RNAS FROM PATHOGENS INHIBIT PLANT IMMUNITY

Information

  • Patent Application
  • 20190078116
  • Publication Number
    20190078116
  • Date Filed
    September 24, 2018
    5 years ago
  • Date Published
    March 14, 2019
    5 years ago
Abstract
Provided are pathogen-resistant plants comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is complementary to, or mediates destruction, of a plant immunity suppressing sRNA of a pathogen, wherein the plant is less susceptible to the pathogen compared to a control plant lacking the expression cassette. Methods of making and cultivating pathogen-resistant plants are also provided.
Description
REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED AS AN ASCII TEXT FILE

The Sequence Listing named “081906-1099170-214920US_SEQ.txt”, created on Sep. 24, 2018, 224,616 bytes, machine format IBM-PC, MS-Windows operating system, is hereby incorporated by reference in its entirety for all purposes.


BACKGROUND OF THE INVENTION


Botrytis cinerea is a fungal pathogen that infects almost all vegetable and fruit crops and annually causes $10-100 billion losses worldwide. With its broad host range, B. cinerea is a useful model for studying the pathogenicity of aggressive fungal pathogens. Many pathogens of plants and animals deliver effectors into host cells to suppress host immunity (H. Ashida et al., Curr. Opin. Microbiol. 14, 16 (2011); M. Rafiqi et al., Curr. Opin. Plant Biol. 15, 477 (2012); T. O. Bozkurt et al., Curr. Opin. Plant Biol. 15, 483 (2012); H. Hilbi, et al., Traffic 13, 1187 (2012)).


sRNAs induce gene silencing by binding to Argonaute (AGO) proteins and directing the RNA-induced silencing complex (RISC) to genes with complementary sequences. sRNAs from both plant and animal hosts have been recognized as regulators in host-microbial interaction (5-8). Although sRNAs are also present in various fungi and oomycetes, including many pathogens (9-14), it has not been clear whether they regulate host-pathogen interaction.


BRIEF SUMMARY OF THE INVENTION

The present application provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is complementary to, or mediates destruction, of a plant immunity suppressing sRNA of a pathogen, wherein the plant is less susceptible to the pathogen compared to a control plant lacking the expression cassette.


In some embodiments, the polynucleotide encodes a short tandem target mimic (STTM) of the sRNA. In some embodiments, the STTM is engineered from primers (a forward primer and a reverse primer) listed in Table 2. In some embodiments, the polynucleotide encodes an antisense nucleic acid that is complementary to the sRNA.


The present application also provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is an sRNA-resistant target that encodes a protein that functions in plant immunity, wherein the promoter is heterologous to the polynucleotide. In some embodiments, a plant into which the expression cassette has been introduced has enhanced pathogen resistance compared to a control plant lacking the expression cassette.


In some embodiments, the polynucleotide is substantially (e.g., at least 60, 70, 75, 80, 85, 90, or 95%) identical to any of SEQ ID NOS:4-13. In some embodiments, the polynucleotide is an sRNA-resistant target encoding mitogen activated protein kinase 1 (MPK1), mitogen activated protein kinase 2 (MPK2), peroxiredoxin (PRXIIF), cell-wall associated kinase (WAK), or tomato mitogen activated protein kinase kinase kinase 4 (MAPKKK4). In some embodiments, the polynucleotide is an sRNA-resistant target of a gene listed in FIG. 1, Table 1, or Table 3. In some embodiments, the polynucleotide is resistant to gene silencing by an sRNA listed in Table 1. In some embodiments, the polynucleotide is resistant to gene silencing by Bc-siR3.1, Bc-siR3.2, or Bc-siR5.


In some embodiments, the sRNA comprises a sequence listed in Table 1. In some embodiments, the sRNA comprises the sequence of Bc-siR3.1, Bc-siR3.2, or Bc-siR5.


In some embodiments, the pathogen is Botrytis. In some embodiments, the pathogen is Botrytis cinera.


In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is induced upon infection by Botrytis. In some embodiments, the promoter is substantially (e.g., at least 60, 70, 75, 80, 85, 90, or 95%) identical to Arabidopsis BIK1 (SEQ ID NO:1), Arabidopsis PDF1.2 (SEQ ID NO:2), or tomato TPK1b (SEQ ID NO:3). In some embodiments, the promoter is stress-inducible. In some embodiments, the promoter is tissue-specific. In some embodiments, the promoter is specifically expressed in the epidermis. In some embodiments, the promoter is substantially (e.g., at least 60, 70, 75, 80, 85, 90, or 95%) identical to Arabidopsis ML1 (SEQ ID NO:14) or tomato ML1 (SEQ ID NO:15).


In another aspect, the present invention provides for expression cassettes comprising: a promoter operably linked to a polynucleotide that is complementary to, or mediates destruction, of a plant immunity suppressing sRNA of a pathogen, wherein the plant is less susceptible to the pathogen compared to a control plant lacking the expression cassette; or comprising a promoter operably linked a polynucleotide that is an sRNA-resistant target that encodes a protein that functions in plant immunity, wherein the promoter is heterologous to the polynucleotide. Isolated nucleic acids comprising said expression cassettes are also provided.


In still another aspect, the present invention provides for expression vectors comprising an expression cassette as described herein.


In another aspect, methods of making a pathogen-resistant plant are provided. In some embodiments, the method comprises:

    • introducing the nucleic acid comprising an expression cassette as described herein into a plurality of plants; and
    • selecting a plant comprising the expression cassette


In yet another aspect, methods of cultivating a plurality of pathogen-resistant plants are provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1G. Bc-sRNAs silence host target genes in both Arabidopsis and S. lycopersicum during B. cinerea infection. (A) Bc-siR3.1, Bc-siR3.2, and Bc-siR5 were expressed during infection of Arabidopsis as detected at 18, 24, 48, and 72 hpi and, (B) S. lycopersicum leaves at 18, 24, 32, 48 hpi by RT-PCR. Actin genes of B. cinerea, and Arabidopsis and S. lycopersicum were used as internal controls. Similar results were obtained from three biological replicates. (C) The Arabidopsis targets of Bc-siRNAs were suppressed at 24, 32, and 48 hpi of B. cinerea infection. PDF1.2, BIK1 and β-tubulin were used as controls. (D) The S. lycopersicum target gene MAPKKK4 was suppressed upon B. cinerea infection. Expression (C and D) was measured by quantitative RT (qRT)-PCR using actin as an internal control. Error bars indicate standard deviation of three technical replicates. Similar results were seen in three biological replicates. (E) Co-expression of Bc-siR3.2 or Bc-siR5 with their host targets (HA-tagged) in N. benthamiana revealed target silencing by Western blot analysis. Co-expression of AtmiR395 or target site-mutated versions of target genes was used as controls. (F) Expression of YFP-MPK2 or its synonymously mutated version (YFP-MPK2-m) after infection of B. cinerea was observed by confocal microscopy. Co-expression of YFP-MPK2 and Bc-siR3.2 was used as a control. (G) Expression of the YFP sensors carrying a Bc-siR3.2 target site of MPK2 or a Bc-siR3.2 target site-m was analyzed after infection of B. cinerea. Samples were examined at 24 hpi. Upper panel: YFP; bottom panel: YFP/bright field overlay; scale bars (F, G), 37.5 μm. Error bars indicate standard deviation of 20 images (F, G). The asterisk indicates significant difference (two-tail t-test; p<0.01). Similar results were obtained in three biological replicates in E-G.



FIGS. 2A-2F. Bc-sRNAs trigger silencing of host targets that are involved in host immunity. (A) Expression of Bc-siR3.1, BcsiR3.2, or Bc-siR5 in transgenic Arabidopsis ectopically expressing Bc-siRNAs under the Cauliflower Mosaic Virus promoter 35S (Bc-sRNAox) was examined by Northern blot analysis. Highly expressed lines were selected for the following experiments. (B) Bc-sRNAox lines showed constitutive silencing of respective Bc-siRNA target genes measured by qRT-PCR. Two independent lines for each Bc-sRNAs were examined. Similar results were observed in two generations of the selected transgenic lines. (C) Bc-sRNAox plants exhibited enhanced disease susceptibility to B. cinerea compared to the wild type. (D) Loss-of-function mutants of Bc-siR3.2 and Bc-siR5 targets mpk1 mpk2 and wak displayed enhanced disease susceptibility. In all pathogen assays (C and D), lesion sizes were measured at 96 hpi. Error bars indicate the standard deviation of 20 leaves. (E) Biomass of B. cinerea was measured by qPCR at 96 hpi. Error bars indicate standard deviation of three technical replicates. For C, D and E, similar results were obtained from three biological repeats. (F) Virus-induced gene silencing (VIGS) of MAPKKK4 exhibited enhanced disease susceptibility to B. cinerea in S. lycopersicum (examined at 72 hpi) compared to control plants (TRV-RB). RB is a late-blight resistance gene that is not present in tomato. We chose to use a TRV vector with a fragment from a foreign gene as a control to eliminate the potential side effect of viral disease symptoms caused by TRV empty vector. Spray inoculation was used because silencing sectors are not uniform within the VIGS plants. Three sets of experiments with each of 6-10 plants for each construct were performed, and similar results were obtained. The asterisk indicates significant difference (two-tail t-test, p<0.01) in C-F.



FIGS. 3A-3D. Bc-sRNAs hijack Arabidopsis AGO1 to suppress host immunity genes. (A) Loading of Bc-siR3.1, Bc-siR3.2 and Bc-siR5 into Arabidopsis AGO1 during infection was detected by AGO1-IP followed by RT-PCR. AGO1 from B. cinerea-infected leaves harvested at 24, 32 and 48 hpi was pulled down by AGO1 peptide antibody, and RNA was extracted from the AGO1-IP fraction. As a control, non-infected leaves mixed with B. cinerea mycelium (at least twice as much as that in B. cinerea-infected leaves at 48 hpi) were used to rule out any binding between AGO1 and Bc-sRNAs during the experimental procedures. Similar results were obtained from at least three biological repeats. (B) Arabidopsis ago1-27 exhibited reduced disease susceptibility to B. cinerea compared to the wild type. Lesion size of at least 20 leaves and fungal biomass were measured at 96 hpi. (C) Silencing of MPK2, MPK1, PRXIIF, and WAK during B. cinerea infection was abolished in ago1-27. (D) Arabidopsis dcl1-7 exhibited enhanced disease susceptibility to B. cinerea compared to the wild type. Similar results were obtained from three biological repeats (B-D). The asterisk indicates significant difference (two-tail t-test, p<0.01) in B, D.



FIGS. 4A-4G. B. cinerea dcl1 dcl2 double mutant is compromised in virulence. (A) B. cinerea dcl1 dcl2 double mutant, but not dcl1 or dcl2 single mutants were impaired in generating Bc-siR3.1, Bc-siR3.2, and Bc-siR5 as revealed by RT-PCR. B. cinerea dcl1 dcl2 double mutant, but not dcl1 or dcl2 single mutants, produced much weaker disease symptoms than the wild type in Arabidopsis (B) and S. lycopersicum (C), as demonstrated by the lesion size measured of 20 leaves at 96 hpi and 48 hpi, respectively. Similar results were obtained from three biological repeats. (D) Expression of the sensor YFP-Bc-siR3.2 target site was silenced by wild type B. cinerea upon infection, but not by the dcl1 dcl2 mutant at 24 hpi (scale bar: 75 μm). Error bars indicate standard deviation of 20 images. Experiments were repeated two times with similar results. (E) B. cinerea dcl1 dcl2 mutant was compromised in suppression of MPK2, MPK1, PRXIIF in Arabidopsis, and MAPKKK4 in S. lycopersicum. Similar results were seen in two biological repeats. (F) Arabidopsis Bc-siR3.1ox and Bc-siR3.2ox lines were more susceptible to B. cinerea dcl1 dcl2 strain than Col-0 wild type. (G) Enhanced disease phenotype of dcl1 dcl2 infection was also observed on three TRV-MAPKKK4 silenced S. lycopersicum plants. Experiments in F and G were repeated three times with similar results. B. cinerea biomass was quantified at 96 hpi. The asterisk (in B, C, D, F, G) indicates significant difference (two-tail t-test; p<0.01).



