, England) (2020).

  • Prescott & Rice. Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic. JAMA, 324, 1292-1295 (2020).

  • Prösch et al., A novel link between stress and human cytomegalovirus (HCMV) infection: Sympathetic hyperactivity stimulates HCMV activation. Virology, 272(2), 357-65 (Jul. 5, 2000).

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).

  • Rhee et al. Increasing trauma deaths in the United States. Annals of Surgery 260, 13 (2014)

  • Rhodes et al., The surviving sepsis campaign bundles and outcome, results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Medicine, 41(9), 1620-8 (2015).

  • Ritchie et al., Entropy measures quantify global splicing disorders in cancer. PLoS Computational Biology, 4(3), e1000011 (2008).

  • Robilotti et al., Determinants of COVID-19 disease severity in patients with cancer. Nature Medicine, 26, 1218-1223 (2020).

  • Rossignol. Gagnon, & Klagsbrun, Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics, 70, 211-222 (2000).

  • SEQC Consortium, A comprehensive assessment of RNA-seq accuracy, reproducibility, and information content by the Sequencing Quality Control Consortium. Nature Biotechnology, 32: 903-914 (2014).

  • Sethuraman, Jeremiah, & Ryo. Interpreting diagnostic tests for SARS-CoV-2. JAMA (2020).

  • Sharifipour et al., Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infectious Diseases, 20: 646. (2020).

  • Singer et al. (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315: 801-810.

  • Sterne-Weiler et al., Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Molecular Cell, 72(1), 187-200.e6 (2018).

  • Swanson et al., What human sperm RNA-Seq tells us about the microbiome. Journal of Assisted Reproduction and Genetics (Feb. 4, 2020). This study was designed to assess the capacity of human sperm RNA-seq data to gauge the diversity of the associated microbiome within the ejaculate. Semen samples were collected, and semen parameters evaluated at time of collection. Sperm RNA was isolated and subjected to RNA-seq. Microbial composition was determined by aligning sequencing reads not mapped to the human genome to the NCBI RefSeq bacterial, viral, and archaeal genomes following RNA-Seq. Analysis of microbial assignments utilized phyloseq and vegan. Microbial composition within each sample was characterized as a function of microbial associated RNAs. Bacteria known to be associated with the male reproductive tract were present at similar levels in all samples representing eleven genera from four phyla with one exception, an outlier. Shannon diversity index (p<0.001) and beta diversity (unweighted UniFrac distances, p=9.99e−4; beta dispersion, p=0.006) indicated the outlier was significantly different from all other samples. The outlier sample exhibited a dramatic increase in Streptococcus. Multiple testing indicated two operational taxonomic units, S. agalactiae and S. dysgalactiae (p=0.009), were present. These results provide a first look at the microbiome as a component of human sperm RNA sequencing that has sufficient sensitivity to identify contamination or potential pathogenic bacterial colonization at least among the known contributors.

  • Tacke et al., Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit. Care Med., 42(5):1096-104 (May 2014).

  • The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47, D330-d338 (2019).

  • The RECOVERY Collaborative Group, Dexamethasone in hospitalized patients with Covid-19—Preliminary report. New England Journal of Medicine (2020).

  • Tian et al., Predictors of mortality in hospitalized COVID-19 patients, A systematic review and meta-analysis. Journal of Medical Virology (2020).

  • Tompkins, Genomics of injury: The Glue Grant experience. The Journal of Trauma and Acute Care Surgery, 78(4), 671-86 (2015).

  • Traylen et al., Virus reactivation: A panoramic view in human infections. Future Virol., 6(4), 451-63 (April 2011).

  • Vijayan et al., Procalcitonin: A promising diagnostic marker for sepsis and antibiotic therapy. J. Intensive Care, Aug. 3, 2017.

  • Vivarelli et al. Cancer management during COVID-19 pandemic: Is immune checkpoint inhibitors-based immunotherapy harmful or beneficial? Cancers 12 (2020).

  • Walton et al., Reactivation of Multiple Viruses in Patients with Sepsis. PLoS One, 9(6), e98819 (Jun. 11, 2014).

  • Wang et al., MicroRNA as biomarkers and diagnostics. J. Cell Physiol., 231(1), 25-30 (2016).

  • Waterer & Rello, Steroids and COVID-19: We need a precision approach, not one size fits all. Infectious Diseases and Therapy (2020).

  • Wickham, ggplot2: Elegant graphics for data analysis. (Springer New York, 2009).

  • Wood, Lu, & Langmead, Improved metagenomic analysis with Kraken 2. Genome Biology 20: 257 (2019).

  • Wu et al., Profiling circulating microRNA expression in experimental sepsis using cecal ligation and puncture. PLoS One, 8(10) (2013).

  • Xiao et al. A genomic storm in critically injured humans. J Exp Med 208, 2581-2590 (2011).

  • Zander & Farver, Pulmonary pathology e-book: A volume in foundations in diagnostic pathology series. (Elsevier Health Sciences, 2016).

  • Zhang et al., D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. Journal of Thrombosis and Haemostasis (JTH), 18, 1324-1329 (2020).