FIG. 5. Genomic map and read distribution of Bc-SIR3 and Bc-SIR5 loci. The genomic regions of 60 nt up- and downstream of the Bc-sRNA of interest were included. Sequence reads of Bc-siR3 and Bc-siR5 in B. cinerea-infected Arabidopsis (0, 24, 48, 72 hpi), B. cinerea-infected S. lycopersicum (leaf/fruit 0, 24, 72 hpi), or in vitro culture B. cinerea sRNA libraries (conidiospores, mycelia, total biomass) (see, FIG. 15) are shown in three individual panels. Bc-siR3 and Bc-siR5 reads are in red. In vitro culture B. cinerea sRNA libraries did not show a clear peak for Bc-siR3.1 or Bc-siR3.2 compared to B. cinerea-infected Arabidopsis and S. lycopersicum libraries, indicating that those Bc-siRNAs were induced during infection. Similarly, Bc-SIR5 showed induction upon infection.



FIGS. 6A-6C. (A) Target site and target site mutated versions of Bc-siRNA Arabidopsis target genes that were used in this study (SEQ ID NOS:16, 17-19, 17 and 20-23, respectively). (B) B. cinerea mycelium coincided with target gene suppression of YFP-MPK2 (center), but not YFP-MPK2-m (right) in N. benthamiana at 24 hpi; YFP-MPK2 without fungal infection was used as a control (left). Upper panel: YFP; bottom panel: YFP/bright field overlay; scale bar: 50 μm. (C) A schematic diagram of the YFP sensor carrying a Bc-siR3.2 target site.



FIGS. 7A-7B. Isolation and characterization of Bc-siRNA target mutants and Bc-siRNAox lines. (A) Isolation of a loss-of function mutant line for WAK gene (At5g50290). Expression of WAK was completely knocked out in the T-DNA insertion line shown by RT-PCR. (B) Induction of BIK1 expression in response to B. cinerea infection was reduced in Bc-siR3.1ox and Bc-iR3.2ox lines, mpk1 mpk2, and wak mutant lines. Relative transcript levels of BIK1 were measured by real time RT-PCR. Error bars indicate standard deviation (SD) of three technical replicates. Similar results were obtained from two biological repeats.



FIGS. 8A-8B. S. lycopersicum MAPKKK4 gene knockdown by TRV-induced gene silencing. (A) Expression of MAPKKK in S. lycopersicum TRV-MAPKKK4 silenced plants was measured by qRT-PCR using actin as an internal control. Error bars indicate SD of three technical replicates. Similar results were obtained from three biological repeats. (B) TRV-MAPKKK4 silenced plants exhibited a dwarf phenotype as compared with control plants (TRV-RB).



FIG. 9. Bc-siR3.1 and Bc-siR5 were specifically loaded into Arabidopsis AGO1 during infection, but not into AGO2 or AGO4, as revealed by AGO-IP followed by RT-PCR. Endogenous plant sRNAs were used as internal controls for IP: At-miR398a for AGO1, At-miR393b* for AGO2, and At-siR1003 for AGO4.



FIG. 10. The sRNAs that have no predicted plant targets (Bc-siR394, Bc-siR233, Bc-siR269) or have predicted targets that were not down-regulated (Bc-siR9, Bc-siR24, Bc-siR67) by B. cinerea infection are not present in the AGO-associated fractions.



FIGS. 11A-11B. Arabidopsis ago1-27 is more resistant to B. cinerea infection than wild-type. (A) ago1-27 displayed reduced disease phenotype upon B. cinerea infection. (B) Induction of BIK1 in response to B. cinerea infection was increased in ago1-27.



FIG. 12. The phylogenetic tree of DCL proteins in pathogenic fungi. Schizosaccharomyces pombe and Neurospora crassa were used as references. An oomycete pathogen Phytophthora infestans was also included.



FIGS. 13A-13D. Generation of B. cinerea dcl1, dcl2 single mutants and the dcl1 dcl2 double mutant by homologous recombination. (A) Schematic diagram of Bc-DCL1 and Bc-DCL2 knockout strategy by homologous recombination. Black arrows indicate primers used for genotyping. (B) The dcl1, dcl2, and dcl1 dcl2 knockout strains were confirmed by RT-PCR. (C) B. cinerea dcl1, dcl2, and dcl1 dcl2 mutant strains showed gradual growth retardation and delayed development of conidiospores: upper panel shows radial growth after 3 days, bottom panel shows condition at 21 days. (D) Two Bc-sRNAs, Bc-microRNA-like RNA2 (Bc-milR2) and Bc-siR1498, were identified as Dicer-independent and were expressed in dcl1 dcl2.



FIGS. 14A-14B. The biomass of the B. cinerea dcl1 dcl2 mutant strain was strongly reduced as compared with the wild-type strain during infection of both Arabidopsis (A) and S. lycopersicum (B), as quantified by qPCR at 72 hpi and 48 hpi, respectively.



FIG. 15. Statistical analysis of the sRNA libraries from cultured B. cinerea, B. cinerea-infected Arabidopsis, and B. cinerea-infected S. lycopersicum.



FIG. 16. The predicted host targets of sRNAs Bc-siR3.1, Bc-siR3.2, and Bc-siR5 (SEQ ID NOS:24, 25, 24, 26, 24, 27-31, 30, 32, 30, 33, 30, 34, 30, 35-37, 36, 38, 36, 39, 36, 40, 36, 41, 36 and 42, respectively). Normalized read counts are given in reads per million B. cinerea sRNAs. Reads were summed from individual sRNA libraries for each category: cultured B. cinerea, B. cinerea-infected Arabidopsis, B. cinerea-infected S. lycopersicum. Target gene alignment was scored as described in Materials and Methods.





DEFINITIONS

The term “pathogen-resistant” or “pathogen resistance” refers to an increase in the ability of a plant to prevent or resist pathogen infection or pathogen-induced symptoms. Pathogen resistance can be increased resistance relative to a particular pathogen species or genus (e.g., Botrytis), increased resistance to multiple pathogens, or increased resistance to all pathogens (e.g., systemic acquired resistance).


“Pathogens” include, but are not limited to, viruses, bacteria, nematodes, fungi or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif. (1988)). In some embodiments, the pathogen is a fungal pathogen. In some embodiments, the pathogen is Botrytis.


The term “plant immunity suppressing sRNA” refers to an sRNA that induces gene silencing in a plant of one or more genes that function or are predicted to function in plant immunity. For example, in some embodiments a plant immunity suppressing sRNA is an sRNA that induces gene silencing of a mitogen-activated protein kinase (e.g., MPK1, MPK2, or MAPKKK4), an oxidative stress-related gene (e.g., periredoxin (PRXIIF), or a cell wall-associated kinase (WAK). Exemplary plant immunity suppressing sRNAs are listed, for example, in FIG. 16 and Table 1.


The term “sRNA” refers to “small RNA,” a short non-coding RNA sequence. In some embodiments, an sRNA sequence comprises less than about 250 nucleotides (e.g., less than 250 nucleotides, less than 200 nucleotides, less than 150 nucleotides, less than 100 nucleotides, or less than 50 nucleotides). In some embodiments, an sRNA sequence comprises about 50-250 nucleotides, about 15-250 nucleotides, about 20-200 nucleotides, about 50-200 nucleotides, about 20-100 nucleotides, about 20-50 nucleotides, or about 20-30 nucleotides. In some embodiments, a sRNA sequence induces gene silencing, e.g., in a host plant. For example, in some embodiments a sRNA sequence induces gene silencing by directing a host's (e.g., host plant's) RNA-induced silencing complex (RISC) to genes with complementary sequences (“target genes”).


The term “sRNA-resistant target,” as used with reference to a polynucleotide sequence, refers to a polynucleotide sequence having a synonymous mutation relative to a sRNA target gene, wherein the polynucleotide sequence of the sRNA-resistant target comprises one or more nucleotide mutations relative to the polynucleotide sequence of the sRNA target gene that decreases the ability of the sRNA (e.g., a pathogen sRNA) to induce gene silencing of the sRNA-resistant target gene and wherein the amino acid sequence (e.g., protein sequence) that is encoded by the polynucleotide sequence of the sRNA-resistant target is identical to the amino acid sequence that is encoded by the polynucleotide sequence of the sRNA target gene. In some embodiments, the polynucleotide sequence of the sRNA-resistant target comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotide mutations relative to the polynucleotide sequence of the sRNA target gene.


The term “nucleic acid” or “polynucleotide” refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5′ to the 3′ end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase and do not significantly alter expression of a polypeptide encoded by that nucleic acid.


The phrase “nucleic acid encoding” or “polynucleotide encoding” refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell.


Two nucleic acid sequences or polypeptides are said to be “identical” if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. “Percentage of sequence identity” is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).


The term “substantial identity” or “substantially identical,” as used in the context of polynucleotide or polypeptide sequences, refers to a sequence that has at least 60% sequence identity to a reference sequence. Alternatively, percent identity can be any integer from 60% to 100%. Exemplary embodiments include at least: 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, as compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.


For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.


A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Add. APL. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection.


Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).


The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10−5, and most preferably less than about 10−20.


The term “complementary to” is used herein to mean that a polynucleotide sequence is complementary to all or a portion of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is complementary to at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, or more contiguous nucleotides of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is “substantially complementary” to a reference polynucleotide sequence if at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the polynucleotide sequence is complementary to the reference polynucleotide sequence.


A polynucleotide sequence is “heterologous” to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a promoter is said to be operably linked to a heterologous coding sequence, it means that the coding sequence is derived from one species whereas the promoter sequence is derived another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).


An “expression cassette” refers to a nucleic acid construct, which when introduced into a host cell, results in transcription and/or translation of a RNA or polypeptide, respectively. Antisense constructs or sense constructs that are not or cannot be translated are expressly included by this definition. One of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only substantially similar to a sequence of the gene from which it was derived.


The term “promoter,” as used herein, refers to a polynucleotide sequence capable of driving transcription of a coding sequence in a cell. Thus, promoters used in the polynucleotide constructs of the invention include cis-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5′ and 3′ untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. A “constitutive promoter” is one that is capable of initiating transcription in nearly all tissue types, whereas a “tissue-specific promoter” initiates transcription only in one or a few particular tissue types. An “inducible promoter” is one that initiates transcription only under particular environmental conditions or developmental conditions.


The term “plant” includes whole plants, shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, plant tissue (e.g., vascular tissue, ground tissue, and the like), cells (e.g., guard cells, egg cells, trichomes and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants of a variety of ploidy levels, including aneuploid, polyploid, diploid, haploid, and hemizygous.


DETAILED DESCRIPTION OF THE INVENTION
I. Introduction

As described in the Examples section below, it has been surprisingly discovered that small RNAs (sRNAs) from a plant pathogen can suppress genes involved in plant immunity. Without being bound to a particular theory, it is believed that the pathogen sRNAs suppress immunity in a host plant by using the host plant's own gene silencing mechanisms to suppress genes that function in plant immunity.


Thus, one aspect of the present invention relates to enhancing a plant's pathogen resistance by blocking, attenuating, or targeting for destruction the pathogen sRNAs. In some embodiments, a pathogen sRNA is blocked, attenuated, or targeted for destruction using a complementary polynucleotide sequence (e.g., an antisense nucleic acid sequence that is complementary or substantially complementary to the sRNA) or using a short tandem target mimic (STTM) targeting the sRNA. In some embodiments, the complementary polynucleotide sequence or STTM that targets the pathogen sRNA is expressed in a plant (e.g., in an expression cassette operably linked to a promoter), wherein the plant is less susceptible to the pathogen as compared to a control plant in which complementary polynucleotide sequence or STTM is not expressed.


In another aspect, the present invention relates to enhancing a plant's pathogen resistance by expressing sRNA-resistant target genes involved in plant immunity in plants to overcome the effect of the pathogen sRNAs. In some embodiments, the sRNA-resistant target genes are expressed under the control of a promoter (e.g., a pathogen-inducible promoter, a stress-inducible promoter, or a tissue-specific promoter).


II. Pathogen sRNAs and Attenuation of Pathogen sRNAs

In one aspect, methods of blocking or attenuating plant immunity-suppressing sRNAs of pathogens are provided. In some embodiments, the method comprises expressing in a plant a polynucleotide that is complementary or substantially complementary to the pathogen sRNA or that mediates destruction of the pathogen sRNA. In some embodiments, the polynucleotide encodes a short tandem target mimic (STTM) targeting the sRNA. In some embodiments, the polynucleotide encodes an antisense nucleic acid that is complementary or substantially complementary to the sRNA. In some embodiments, the method comprises expressing in the plant the polynucleotide that is complementary or substantially complementary to the pathogen sRNA or that mediates destruction of the pathogen sRNA under the control of a promoter, e.g., a constitutively active promoter, an inducible promoter, or tissue-specific promoter (e.g., a stress inducible promoter, a pathogen inducible promoter, or an epidermis-specific promoter).


In another aspect, plants having blocked or attenuated function of pathogen sRNAs are provided. In some embodiments, the plant comprises a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is complementary or substantially complementary to the pathogen sRNA or that mediates destruction of the pathogen sRNA, wherein the plant is less susceptible to the pathogen relative to a control plant lacking the expression cassette. In some embodiments, the expression cassette comprises a polynucleotide that encodes a short tandem target mimic (STTM) targeting the sRNA. In some embodiments, the expression cassette comprises a polynucleotide that encodes an antisense nucleic acid that is complementary or substantially complementary to the sRNA. In some embodiments, the expression cassette comprises a promoter that is an inducible promoter (e.g., stress inducible or pathogen inducible). In some embodiments, the expression cassette comprises a promoter that is a constitutively active promoter. In some embodiments, the promoter is tissue-specific (e.g., epidermis-specific).


In yet another aspect, expression cassettes comprising a promoter operably linked to a polynucleotide that is complementary to, or mediates destruction, of a plant immunity suppressing sRNA of a pathogen, wherein the promoter is heterologous to the polynucleotide, or isolated nucleic acids comprising said expression cassettes, are provided. In some embodiments, the expression cassette comprises a polynucleotide that encodes a short tandem target mimic (STTM) targeting the sRNA. In some embodiments, the expression cassette comprises a polynucleotide that encodes an antisense nucleic acid that is complementary or substantially complementary to the sRNA. In some embodiments, the expression cassette comprises a promoter that is an inducible promoter (e.g., stress inducible or pathogen inducible). In some embodiments, the expression cassette comprises a promoter that is a constitutively active promoter. In some embodiments, the promoter is tissue-specific (e.g., epidermis-specific). In some embodiments, a plant in which the expression cassette is introduced is less susceptible to the pathogen compared to a control plant lacking the expression cassette.


Pathogen sRNAs


In some embodiments, the plant immunity suppressing sRNA is from a viral, bacterial, fungal, nematode, or insect pathogen. In some embodiments, the sRNA is from a fungal pathogen. Examples of plant fungal pathogens include, but are not limited to, Botyritis, Magnaporthe, Sclerotinia, Puccinia, Fusarium, Mycosphaerella, Blumeria, Colletotrichum, Ustilago, and Melampsora. See, e.g., Dean et al., Mol Plant Pathol 13:804 (2012). In some embodiments, the pathogen is Botyritis. In some embodiments, the pathogen is Botyritis cinera.


In some embodiments, the pathogen sRNA comprises a sequence of about 15-250 nucleotides, about 15-150 nucleotides, about 15-100 nucleotides, about 15-50 nucleotides, about 20-50 nucleotides, about 15-30, or about 20-30 nucleotides. In some embodiments, the pathogen sRNA comprises a sequence of about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides.


In some embodiments, the pathogen sRNA comprises a sequence of about 15-250 nucleotides that specifically targets (e.g., induces gene silencing of) a gene encoding a protein that functions or is predicted to function in plant immunity. In some embodiments, the pathogen sRNA comprises a sequence of about 15-250 nucleotides that specifically targets a gene that encodes mitogen activated protein kinase 1 (MPK1), mitogen activated protein kinase 2 (MPK2), peroxiredoxin (PRXIIF), cell-wall associated kinase (WAK), or mitogen activated protein kinase kinase kinase 4 (MAPKKK4). In some embodiments, the pathogen sRNA comprises a sequence of about 15-250 nucleotides that specifically targets any of SEQ ID NOs:4-13 or a portion thereof.


In some embodiments, the pathogen sRNA comprises a sequence listed in FIG. 16 (e.g., Bc-siR3.2, Bc-siR3.1, or Bc-siR5) or Table 1 (e.g., Bc-siR1, Bc-siR1010, Bc-siR3.1, Bc-siR3.2, Bc-siR1008, Bc-siR5, Bc-siR9, Bc-siR10, Bc-siR18, Bc-siR15, Bc-siR17, Bc-siR22, Bc-siR24, Bc-siR25, Bc-siR1015, Bc-siR20, Bc-siR1021, Bc-siR1002, Bc-siR28, Bc-siR31, Bc-siR29, Bc-siR41, Bc-siR35, Bc-siR57, Bc-siR43, Bc-siR40, Bc-siR38, Bc-siR46, Bc-siR48, Bc-siR1007, Bc-siR56, Bc-siR49, Bc-siR58, Bc-siR63, Bc-siR1005, Bc-siR60, Bc-siR61, Bc-siR62, Bc-siR65, Bc-siR67, Bc-siR68, Bc-siR73, Bc-siR81, Bc-siR82, Bc-siR86, Bc-siR91, Bc-siR92, Bc-siR95, Bc-siR1017, Bc-siR97, Bc-siR99, Bc-siR1013, Bc-siR102, Bc-siR1011, Bc-siR109, Bc-siR1018, Bc-siR114, Bc-siR1020, Bc-siR1016, Bc-siR1003, Bc-siR124, Bc-siR127, Bc-siR128, Bc-siR130, Bc-siR1004, Bc-siR144, Bc-siR137, Bc-siR140, Bc-siR141, Bc-siR156, Bc-siR161, Bc-siR163, or Bc-siR1001). In some embodiments, the pathogen sRNA comprises the sequence of Bc-siR3.1 (TTGTGGATCTTGTAGGTGGGC; SEQ ID NO:43), Bc-siR3.2 (TACATTGTGGATCTTGTAGGT; SEQ ID NO:44), or Bc-siR5 (TTTGACTCGGAATGTATACTT; SEQ ID NO:45).


Polynucleotides Targeting Pathogen sRNAs


In some embodiments, the function of a pathogen sRNA as described herein in a plant is blocked, attenuated, or reduced by expressing in the plant a polynucleotide that is complementary or substantially complementary to the sRNA or that mediates the destruction of the sRNA. As used herein, the term “mediates destruction of an sRNA” refers to inducing or promoting the degradation of a small RNA (e.g., by a small RNA degrading nuclease). In some embodiments, the polynucleotide encodes a short tandem target mimic (STTM) that targets the sRNA. In some embodiments, the polynucleotide encodes an antisense nucleic acid that is complementary or substantially complementary to the sRNA.


Short Tandem Target Mimics


In some embodiments, a short tandem target mimic (STTM) construct is used to block or attenuate function or activity of the pathogen sRNA. STTMs are composed of two short polynucleotide sequences mimicking small RNA target sites (e.g., one or more pathogen sRNA sites as described herein), separated by a linker of an empirically determined optimal size. STTMs trigger efficient degradation of targeted sRNAs by small RNA degrading nucleases. See Yan et al., Plant Cell 24:415-427 (2012).


Typically, the STTM is designed to have two noncleavable sRNA binding sites separated by a spacer. The two noncleavable sRNA binding sites can be either identical (to target one specific sRNA) or slightly different to target two slightly different sRNAs. The optimal length of the spacer is typically from about 48 to 88 nucleotides, although shorter or longer spacer sequences can be used. The sequences of the spacer should be relatively AT rich and able to form a stable stem. Methods of designing and testing STTM constructs are described, e.g., in Yan et al., Plant Cell 24:415-427 (2012), and in Tang et al., Methods 58:118-125 (2012), incorporated by reference herein.


In some embodiments, the polynucleotide comprises an STTM construct that targets an sRNA sequence listed in FIG. 16 (e.g., Bc-siR3.2, Bc-siR3.1, or Bc-siR5) or Table 1 (e.g., Bc-siR1, Bc-siR1010, Bc-siR3.1, Bc-siR3.2, Bc-siR1008, Bc-siR5, Bc-siR9, Bc-siR10, Bc-siR18, Bc-siR15, Bc-siR17, Bc-siR22, Bc-siR24, Bc-siR25, Bc-siR1015, Bc-siR20, Bc-siR1021, Bc-siR1002, Bc-siR28, Bc-siR31, Bc-siR29, Bc-siR41, Bc-siR35, Bc-siR57, Bc-siR43, Bc-siR40, Bc-siR38, Bc-siR46, Bc-siR48, Bc-siR1007, Bc-siR56, Bc-siR49, Bc-siR58, Bc-siR63, Bc-siR1005, Bc-siR60, Bc-siR61, Bc-siR62, Bc-siR65, Bc-siR67, Bc-siR68, Bc-siR73, Bc-siR81, Bc-siR82, Bc-siR86, Bc-siR91, Bc-siR92, Bc-siR95, Bc-siR1017, Bc-siR97, Bc-siR99, Bc-siR1013, Bc-siR102, Bc-siR1011, Bc-siR109, Bc-siR1018, Bc-siR114, Bc-siR1020, Bc-siR1016, Bc-siR1003, Bc-siR124, Bc-siR127, Bc-siR128, Bc-siR130, Bc-siR1004, Bc-siR144, Bc-siR137, Bc-siR140, Bc-siR141, Bc-siR156, Bc-siR161, Bc-siR163, or Bc-siR1001).


In some embodiments, the polynucleotide comprises an STTM construct that is generated using a pair of primers (a forward primer and a reverse primer) listed in Table 2. The STTM primers (e.g., the primers listed in Table 2) are used to amplify and clone into an expression vector a STTM construct having a sequence that targets an sRNA of interest (e.g., an sRNA listed in FIG. 16 or Table 1, e.g., any of Bc-siR1, Bc-siR1010, Bc-siR3.1, Bc-siR3.2, Bc-siR1008, Bc-siR5, Bc-siR9, Bc-siR10, Bc-siR18, Bc-siR15, Bc-siR17, Bc-siR22, Bc-siR24, Bc-siR25, Bc-siR1015, Bc-siR20, Bc-siR1021, Bc-siR1002, Bc-siR28, Bc-siR31, Bc-siR29, Bc-siR41, Bc-siR35, Bc-siR57, Bc-siR43, Bc-siR40, Bc-siR38, Bc-siR46, Bc-siR48, Bc-siR1007, Bc-siR56, Bc-siR49, Bc-siR58, Bc-siR63, Bc-siR1005, Bc-siR60, Bc-siR61, Bc-siR62, Bc-siR65, Bc-siR67, Bc-siR68, Bc-siR73, Bc-siR81, Bc-siR82, Bc-siR86, Bc-siR91, Bc-siR92, Bc-siR95, Bc-siR1017, Bc-siR97, Bc-siR99, Bc-siR1013, Bc-siR102, Bc-siR1011, Bc-siR109, Bc-siR1018, Bc-siR114, Bc-siR1020, Bc-siR1016, Bc-siR1003, Bc-siR124, Bc-siR127, Bc-siR128, Bc-siR130, Bc-siR1004, Bc-siR144, Bc-siR137, Bc-siR140, Bc-siR141, Bc-siR156, Bc-siR161, Bc-siR163, or Bc-siR1001). In some embodiments, the STTM construct is expressed under the control of a promoter as described in Section IV below, e.g., a constitutively active promoter, an inducible promoter, or a tissue-specific promoter.