LIST OF EMBODIMENTS

Specific compositions and methods of RNA sequencing to diagnose sepsis have been described. The detailed description in this specification is illustrative and not restrictive or exhaustive. The detailed description is not intended to limit the disclosure to the precise form disclosed. Other equivalents and modifications besides those already described are possible without departing from the inventive concepts described in this specification, as those skilled in the art will recognize. When the specification or claims recite method steps or functions in order, alternative embodiments may perform the tasks in a different order or substantially concurrently. The inventive subject matter is not to be restricted except in the spirit of the disclosure.


When interpreting the disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. This invention is not limited to the particular methodology, protocols, reagents, and the like described in this specification and, as such, can vary in practice. The terminology used in this specification is not intended to limit the scope of the invention, which is defined solely by the claims.


All patents and publications cited throughout this specification are expressly incorporated by reference to disclose and describe the materials and methods that might be used with the technologies described in this specification. The publications discussed are provided solely for their disclosure before the filing date. They should not be construed as an admission that the inventors may not antedate such disclosure under prior invention or for any other reason. If there is an apparent discrepancy between a previous patent or publication and the description provided in this specification, the present specification (including any definitions) and claims shall control. All statements as to the date or representation as to the contents of these documents are based on the information available to the applicants and constitute no admission as to the correctness of the dates or contents of these documents. The dates of publication provided in this specification may differ from the actual publication dates. If there is an apparent discrepancy between a publication date provided in this specification and the actual publication date supplied by the publisher, the actual publication date shall control.


The terms comprise and comprising should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, used, or combined with other elements, components, or steps. The singular terms a, an, and the include plural referents unless context indicates otherwise. Similarly, the word or should cover and unless the context indicates otherwise. The abbreviation e.g., is used to indicate a non-limiting example and is synonymous with the term for example.


When a range of values is provided, each intervening value, to the tenth of the unit of the lower limit, unless the context dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that range of values.


Some embodiments of the technology described can be defined according to the following numbered paragraphs:


1. A method of using unmapped bacterial RNA reads to identify bacteria causing sepsis.


2. A method of using unmapped viral reads to identify sepsis or viral reactivation.


3. A method of using unmapped B/T V(D)J to identify sepsis.


4. A method of using a Principal Component Analysis of RNA splicing entropy to identify sepsis.


5. A method of using RNA lariats to identify sepsis.


6. A method of using a Principal Component Analysis of gene expression, alternative RNA splicing, or alternative transcription start and end to identify sepsis.

Claims
  • 1. A method of treatment of sepsis, comprising the steps of: (a) identifying the sepsis patient to be treated using a diagnostic step, the diagnostic step comprising: (1) obtaining a body sample from the patient;(2) assaying the sample for bacterial RNA reads that identify bacteria causing sepsis; and(3) identifying the bacteria causing sepsis by aligning the RNA reads to a genome of interest; and(b) treating the identified sepsis patient with a treatment for sepsis.
  • 2. A method of treatment of sepsis, comprising the steps of: (a) identifying the sepsis patient to be treated using a diagnostic step, the diagnostic step comprising: (1) obtaining a body sample from the patient;(2) assaying the sample for viral RNA reads that identify bacteria causing sepsis; and(3) identifying the bacteria causing sepsis by aligning the RNA reads to a genome of interest; and(b) treating the identified sepsis patient with a treatment for sepsis.
  • 3. A method of treatment of sepsis, comprising the steps of: (a) identifying the sepsis patient to be treated using a diagnostic step, the diagnostic step comprising: (1) obtaining a body sample from the patient;(2) assaying the sample for RNA reads that identify bacteria causing sepsis using a Principal Component Analysis of RNA splicing entropy to identify sepsis; and(3) identifying the bacteria causing sepsis by aligning the RNA reads to a genome of interest; and(b) treating the identified sepsis patient with a treatment for sepsis.
  • 4. A method of treatment of COVID-19 infection, comprising the steps of: (a) identifying the COVID-19 patient to be treated using a diagnostic step, the diagnostic step comprising: (1) obtaining a body sample from the patient;(2) assaying the sample for RNA reads that identify the patient as having a COVID-19 infection; and(3) identifying the patient as having a COVID-19 infection by aligning the RNA reads to a genome of interest; and(b) treating the identified COVID-19 patient with a treatment for COVID-19 infection.
  • 5. A method of treatment of acute respiratory distress syndrome (ARDS), comprising the steps of: (a) identifying the ARDS patient to be treated using a diagnostic step, the diagnostic step comprising: (1) obtaining a body sample from the patient;(2) assaying the sample for bacterial RNA reads that identify the patient as having ARDS; and(3) identifying the patient as having ARDS by aligning the RNA reads to a genome of interest; and(b) treating the identified ARDS patient with a treatment for ARDS.
REFERENCE TO RELATED APPLICATIONS

This patent matter claims priority under 35 U.S.C. § 119(e), to U.S. Ser. No. 63/176,531, filed Apr. 19, 2021, and 63/184,583, filed May 5, 2021, the contents of both of which are incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under P20 GM103652, T32 HL134625, R35 GM142638, P20 GM121344 awarded by National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (2)
Number Date Country
63176531 Apr 2021 US
63184583 May 2021 US