Antisense Technology


In some embodiments, antisense technology is used to block or attenuate function or activity of the pathogen sRNA. The antisense nucleic acid sequence that is transformed into plants is substantially identical to the pathogen sRNA sequence to be blocked. In some embodiments, the antisense polynucleotide sequence is complementary to the pathogen sRNA sequence to be blocked. However, the sequence does not have to be perfectly identical to inhibit expression. Thus, in some embodiments, an antisense polynucleotide sequence that is substantially complementary (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% complementary) to the pathogen sRNA sequence to be blocked can be used (e.g., in an expression cassette under the control of a heterologous promoter, which is then transformed into plants such that the antisense nucleic acid is produced). In some embodiments, the antisense polynucleotide is expressed under the control of a promoter as described in Section IV below, e.g., a constitutively active promoter, an inducible promoter, or a tissue-specific promoter.


In some embodiments, the polynucleotide encodes an antisense nucleic acid sequence that is complementary or substantially (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%) complementary to an sRNA sequence listed in FIG. 16 (e.g., an antisense nucleic acid sequence that is complementary or substantially complementary to Bc-siR3.2, Bc-siR3.1, or Bc-siR5) or Table 1 (e.g., an antisense nucleic acid sequence that is complementary or substantially complementary to Bc-siR1, Bc-siR1010, Bc-siR3.1, Bc-siR3.2, Bc-siR1008, Bc-siR5, Bc-siR9, Bc-siR10, Bc-siR18, Bc-siR15, Bc-siR17, Bc-siR22, Bc-siR24, Bc-siR25, Bc-siR1015, Bc-siR20, Bc-siR1021, Bc-siR1002, Bc-siR28, Bc-siR31, Bc-siR29, Bc-siR41, Bc-siR35, Bc-siR57, Bc-siR43, Bc-siR40, Bc-siR38, Bc-siR46, Bc-siR48, Bc-siR1007, Bc-siR56, Bc-siR49, Bc-siR58, Bc-siR63, Bc-siR1005, Bc-siR60, Bc-siR61, Bc-siR62, Bc-siR65, Bc-siR67, Bc-siR68, Bc-siR73, Bc-siR81, Bc-siR82, Bc-siR86, Bc-siR91, Bc-siR92, Bc-siR95, Bc-siR1017, Bc-siR97, Bc-siR99, Bc-siR1013, Bc-siR102, Bc-siR1011, Bc-siR109, Bc-siR1018, Bc-siR114, Bc-siR1020, Bc-siR1016, Bc-siR1003, Bc-siR124, Bc-siR127, Bc-siR128, Bc-siR130, Bc-siR1004, Bc-siR144, Bc-siR137, Bc-siR140, Bc-siR141, Bc-siR156, Bc-siR161, Bc-siR163, or Bc-siR1001).


Other methods of using oligonucleotide or polynucleotide constructs for blocking the function of small RNAs as described herein can also be used, such as target mimicry (see, e.g., Franco-Zorrilla et al., Nat Genet. 39:1033-1037 (2007)) and “sponges” (see, e.g., Ebert et al., Nat. Methods 4:721-726 (2007)).


III. Expression of sRNA-Resistant Targets

In another aspect, methods of making plants that are resistant to one or more pathogen sRNAs are provided. In some embodiments, the method comprises:

    • introducing into a plant a heterologous expression cassette comprising a promoter operably linked to a polynucleotide that is an sRNA-resistant target that encodes a protein that functions in plant immunity, wherein the promoter is heterologous to the polynucleotide; and
    • selecting a plant comprising the expression cassette.


In another aspect, expression cassettes comprising a promoter operably linked to a polynucleotide encoding a sRNA-resistant target, isolated nucleic acids comprising said expression cassettes, or plants comprising said expression cassettes, are provided. In some embodiments, a plant into which the expression cassette has been introduced has enhanced pathogen resistance relative to a control plant lacking the expression cassette. In some embodiments, a plant into which the expression cassette has been introduced has enhanced resistance to a fungal pathogen (e.g., Botrytis, e.g., B. cinera) relative to a control plant lacking the expression cassette.


In some embodiments, the promoter is heterologous to the polynucleotide. In some embodiments, the polynucleotide encoding the sRNA-resistant target is operably linked to an inducible promoter. In some embodiments, the promoter is pathogen inducible (e.g., a Botrytis inducible promoter). In some embodiments, the promoter is stress inducible (e.g., an abiotic stress inducible promoter). In some embodiments, the promoter is tissue-specific (e.g., epidermis-specific).


sRNA-Resistant Targets


In some embodiments, the polynucleotide is an sRNA-resistant target that encodes a protein that functions or is predicted to function in plant immunity. As used herein, an sRNA-resistant target is a polynucleotide sequence having a synonymous mutation of a sequence that is targeted by a pathogen sRNA. As used herein, the term “synonymous mutation” refers to a change, relative to a reference sequence, in a DNA sequence that encodes for a protein or peptide (e.g., at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides relative to the reference sequence), wherein the change does not alter the amino acid that is encoded. For example, in some embodiments, pathogen sRNAs target plant immunity genes such as mitogen-activated protein kinases (including but not limited to, mitogen-activated protein kinase 1 (MPK1) or mitogen-activated protein kinase 2 (MPK2)); accordingly, in some embodiments an sRNA-resistant target comprises a synonymous mutation of a plant gene that encodes a mitogen-activated protein kinase (e.g., a synonymous mutation of MPK1 or MPK2).


In some embodiments, a polynucleotide sequence is an sRNA-resistant target if the polynucleotide sequence if the amino acid encoded by the polynucleotide sequence is produced at a detectable level. In some embodiments, a polynucleotide sequence is an sRNA-resistant target if the polynucleotide sequence if the amount of amino acid produced by a plant expressing the polynucleotide sequence in the presence of a pathogen sRNA is decreased by no more than 50%, 40%, 30%, 20%, 10%, 5%, or less relative to the amount of amino acid produced by a control plant expressing the polynucleotide sequence in the absence of the pathogen sRNA. Whether a polynucleotide is an sRNA-resistant target can be tested, for example, using a coexpression assay in Nicotiana benthamiana in which the sRNA is coexpressed with a polynucleotide sequence (e.g., a target gene or a synonymous mutation of the target gene) and the level of gene silencing induced by sRNA is measured. See, e.g., Example 1.


In some embodiments, the polynucleotide encodes a protein that functions or is predicted to function in plant immunity. In some embodiments, the polynucleotide comprises an sRNA-resistant target gene or predicted target gene listed in FIG. 16, Table 1, or Table 3. In some embodiments, the polynucleotide comprises a synonymous mutation of an sRNA target gene that encodes mitogen activated protein kinase 1 (MPK1), mitogen activated protein kinase 2 (MPK2), peroxiredoxin (PRXIIF), cell-wall associated kinase (WAK), or mitogen activated protein kinase kinase kinase 4 (MAPKKK4). In some embodiments, the polynucleotide comprises a synonymous mutation of an sRNA target gene in tomato selected from Solyc08g081210.2.1, Solyc03g061650.1.1, Solyc01g108160.2.1, Solyc09g014790.2.1, Solyc03g112190.2.1, or Solyc07g066530.2.1. In some embodiments, the polynucleotide comprises a synonymous mutation of an sRNA target gene in Vitis selected from VIT_10s0092g00240, VIT_12s0028g01140, VIT_06s0009g01890, VIT_10s0116g00190, VIT_05s0020g01790, VIT_01s0011g01000, VIT_05s0077g01510.


In some embodiments, the polynucleotide is substantially identical (e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to any of SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, or SEQ ID NO:13. In some embodiments, the polynucleotide is a homolog of any of SEQ ID NOS:4-13 (e.g., a homolog found in a species of Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Daucus, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lycopersicon, Malta, Manihot, Majorana, Medicago, Nicotiana, Oryza, Panieum, Pannesetum, Persea, Pisum, Pyrus, Prunus, Raphanus, Secale, Senecio, Sinapis, Solanum, Sorghum, Trigonella, Triticum, Vitis, Vigna, or Zea).


In some embodiments, the polynucleotide is substantially identical (e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical) to any of SEQ ID NOS:4-13, comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotide mutations relative to SEQ ID NOS:4-13, and encodes an identical protein as SEQ ID NOS:4-13. Non-limiting examples of nucleotide mutations (synonymous mutations) that can be made in the sequences of SEQ ID NOS:4-13 are described below in Example 3, as shown in the alignments of sRNA sequences to wild-type target gene sequences and mutated target gene sequences.


In some embodiments, the sRNA-resistant target gene comprises a polynucleotide sequence that is resistant to gene silencing by an sRNA listed in FIG. 16 or Table 1. In some embodiments, the sRNA-resistant target comprises a polynucleotide sequence that is resistant to gene silencing by Bc-siR3.1 (TTGTGGATCTTGTAGGTGGGC; SEQ ID NO:43), Bc-siR3.2 (TACATTGTGGATCTTGTAGGT; SEQ ID NO:44), or Bc-siR5 (TTTGACTCGGAATGTATACTT; SEQ ID NO:45).


IV. Polynucleotides and Recombinant Expression Vectors

The isolation of polynucleotides of the invention may be accomplished by a number of techniques. For instance, oligonucleotide probes based on the sequences disclosed here can be used to identify the desired polynucleotide in a cDNA or genomic DNA library from a desired plant species. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g. using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. Alternatively, cDNA libraries from plants or plant parts (e.g., flowers) may be constructed.


The cDNA or genomic library can then be screened using a probe based upon a sequence disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species. Alternatively, antibodies raised against a polypeptide can be used to screen an mRNA expression library.


Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology to amplify the sequences of the genes directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes. For a general overview of PCR see PCR Protocols: A Guide to Methods and Applications. (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990).


Polynucleotides can also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661 (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.


Once a polynucleotide sequence that is complementary to the pathogen sRNA or that mediates destruction of the pathogen sRNA, or a polynucleotide that is a sRNA-resistant target, is obtained, it can be used to prepare an expression cassette for expression in a plant. In some embodiments, expression of the polynucleotide is directed by a heterologous promoter.


Any of a number of means well known in the art can be used to drive expression of the polynucleotide sequence of interest in plants. Any organ can be targeted, such as shoot vegetative organs/structures (e.g. leaves, stems and tubers), epidermis, roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit. Alternatively, expression can be conditioned to only occur under certain conditions (e.g., using an inducible promoter).


For example, a plant promoter fragment may be employed to direct expression of the polynucleotide sequence of interest in all tissues of a regenerated plant. Such promoters are referred to herein as “constitutive” promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumafaciens, and other transcription initiation regions from various plant genes known to those of skill.


Alternatively, the plant promoter may direct expression of the polynucleotide sequence of interest in a specific tissue (tissue-specific promoters) or may be otherwise under more precise environmental control (inducible promoters). Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only in certain tissues, such as the epidermis, leaves, or guard cells (including but not limited to those described in WO/2005/085449; U.S. Pat. Nos. 6,653,535; 7,834,243; EP Patent No. 1 888 754; Li et al., Sci China C Life Sci. 2005 April; 48(2):181-6; Husebye, et al., Plant Physiol, April 2002, Vol. 128, pp. 1180-1188; Plesch, et al., Gene, Volume 249, Number 1, 16 May 2000, pp. 83-89(7), and Sessions et al., Plant J, October 1999, Vol. 20, pp. 259-263, each of which is incorporated by reference). Examples of environmental conditions that may affect transcription by inducible promoters include the presence of a pathogen, anaerobic conditions, elevated temperature, or the presence of light.


In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is stress inducible (e.g., inducible by abiotic stress). In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is induced upon infection by Botrytis. Non-limiting examples of pathogen inducible promoters include Botrytis-Induced Kinase 1 (BIK1) and the plant defensing gene PDF1.2. See, e.g., Penninckx et al., Plant Cell 10:2103-2113 (1998); see also Veronese et al., Plant Cell 18:257-273 (2006). In some embodiments, the promoter is A. thaliana BIK1 (SEQ ID NO:1) or is substantially identical to A. thaliana BIK1 (SEQ ID NO:1). In some embodiments, the promoter is A. thaliana PDF1.2 (SEQ ID NO:2) or is substantially identical to A. thaliana PDF1.2 (SEQ ID NO:2). In some embodiments, the promoter is TPK1b (SEQ ID NO:3) or is substantially identical to TPK1b (SEQ ID NO:3).


In some embodiments, the promoter is a tissue-specific promoter. In some embodiments, the promoter is specifically expressed in the epidermis. Non-limiting examples of epidermis-specific promoters include Meristem Layer 1 (ML1). See, e.g., Takada et al., Development 140:1919-1923 (2013). In some embodiments, the promoter is substantially (e.g., at least 60, 70, 75, 80, 85, 90, or 95%) identical to Arabidopsis ML1 (SEQ ID NO:14) or tomato ML1 (SEQ ID NO:15).


In some embodiments, a polyadenylation region at the 3′-end of the coding region can be included. The polyadenylation region can be derived from a NH3 gene, from a variety of other plant genes, or from T-DNA.


The vector comprising the sequences will typically comprise a marker gene that confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.


V. Production of Transgenic Plants

As detailed herein, embodiments of the present invention provide for transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein (e.g., a polynucleotide sequence that is complementary to the pathogen sRNA or that mediates destruction of the pathogen sRNA, or a polynucleotide encoding a sRNA-resistant target). In some embodiments, a transgenic plant is generated that contains a complete or partial sequence of a polynucleotide that is derived from a species other than the species of the transgenic plant. It should be recognized that transgenic plants encompass the plant or plant cell in which the expression cassette is introduced as well as progeny of such plants or plant cells that contain the expression cassette, including the progeny that have the expression cassette stably integrated in a chromosome.


In some embodiments, the transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein have increased or enhanced pathogen resistance compared to a plant lacking the recombinant expression cassette, wherein the transgenic plants comprising recombinant expression cassettes for expressing the polynucleotide sequence have about the same growth as a plant lacking the recombinant expression cassette. Methods for determining increased pathogen resistance are described, e.g., in Section VI below.


A recombinant expression vector as described herein may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA construct can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA construct may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. While transient expression of the polynucleotide sequence of interest is encompassed by the invention, generally expression of construction of the invention will be from insertion of expression cassettes into the plant genome, e.g., such that at least some plant offspring also contain the integrated expression cassette.


Microinjection techniques are also useful for this purpose. These techniques are well known in the art and thoroughly described in the literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. EMBO J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).



Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example, Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).


Transformed plant cells derived by any of the above transformation techniques can be cultured to regenerate a whole plant that possesses the transformed genotype and thus the desired phenotype such as enhanced pathogen resistance. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).


One of skill will recognize that after the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.


The expression cassettes of the invention can be used to confer enhanced pathogen resistance on essentially any plant. Thus, the invention has use over a broad range of plants, including species from the genera Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Daucus, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Oryza, Panieum, Pannesetum, Persea, Pisum, Pyrus, Prunus, Raphanus, Secale, Senecio, Sinapis, Solanum, Sorghum, Trigonella, Triticum, Vitis, Vigna, and Zea. In some embodiments, the plant is a tomato plant. In some embodiments, the plant is a vining plant, e.g., a species from the genus Vitis. In some embodiments, the plant is an ornamental plant. In some embodiments, the plant is a vegetable- or fruit-producing plant. In some embodiments, the plant is a monocot. In some embodiments, the plant is a dicot.


VI. Selecting for Plants with Enhanced Pathogen Resistance

Plants with enhanced pathogen resistance can be selected in many ways. One of ordinary skill in the art will recognize that the following methods are but a few of the possibilities. One method of selecting plants with enhanced pathogen resistance is to determine resistance of a plant to a specific plant pathogen. Possible pathogens include, but are not limited to, viruses, bacteria, nematodes, fungi or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif.) (1988)). One of skill in the art will recognize that resistance responses of plants vary depending on many factors, including what pathogen, compound, or plant is used. Generally, enhanced resistance is measured by the reduction or elimination of disease symptoms (e.g., reduction in the number or size of lesions or reduction in the amount of fungal biomass on the plant or a part of the plant) when compared to a control plant. In some cases, however, enhanced resistance can also be measured by the production of the hypersensitive response (HR) of the plant (see, e.g., Staskawicz et al. (1995) Science 268(5211): 661-7). Plants with enhanced pathogen resistance can produce an enhanced hypersensitive response relative to control plants.


Enhanced pathogen resistance can also be determined by measuring the increased expression of a gene operably linked a defense related promoter. Measurement of such expression can be measured by quantifying the accumulation of RNA or subsequent protein product (e.g., using northern or western blot techniques, respectively (see, e.g., Sambrook et al. and Ausubel et al.).


VII. Examples

The following examples are offered to illustrate, but not limit the claimed invention.


Example 1: Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways


Botrytis cinerea is a fungal pathogen that infects almost all vegetable and fruit crops and annually causes $10-100 billion losses worldwide. With its broad host range, B. cinerea is a useful model for studying the pathogenicity of aggressive fungal pathogens. Many pathogens of plants and animals deliver effectors into host cells to suppress host immunity (H. Ashida et al., Curr. Opin. Microbiol. 14, 16 (2011); M. Rafiqi et al., Curr. Opin. Plant Biol. 15, 477 (2012); T. O. Bozkurt et al., Curr. Opin. Plant Biol. 15, 483 (2012); H. Hilbi, et al., Traffic 13, 1187 (2012)). All the pathogen effectors studied so far are proteins. Here we find that small RNA (sRNA) molecules derived from B. cinerea can act as effectors to suppress host immunity.


sRNAs induce gene silencing by binding to Argonaute (AGO) proteins and directing the RNA-induced silencing complex (RISC) to genes with complementary sequences. sRNAs from both plant and animal hosts have been recognized as regulators in host-microbial interaction (5-8). Although sRNAs are also present in various fungi and oomycetes, including many pathogens (9-14), it has not been clear whether they regulate host-pathogen interaction.


To explore the role of B. cinerea sRNAs in pathogenicity, we profiled sRNA libraries prepared from B. cinerea (strain B05.10)-infected Arabidopsis thaliana Col-0 leaves collected at 0, 24, 48, and 72 h post inoculation (hpi) and from B. cinerea-infected Solanum lycopersicum (tomato) leaves and fruits at 0, 24, and 72 hpi. sRNA libraries prepared from B. cinerea mycelia, conidiospores and total biomass after 10 days of culture were used as controls. By using 100 normalized reads per million B. cinerea sRNA reads as a cutoff, we identified a total of 832 sRNAs that were present in both B. cinerea-infected Arabidopsis and S. lycopersicum libraries and had more reads in these two libraries than in the cultured B. cinerea libraries, with sequences exactly matching the B. cinerea B05.10 genome (15) but not Arabidopsis or S. lycopersicum genomes or cDNA (see, FIGS. 15 and 16 and Table 1). The closest sequence matches in Arabidopsis or S. lycopersicum contained a minimum of 2 mismatches. Among them, 27 had predicted microRNA-like precursor structures. A similar number of microRNA-like sRNAs was found in Sclerotinia sclerotiorum (9). We found that 73 Bc-sRNAs could target host genes in both Arabidopsis and S. lycopersicum under stringent target prediction criteria (FIG. 15). Among them, 52 were derived from 6 retrotransposon long terminal repeats (LTR) loci in the B. cinerea genome, 13 were from intergenic regions of 10 loci, and 8 were mapped to 5 protein coding genes.


Some of the predicted plant targets, such as MAPKs, are likely to function in plant immunity. To test whether Bc-sRNAs could indeed suppress host genes during infection, three Bc-sRNAs (Bc-siR3.1, Bc-siR3.2, and Bc-siR5) were selected for further characterization (FIG. 16). These Bc-sRNAs were among the most abundant sRNAs that were 21 nt in length and had potential targets likely to be involved in plant immunity in both Arabidopsis and S. lycopersicum. These sRNAs were also enriched after infection (FIGS. 1A-1B, FIG. 5, and FIG. 16), and were the major sRNA products from their encoding loci, LTR retrotransposons (FIG. 5). Bc-siR3.1 and Bc-siR3.2 were derived from the same locus with a four-nucleotide shift in sequence.


To determine whether Bc-sRNAs could trigger silencing of host genes, we examined the transcript levels of the predicted target genes after B. cinerea infection. The following Arabidopsis genes were targeted in the coding regions and were suppressed after B. cinerea infection: mitogen activated protein kinase 2 (MPK2) and MPK1, which are targeted by Bc-siR3.2; an oxidative stress-related gene peroxiredoxin (PRXIIF), which is targeted by Bc-siR3.1; and a putative cell wall-associated kinase gene (WAK), which is targeted by Bc-siR5 (FIG. 1C). In contrast, the plant defense marker genes PDF1.2 and BIK1 (P. Veronese et al., Plant Cell 18, 257 (2006)), which do not contain the Bc-sRNA target sites, were highly induced upon B. cinerea infection (FIG. 1C). We conclude that suppression of some but not all genes is a result of sequence-specific sRNA interaction and not due to cell death within infected lesions. Bc-siR3.2, which silences Arabidopsis MPK1 and MPK2, was enriched also in S. lycopersicum leaves upon B. cinerea infection and was predicted to target another member of the MAPK signaling cascade in S. lycopersicum, MAPKKK4 (FIG. 1B, FIG. 16). Expression of MAPKKK4 was indeed suppressed upon B. cinerea infection (FIG. 1D).


To confirm that the suppression of the targets was indeed triggered by Bc-sRNAs, we performed co-expression assays in Nicotiana benthamiana. Expression of HA-epitope tagged MPK2, MPK1, and WAK was reduced when they were co-expressed with the corresponding Bc-sRNAs but not when co-expressed with Arabidopsis miR395 that shared no sequence similarity (FIG. 1E). The silencing was abolished, however, when the target genes carried a synonymously mutated version of the relevant Bc-sRNA target sites (FIG. 6A, FIG. 1E). We also observed suppression of YFP-tagged target MPK2 by B. cinerea infection at 24 hpi (FIG. 1F and FIG. 6B); when the Bc-siR3.2 target site of MPK2 was mutated, infection by B. cinerea failed to suppress its expression (FIG. 1F). Thus, Bc-siR3.2 delivered from B. cinerea is sufficient for inducing silencing of wild type MPK2 but cannot silence target site-mutated MPK2. Similarly, of the YFP-sensors with wild type or mutated Bc-siR3.2 target sites (FIG. 6C), only the wild type sensor was suppressed after B. cinerea infection (FIG. 1G).


To test the effect of Bc-sRNAs on host plant immunity, we generated transgenic Arabidopsis plants that ectopically expressed Bc-siR3.1, Bc-siR3.2, or Bc-siR5 using a plant artificial miRNA vector (FIG. 2A) (17). These Bc-sRNA expression (Bc-sRNAox) lines showed normal morphology and development without pathogen challenge when compared to the wild type plants, and expression of the target genes was suppressed (FIG. 2B). With pathogen challenge, all of the Bc-sRNAox lines displayed enhanced susceptibility to B. cinerea (FIG. 2C, 2E). The results indicate that these Bc-sRNAs play a positive role in B. cinerea pathogenicity.


Enhanced disease susceptibility of the Bc-sRNAox lines suggests that the target genes of these Bc-sRNAs are likely to be involved in host immunity against B. cinerea. Plants with mutated target genes showed normal morphology and development without pathogen challenge. The Arabidopsis targets of Bc-siR3.2, MPK1 and MPK2, are homologs that share 87% amino acid identity. These genes are functionally redundant and are co-activated in response to various stress factors (18). The mpk1 mpk2 double mutant exhibited enhanced susceptibility to B. cinerea (FIG. 2D, 2E). A T-DNA knockout mutant of the Bc-siR5 target WAK (SALK_089827) (FIG. 7A) also displayed enhanced susceptibility to B. cinerea (FIG. 2D, 2E). Consistent with this, Bc-siRNAox lines as well as mpk1 mpk2 and wak showed lower induction of the defense marker gene BIK1 (FIG. 7B). These results suggest that the MPK1, MPK2, and WAK genes, all of which are targeted by Bc-sRNAs, participate in the plant's immune response to B. cinerea. To determine whether MAPKKK4 is involved in S. lycopersicum defense response against B. cinerea, we applied the virus-induced gene silencing (VIGS) approach to knock down MAPKKK4 in S. lycopersicum using tobacco rattle virus (TRV) (FIG. 8A) (19). VIGS of TRV-MAPKKK4 caused a dwarf phenotype (FIG. 8B). The MAPKKK4-silenced plants showed enhanced disease susceptibility in response to B. cinerea and contained >15 times more fungal biomass than the control plants (FIG. 2F). We conclude that Bc-sRNAs silence plant genes to suppress host immunity during early infection.


These fungal sRNAs hijack the plant's own gene silencing mechanism. 63 of the 73 Bc-sRNAs that had predicted Arabidopsis and S. lycopersicum targets were 20-22 nucleotides in length with a 5′ terminal U (see Table 1). This sRNA structure is favored for binding to AGO1 in Arabidopsis (S. J. Mi et al., Cell 133, 116 (2008); T. A. Montgomery et al., Cell 133, 128 (2008)). In order to determine whether Bc-sRNAs act through Arabidopsis AGO1, we immunoprecipitated AGO1 from B. cinerea-infected Arabidopsis collected at 24, 32 and 48 hpi and analyzed the AGO1-associated sRNAs. Bc-siR3.1, Bc-siR3.2 and Bc-siR5 were clearly detected in the AGO1-associated fraction pulled down from the infected plant samples but hardly in the control (FIG. 3A) or in the AGO2- and AGO4-associated sRNA fractions (FIG. 9). The sRNAs that had no predicted plant targets or had predicted targets that were not down-regulated by B. cinerea infection were not found in the AGO1-associated fractions (FIG. 10).


If AGO1 plays an essential role in Bc-sRNA-mediated host gene silencing, we would expect to see reduced disease susceptibility in the ago1 mutant since these Bc-sRNAs could no longer suppress host immunity genes. For plants carrying the ago1-27 mutant allele (J. B. Morel et al., Plant Cell 14, 629 (2002)) and were inoculated with B. cinerea, the disease level was significantly less than on the wild type (FIG. 3B and FIG. 11A). Consistent with this, BIK1 induction was increased compared to wild type (FIG. 11B). Furthermore, the expression of Bc-siR3.2 targets MPK2 and MPK1, Bc-siR3.1 target PRXIIF, and Bc-siR5 target WAK in ago1-27 was not suppressed compared to wild type infected plants after B. cinerea infection (FIG. 3C). On the contrary, Arabidopsis miRNA biogenesis mutant dicer-like (dcl) 1-7 that shows similar morphological defects to ago1-27 exhibited an enhanced disease level to B. cinerea (FIG. 3D). These results suggest that the increased resistance phenotype we observed in ago1-27 is not caused by any reduced vigor or pleiotropic phenotype, but due to the function of the Bc-siRNAs, and that Arabidopsis DCL1 is not required for the function of Bc-siRNAs. Thus, B. cinerea Bc-sRNAs evidently hijacked host RNAi machinery by loading into AGO1; the complex in turn suppressed host immunity genes.


To delete the siR3 and siR5 loci from the B. cinerea genome by homologous recombination would be an ideal way to confirm their function; however, it is not feasible because siR3 is from a LTR with 3 copies and siR5 is from a LTR with 13 copies. To better understand the function and biogenesis of the Bc-sRNAs, we chose to knock out the B. cinerea DCL genes, which encode the core sRNA processing enzymes. B. cinerea strain B05.10 possesses two Dicer-like genes (Bc-DCL1 and Bc-DCL2) (FIG. 12). We generated dcl1 and dcl2 single and dcl1 dcl2 double knockout mutant strains through homologous recombination (FIG. 13A-13B). We found that dcl1 and dcl2 single mutants showed reduced growth and delayed sporulation (FIG. 13C). The dcl1 dcl2 double mutant displayed a more obvious phenotype than each of the single mutants, suggesting partial functional redundancy between DCL1 and DCL2 in B. cinerea. Bc-siR3.1, Bc-siR3.2, and Bc-siR5 could not be detected in the dcl1 dcl2 double mutant (FIG. 4A), indicating that they were DCL-dependent, while two other Bc-siRNAs, Bc-milR2 and Bc-siR1498, could still be detected in dcl1 dcl2 double mutant (FIG. 13D). Fungi have diverse sRNA biogenesis pathways, and not all sRNAs are DCL-dependent (H. C. Lee et al., Mol. Cell 38, 803 (2010)). The dcl1 dcl2 double mutant caused significantly smaller lesions than the wild type or dcl1 and dcl2 single mutants on both Arabidopsis and S. lycopersicum leaves (FIG. 4B-4C), in consistence with the significantly reduced fungal biomass at 72 hpi in Arabidopsis and 48 hpi in S. lycopersicum (FIG. 14), which indicates that the virulence of the dcl1 dcl2 mutant was greatly reduced. These results further support the conclusion that Bc-siRNAs, particularly Bc-siR3.1, Bc-siR3.2 and Bc-siR5 that depend on DCL function, contribute to the pathogenicity of B. cinerea. Mutation of dcl1 or dcl2 in B. cinerea caused delayed growth and sporulation (FIG. 13C) but had no effect on pathogenicity (FIG. 4B-4C). Furthermore, expression of the YFP sensor carrying the Bc-siR3.2 target site in N. benthamiana was silenced when infected with wild type B. cinerea. The suppression was abolished when inoculated with the dcl1 dcl2 strain (FIG. 4D), indicating that the dcl1 dcl2 double mutant was unable to generate Bc-siR3.2 to suppress the target. We also confirmed the inability of dcl1 dcl2 to suppress Bc-siR3.1 and Bc-siR3.2 target genes MPK2, MPK1, and PRXIIF in Arabidopsis and MAPKKK4 in tomato upon infection (FIG. 4E). Consistent with this, the dcl1 dcl2 virulence was partially restored when infected on Arabidopsis Bc-siR3.1ox and Bc-siR3.2ox plants as well as in tomato TRV-MAPKKK4 silenced plants (FIG. 4F-4G).


Animal and plant pathogens have evolved virulence or effector proteins to counteract host immune responses. Various protein effectors have been predicted or discovered in fungal or oomycete pathogens from whole-genome sequencing and secretome analysis (M. Rafiqi et al., Curr. Opin. Plant Biol. 15, 477 (2012); T. O. Bozkurt et al., Curr. Opin. Plant Biol. 15, 483 (2012)), although delivery mechanisms are still under active investigation (D. Kale et al., Cell 142, 284 (2010); S. Wawra et al., Curr. Opin. Microbiol. 15, 685 (2012); M. Rafiqi et al., Plant Cell 22, 2017 (2010); S. Schornack et al., Proc. Natl. Acad. Sci. USA 107, 17421 (2010); S. Wawra et al., Proc. Natl. Acad. Sci. USA 109, 2096 (2012)). Here, we show that sRNAs as well can act as effectors through a mechanism that silences host genes in order to debilitate plant immunity and achieve infection. The sRNAs from B. cinerea hijack the plant RNAi machinery by binding to AGO proteins which in turn direct host gene silencing. Another fungal plant pathogen, Verticllium (V.) dahliae, also depends on AGO1 function for its pathogenicity (U. Ellendorff, et al., J. Exp. Bot. 60, 591 (2009)). The implications of these findings suggest an extra mechanism underlying pathogenesis promoted by sophisticated pathogens with the capability to generate and deliver small regulatory RNAs into hosts to suppress host immunity.


Material and Methods

Generation of dcl1, dcl2 Single and Double Mutants of B. cinerea


By using homologous recombination and the Agrobacterium tumefaciens-mediated transformation system adapted from Utermark and Karlovsky (U. Utermark, P. Karlovsky, Protocol Exchange, published online 20 Mar. 2008 (10.1038/nprot.2008.83)), we generated dcl1, dcl2 and dcl1 dcl2 deletion mutants in B. cinerea strain B05.10. Transformants were selected with 70 ppm hygromycin or 100 ppm NH4-glufosinate.


Plant Materials and Protocols

Plant materials used in this study are: Arabidopsis thaliana ecotype Col-0, Solanum lycopersicum (tomato) cultivar Moneymaker, and Nicotiana benthamiana, Arabidopsis knockout mutants mpk1 mpk2 (SALK_063847×SALK_019507) (D. Ortiz-Masia et al., FEBS Lett. 581, 1834-1840 (2007)) and wak (SALK_089827).


The Gateway pEarley vectors (with YFP & HA tags) were used for expression of Bc-sRNA target genes (K. W. Earley et al., Plant J. 45, 616-629 (2006)). Bc-sRNAs were cloned into the miRNA319a backbone vector (R. Schwab et al., Plant Cell 18, 1121-1133 (2006)) and transferred into the Gateway vector pEarley100 (without tag) for expression.


Transient co-expression assays in N. benthamiana were performed as described in (X. Zhang et al., Mol. Cell 42, 356-366 (2011)).


Virus-induced gene silencing (VIGS) was performed by cloning a 294-bp MPKKK4 gene fragment into the TRV2 vector (Y. L. Liu et al., Plant J. 31, 777-786 (2002)).


Pathogen Assay

Four-week-old plants were inoculated by applying a single 20 μl droplet per leaf or by spray-inoculating the entire plant, using 2×105 spores/ml for Arabidopsis and 1×104 spores/ml for S. lycopersicum and N. benthamiana. Disease was assessed by measuring lesion size (ImageJ software) and/or by quantifying B. cinerea biomass using quantitative PCR with B. cinerea-specific ITS primers (FIG. 8).


Confocal Microscopy

YFP-tagged protein expression in N. benthamiana was quantified using the confocal microscopy system Leica SP2. Z-series images (10 images in a distance of 0.7 μM) were merged to gain average signal intensity. Merged images were exported as TIFF files and YFP quantity was measured using the ImageJ software.


AGO Immunoprecipitation (IP)


Arabidopsis AGO IP (X. Zhang et al., Mol. Cell 42, 356-366 (2011)) was conducted with 5 g fresh leaves collected at 24, 32 and 48 h after spray inoculation with B. cinerea. Uninfected leaves mixed with at least double amount of B. cinerea biomass as in 48 hpi samples were used as a control. AGO1 was purified with a peptide-specific antibody. AGO2 and AGO4 IPs were conducted using native promoter-driven transgenic epitope HA-tagged and c-MYC-tagged lines, respectively and commercial HA and c-MYC antibodies.


sRNA RT-PCR


RNA was extracted from B. cinerea-infected plant tissue or the AGO pull-down fraction using the Trizol method. Purified RNA was treated with DNase I and then used in RT-PCR (E. Varkonyi-Gasic et al., Plant Methods 3, 12 (2007)) to detect Bc-sRNAs. 35-40 cycles were used for detecting Bc-sRNAs, 22-28 cycles were used for detecting actin genes from Arabidopsis, S. lycopersicum and B. cinerea. Primers used for reverse transcription and amplification of Bc-siRNAs are listed in Table 2.


sRNA Cloning and Illumina HiSeq Data Analysis


sRNAs (18-28 nucleotides) were isolated by 15% PAGE and libraries were constructed using the miRCat cloning system and deep sequencing was performed on an Illumina HiSeq 2000. The sequence datasets of sRNA libraries from B. cinerea (GSE45320), B. cinerea-infected Arabidopsis (GSE45323) and B. cinerea-infected S. lycopersicum (GSE45321) are available at the NCBI database. The sRNA sequencing reads were preprocessed with the procedure of quality control and adapter trimming by using fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). Following adapter trimming, sequences were mapped to B. cinerea B05.10, Arabidopsis (TAIR10), or S. lycopersicum (ITAG_SL2.40) genomes and only the reads that matched perfectly to each genome were used for further analysis. The read number for each distinct sRNA was normalized to the total B. cinerea mapped reads in B. cinerea-infected A. thaliana and S. lycopersicum libraries. The ratio of total B. cinerea mapped reads of A. thaliana and S. lycopersicum libraries is 2.5:1, so we divide the normalized siRNA read number of S. lycopersicum by 2.5.


The sRNAs we selected have satisfied the following conditions: 1) it must be present in both B. cinerea-infected A. thaliana and S. lycopersicum libraries; 2) its normalized read number was larger than 100 in A. thaliana or S. lycopersicum libraries; 3) its normalized reads must be higher than that in cultured B. cinerea libraries and 4) it has predicted targets in both A. thaliana and S. lycopersicum.


Target gene prediction for Bc-sRNA was performed using TAPIR1.1 (E. Bonnet et al., Bioinformatics 26, 1566-1568 (2010)) with more stringent requirement than described in (E. Bonnet et al., Bioinformatics 26, 1566-1568 (2010)). No gap or bulge within the alignment between the sRNA and the target was allowed, and the 10th nucleotide of the sRNA must perfectly match its target. At most one mismatch or two wobbles was allowed from position 2 to 12. A maximum of two continuous mismatches was allowed and a score of 4.5 was used as a cutoff. If a sRNA has predicted targets in both A. thaliana and S. lycopersicum, it was selected. The sRNAs were grouped if their 5′ end position and 3′ end position were within 3 nucleotides on the genomic loci. We presented the selected sRNAs with targets in both A. thaliana and S. lycopersicum in Table 1.









TABLE 1







Bc-sRNAs that have predicted targets in both Arabidopsis and S. lycopersicum.













Bc-siRNA








ID, locus,


and siRNA
Normalized read

SEQ


Putative


sequence
counts
Target gene alignment
ID

Target gene
function of















(5′-3′)
A
S
B
and aligned score
NO:
AS*
ID/target site
target gene



















siR1
147.4
3015.92
36.4
Bc-siRNA
3′GTCTTAAGATGAGAACGAAGCT 5′
46
4.5
AT5G06290.1
2-cysteine


SIR1 LTR




  | ||||| | ||||||:||||:


686~708(CDS)
peroxiredoxin B


transposon



Target
5′CTGAATTATCCTCTTGTTTCGG 3′
47


TCGAAG


CAAGAG


TAGAATT


CTG (SEQ


ID NO: 46)






Bc-siRNA
3′GTCTTAAGATGAGAACGAAGCT 5′
46
4.25
Solyc01g068070.2.1
Wd-repeat







  |:|||||| :|||||||||:|:


1754~1776(cDNA)
protein






Target
5′CGGAATTCCGCTCTTGCTTTGG 3′
48


(AHRD V1 *-*-











C1FDE0_9CHLO);











contains











Interpro











domain(s)











IPR017986











WD40 repeat,











region





siR1010
2484.9
1644.16
2403.2
Bc-siRNA
3′TCGTTAGTTTTTAAGGGGGCT 5′
49
4.5
AT1G69330.1
RING/U-box


SIR1010




  :|:|||| |||:|||||:||:


566~587(CDS)
superfamily


Intergenic



Target
5′GGTAATCTAAAGTTCCCTCGG 3′
50


protein


region


TCGGGG


GAATTTT


TGATTGC


T (SEQ ID


NO: 49)






Bc-siRNA
3′TCGTTAGTTTTTAAGGGGGCT 5′
49
4.5
Solyc07g018350.2.1
DNA







  || |:| |||||||:||:|||


581~602(cDNA)
mismatch






Target
5′AGAAGTGAAAAATTTCCTCGA 3′
51


repair protein











muts (AHRD











V1 *-*-











Q16P35_AEDAE);











contains











Interpro











domain(s)











IPR015536











DNA











mismatch











repair protein











MutS-











homolog











MSH6





siR3.1
812.1
1231.08
49.9
Bc-siRNA
3′CGGGTGGATGTTCTAGGTGTT 5′
52
3.25
AT1G50760.1
Aminotransferase-


SIR2 LTR




   :|||| ||||||||||||||


86~107(CDS)
like, plant


transposon



Target
5′ATCCACATACAAGATCCACAA 3′
53


mobile


TTGTGGA








domain family


TCTTGTA








protein


GGTGGG


C (SEQ ID


NO: 52)






Bc-siRNA
3′CGGGTGGATGTTCTAGGTGTT 5′
52
4.5
AT3G06050.1
peroxiredoxin







  |||:| |||||||| |||||


333~354(CDS)
IIF






Target
5′GCCTAGCTACAAGAGCCACAT 3′
54






Bc-siRNA
3′CGGGTGGATGTTCTAGGTGTT 5′
52
4
AT5G46795.1
microspore-







  |:|| |:||||| ||||||||


401~422(CDS)
specific






Target
5′GTCCCCTTACAACATCCACAA 3′
55


promoter 2






Bc-siRNA
3′CGGGTGGATGTTCTAGGTGTT 5′
52
4.25
Solyc01g108160.2.1
Autophagy-







   :||||:| |||||||||||:


3210~3231(cDNA)
related protein






Target
5′ATCCACTTTCAAGATCCACAG 3′
56


2 (AHRD V1











*-*-











C1GCV2_PARBD);











contains











Interpro











domain(s)











IPR015412











ATG2, C-











terminal






Bc-siRNA
3′CGGGTGGATGTTCTAGGTGTT 5′
52
4.5
Solyc09g014790.2.1
Class E







   |||||||:||| ||||||:|


1194~1215(cDNA)
vacuolar






Target
5′ACCCACCTGCAACATCCACGA 3′
57


protein-sorting











machinery











protein hse1











(AHRD V1 *---











HSE1_EMENI);











contains











Interpro











domain(s)











IPR018205











VHS subgroup





siR3.2
202.1
996.52
33.1
Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
4.5
AT1G10210.1
mitogen-


SIR2 LTR




  |:| | |||||:||||||||


291~312(CDS)
activated


transposon



Target
5′ATCAAGAAGATTCACAATGTT 3′
59


protein kinase 1


TACATTG


TGGATCT


TGTAGGT


(SEQ ID


NO: 58)






Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
3
AT1G59580.1
mitogen-







  |:| | ||||||||||||||:


353~374(CDS)
activated






Target
5′ATCAAGAAGATCCACAATGTG 3′
60


protein kinase











homolog 2






Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
4
AT3G16830.1
TOPLESS-







  |:||:||||:||:|:||||||


585~606(CDS)
related 2






Target
5′ATCTGCAAGGTCTATAATGTA 3′
61






Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
4.5
AT4G28300.1
Protein of







  ||:|:||||:||||||| ||:


1444~1465(CDS)
unknown






Target
5′ACTTGCAAGGTCCACAAGGTG 3′
62


function











(DUF1421)






Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
3.5
Solyc03g061650.1.1
F-box/LRR-







  |:||| |||||||| ||||||


907~928(cDNA)
repeat protein






Target
5′ATCTAGAAGATCCAAAATGTA 3′
63


At3g26922











(AHRD V1 *-*-











FBL47_ARATH);











contains











Interpro











domain(s)











IPR006566











FBD-like






Bc-siRNA
3′TGGATGTTCTAGGTGTTACAT 5′
58
4.5
Solyc09g091030.2.1
Beta-amylase







  | | ||||||| ||||||||:


1510~1531(cDNA)
(AHRD V1






Target
5′AGCCACAAGATGCACAATGTG 3′
64


****











E0AE02_SOLLC);











contains











Interpro











domain(s)











IPR013781











Glycoside











hydrolase,











subgroup,











catalytic core






Bc-siRNA
3′-GUGGAUGUUCUAGGUGUUACA 5′
65
4.5
Solyc08g081210.2.1
MPKKK4







  ||::|| ||||||||| ||||


1936~1956(cDNA)






Target
5′CAUUUAAAAGAUCCACCAUGU 3′
66





siR1008
4255.7
635.28
299.8
Bc-siRNA
3′CGTATTTGACTAGTAGTAGTGT 5′
67
4
AT1G04650.1
unknown


SIR6 CDS




   || ||||| ||||||||||:|


2418~2440(CDS)
protein,


(spurious



Target
5′TCAGAAACTAATCATCATCATA 3′
68


hypothetical


gene)








protein


TGTGATG


ATGATCA


GTTTATG


C (SEQ ID


NO: 67)






Bc-siRNA
3′CGTATTTGACTAGTAGTAGTGT 5′
67
4
AT4G39180.2
Sec14p-like







   |||||||| |||||:||||:|


1911~1933(3′UTR)
phosphatidylinositol






Target
5′TCATAAACTAATCATTATCATA 3′
69


transfer











family protein






Bc-siRNA
3′CGTATTTGACTAGTAGTAGTGT 5′
67
3.5
AT5G36940.1
cationic amino







  ||| |:||| |||||||||||


221~243(CDS)
acid






Target
5′GCAGAGACTCATCATCATCACC 3′
70


transporter 3






Bc-siRNA
3′CGTATTTGACTAGTAGTAGTGT 5′
67
4.25
Solyc05g012030.1.1
At1g69160/F4N2_9







  ||||| :||||||||||| |||


603~625(cDNA)
(AHRD






Target
5′GCATATGCTGATCATCATAACA 3′
71


V1 ***-











Q93Z37_ARATH)






Bc-siRNA
3′CGTATTTGACTAGTAGTAGTGT 5′
67
4.5
Solyc06g076130.2.1
Unknown







  ||| ||:| ||||||||| |||


1605~1627(cDNA)
Protein






Target
5′GCAAAAGCAGATCATCATGACA 3′
72


(AHRD V1)





siR5
1710
1380
302.6
Bc-siRNA
3′TTCATATGTAAGGCTCAGTTT 5′
73
4.5
AT3G05860.1
MADS-box


SIR3 LTR




  :| | |||| |||||||||||


655~676(CDS)
transcription


transposon



Target
5′GAATTTACAATCCGAGTCAAA 3′
74


factor family


TTTGACT








protein


CGGAAT


GTATACT


T (SEQ ID


NO: 73)






Bc-siRNA
3′TTCATATGTAAGGCTCAGTTT 5′
73
4
AT3G07730.1
unknown







   || | || ||||||||||||


491~512(CDS)
protein,






Target
5′TAGGAAACTTTCCGAGTCAAA 3′
75


hypothetical











protein,











uncharacterized











protein






Bc-siRNA
3′TTCATATGTAAGGCTCAGTTT 5′
73
4
AT3G08530.1
Clathrin,







  :||| |:|||||||:|||:||


3491~3512(CDS)
heavy chain






Target
5′GAGTTTGCATTCCGGGTCGAA 3′
76






Bc-siRNA
3′TTCATATGTAAGGCTCAGTTT 5′
73
4.5
Solyc03g112190.2.1
Pentatricopeptide







  |:||| ||||||:||| ||||


1764~1785(cDNA)
repeat-






Target
5′AGGTAGACATTCTGAGGCAAA 3′
77


containing











protein











(AHRD V1











***-











D7LRK9_ARALY);











contains











Interpro











domain(s)











IPR002885











Pentatricopeptide











repeat






Bc-siRNA
3′TTCATATGTAAGGCTCAGTTT 5′
73
4
Solyc07g066530.2.1
Mitochondrial







   |||||| |||||| ||||||


910~931(cDNA)
import






Target
5′CAGTATAGATTCCGTGTCAAA 3′
78


receptor











subunit











TOM34











(AHRD V1 *---











B5X380_SALSA);











contains











Interpro











domain(s)











IPR011990











Tetratricopeptide-











like helical






Bc-siRNA
3′-UUCAUAUGUAAGGCUCAGUUU 5′
79
4.25
AT5G50290
wall







  ::||||||||||||:||||::


495~515(CDS)
associated






Target
5′GGGUAUACAUUCCGGGUCAGG 3′
80


kinase





siR9
3847.8
120.16
231.7
Bc-siRNA
3′AGATTTTTACGAGTAGTATTTT 5′
81
4.5
AT1G73880.1
UDP-glucosyl


SIR6 CDS




   |||:||| ||||||:||:|||


146~168(CDS)
transferase


(spurious



Target
5′ACTAGAAAAGCTCATTATGAAA 3′
82


89B1


gene)


TTTTATG


ATGAGC


ATTTTTA


GA (SEQ


ID NO: 81)






Bc-siRNA
3′AGATTTTTACGAGTAGTATTTT 5′
81
4
Solyc04g005540.2.1
Cc-nbs-lrr,







  |:||:|||| |||| |||||||


1920~1942(cDNA)
resistance






Target
5′TTTAGAAATTCTCAGCATAAAA 3′
83


protein






Bc-siRNA
3 ′AGATTTTTACGAGTAGTATTTT 5′
81
4.25
Solyc05g007170.2.1
Cc-nbs-lrr,







  ||| :||| |:|||||||||||


7265~7287(cDNA)
resistance






Target
5′TCTTGAAACGTTCATCATAAAA 3′
84


protein with











an R1 specific











domain






Bc-siRNA
3′AGATTTTTACGAGTAGTATTTT 5′
81
4
Solyc07g017880.2.1
Peroxidase







  |:|:| ||||||:||:||||||


780~802(cDNA)
(AHRD V1






Target
5′TTTGATAATGCTTATTATAAAA 3′
85


****











D4NYQ9_9ROSI);











contains











Interpro











domain(s)











IPR002016











Haem











peroxidase,











plant/fungal/bacterial






Bc-siRNA
3′AGATTTTTACGAGTAGTATTTT 5′
81
3.5
Solyc10g050580.1.1
Protein







   ||:||||||:|||||||:|||


306~328(cDNA)
binding






Target
5′GCTGAAAATGTTCATCATGAAA 3′
86


protein











(AHRD V1











***-











D7M3B0_ARALY)






Bc-siRNA
3′AGATTTTTACGAGTAGTATTTT 5′
81
4.5
Solyc11g013490.1.1
Beta-1,3-







  |||:||:| ||||| ||||||:


561~583(cDNA)
galactosyltransferase 6






Target
5′TCTGAAGAAGCTCAACATAAAG 3′
87


(AHRD V1











***-











B6UBH3_MAIZE);











contains











Interpro











domain(s)











IPR002659











Glycosyl











transferase,











family 31





siR10
2234.2
689.6
56.5
Bc-siRNA
3′TCGTGGGATGTTGGATCTTTT 5′
88
4.25
AT1G63860.1
Disease


SIR2 LTR




  ||:| :||:||:|||||||||


1124~1145(CDS)
resistance


transposon



Target
5′AGTAATCTGCAGCCTAGAAAA 3′
89


protein (TIR-


TTTTCTA








NBS-LRR


GGTTGTA








class) family


GGGTGCT


(SEQ ID


NO: 88)






Bc-siRNA
3′TCGTGGGATGTTGGATCTTTT 5′
88
4
AT5G09260.1
vacuolar







  || |::| ||||||||||||:


511~532(CDS)
protein






Target
5′AGAATTCGACAACCTAGAAAG 3′
90


sorting-











associated











protein 20.2






Bc-siRNA
3′TCGTGGGATGTTGGATCTTTT 5′
88
4.5
Solyc04g050970.2.1
Receptor







   ||| |:| ||||||:|||||


19~40(cDNA)
protein kinase-






Target
5′TGCAACTTTCAACCTGGAAAA 3′
91


like protein











(AHRD V1











****











Q9LRYl_ARATH);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase






Bc-siRNA
3′TCGTGGGATGTTGGATCTTTT 5′
88
4.25
Solyc05g014650.2.1
Iojap-like







  ||||: |||||||:||||:||


541~562(cDNA)
protein






Target
5′AGCATACTACAACTTAGAGAA 3′
92


(AHRD V1 *-*-











B5ZUF1_RHILW);











contains











Interpro











domain(s)











IPR004394











Iojap-related











protein





siR18
155.7
1260.68
16.2
Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4.5
AT2G01110.1
Sec-


SIR1 LTR




  |  ||| |||||||||||||:


511~532(CDS)
independent


transposon



Target
5′TATTCGTCTCTGTTTTGGCTG 3′
94


periplasmic


TAGCCA








protein


AAACAG








translocase


AGTCGAT


CA (SEQ


ID NO: 93)






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4.5
AT2G31980.1
PHYTOCYSTATIN 2







  || |:||||||||| |||:||


490~511(CDS)






Target
5′TGTTTGACTCTGTTGTGGTTA 3′
95






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4.5
AT3G26300.1
cytochrome







  ||:|||| |:|| ||||||||


1345~1366(CDS)
P450, family






Target
5′TGGTCGAGTTTGGTTTGGCTA 3′
96


71, subfamily











B, polypeptide











34






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4.5
AT3G47440.1
tonoplast







  ||||:| ||||||| |||||


366~387(CDS)
intrinsic






Target
5′TGATTGCCTCTGTTATGGCTT 3′
97


protein 5; 1






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4.5
AT4G37160.1
SKU5 similar







  | | |:|||||||||||:||


52~73(CDS)
15






Target
5′GGTTAGGCTCTGTTTTGGTTA 3′
98






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4
Solyc02g071770.2.1
DUF1264







  ||| | ||||||||||| |||


1000~1021(cDNA)
domain






Target
5′TGAGCAACTCTGTTTTGTCTA 3′
99


protein











(AHRD V1











**--











A1CBM4_ASPCL);











contains











Interpro











domain(s)











IPR010686











Protein of











unknown











function











DUF1264






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
4
Solyc03g059420.2.1
Sister







  ||||:||:||||||||| ||


2896~2917(cDNA)
chromatid






Target
5′TGATTGATTCTGTTTTGCCTT 3′
100


cohesion 2











(AHRD V1











**--











D7M7D7_ARALY);











contains











Interpro











domain(s)











IPR016024











Armadillo-











type fold






Bc-siRNA
3′ACTAGCTGAGACAAAACCGAT 5′
93
3.5
Solyc07g017240.1.1
Unknown







  |||| | |||||||||||:|:


1~22(cDNA)
Protein






Target
5′TGATAGTCTCTGTTTTGGTTG 3′
101


(AHRD V1)





siR15
936.7
926.6
155
Bc-siRNA
3′AGTTTGTTGTTCCAAGTTGTGT 5′
102
4.5
AT2G23080.1
Protein kinase


SIR3 LTR




  |:||| || ||||||| |||||


1250~1272(3′UTR)
superfamily


transposon



Target
5′TTAAAAAAAAAGGTTCCACACA 3′
103


protein


TGTGTTG


AACCTTG


TTGTTTG


A (SEQ ID


NO: 102)






Bc-siRNA
3′AGTTTGTTGTTCCAAGTTGTGT 5′
102
4
AT3G46920.1
Protein kinase







   |||| ||||||| ||||||||


3478~3500(CDS)
superfamily






Target
5′CCAAAGAACAAGGCTCAACACA 3′
104


protein with











octicosapeptide/











Phox/Bem1p











domain






Bc-siRNA
3′AGTTTGTTGTTCCAAGTTGTGT 5′
102
3.5
AT5G48860.1
unknown







  ||:|| |||||||| |||||||


291~313(CDS)
protein,






Target
5′TCGAAAAACAAGGTGCAACACA 3′
105


hypothetical











protein,











uncharacterized











protein






Bc-siRNA
3′AGTTTGTTGTTCCAAGTTGTGT 5′
102
4.25
Solyc01g088020.2.1
Protein







  | :||||||||||||||:||:|


786~808(cDNA)
transport






Target
5′TGGAACAACAAGGTTCAGCATA 3′
106


protein sec31











(AHRD V1











**--











C8V1I6_EMENI);











contains











Interpro











domain(s)











IPR017986











WD40 repeat,











region





siR17
1682.7
589.2
245.8
Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4.5
AT1G56190.1
Phosphoglycerate


SIR6 CDS




   ||||| |||||:|:|||||:


1738~1759(3′UTR)
kinase


(spurious



Target
5′ACAGTGACATTCGTTATTTTG 3′
108


family protein


gene)


TAAAAT


GATGAA


TGGCACT


GG (SEQ


ID


NO: 107)






Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4.5
AT1G72740.1
Homeodomain-







  :|||| |||||:||||||| |


661~682(CDS)
like/winged-






Target
5′TCAGTTCCATTTATCATTTCA 3′
109


helix DNA-











binding family











protein






Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4.5
Solyc05g005950.2.1
Solute carrier







   |  ||||||||||||||||:


262~283(cDNA)
family 15






Target
5′ACCATGCCATTCATCATTTTG 3′
110


member 4











(AHRD V1











**--











S15A4_XENLA);











contains











Interpro











domain(s)











IPR000109











TGF-beta











receptor, type











I/II











extracellular











region






Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4.5
Solyc05g005960.2.1
Peptide







   |  ||||||||||||||||:


69~90(cDNA)
transporter 1






Target
5′ACCATGCCATTCATCATTTTG 3′
111


(AHRD V1











**-*











Q7XAC3_VICFA);











contains











Interpro











domain(s)











IPR000109











TGF-beta











receptor, type











I/II











extracellular











region






Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4
Solyc08g075450.2.1
Nodulin-like







  |:| ||:||||| ||||||||


222~243(cDNA)
protein






Target
5′CTACTGTCATTCTTCATTTTA 3′
112


(AHRD V1











***-











Q9FHJ9_ARATH);











contains











Interpro











domain(s)











IPR000620











Protein of











unknown











function











DUF6,











transmembrane






Bc-siRNA
3′GGTCACGGTAAGTAGTAAAAT 5′
107
4
Solyc08g075460.2.1
Nodulin-like







  |:| ||:||||| ||||||||


424~445(cDNA)
protein






Target
5′CTACTGTCATTCTTCATTTTA 3′
113


(AHRD V1











***-











Q9FHJ9_ARATH);











contains











Interpro











domain(s)











IPR000620











Protein of











unknown











function











DUF6,











transmembrane





siR22
370
995.72
63.3
Bc-siRNA
3′TGATGTGGGAACTGGTGCAAT 5′
114
4.25
AT3G17360.1
phragmoplast


SIR3 LTR




  : | ||||:|||||||||||:


625~646(CDS)
orienting


transposon



Target
5′GATTCACCTTTGACCACGTTG 3′
115


kinesin 1


TAACGTG


GTCAAG


GGTGTA


GT (SEQ


ID


NO: 114)






Bc-siRNA
3′TGATGTGGGAACTGGTGCAAT 5′
114
4.5
AT5G66510.1
gamma







  | ||:|:|||| |||||||:


438~459(CDS)
carbonic






Target
5′ACAACGCTCTTGTCCACGTTG 3′
116


anhydrase 3






Bc-siRNA
3′TGATGTGGGAACTGGTGCAAT 5′
114
3.5
Solyc01g005240.2.1
Aspartokinase







  ||||| |||||| |||||||:


1912~1933(cDNA)
(AHRD V1






Target
5′ACTACTCCCTTGCCCACGTTG 3′
117


***-











B9RGY9_RICCO);











contains











Interpro











domain(s)











IPR001341











Aspartate











kinase region





siR24
1210.2
651.72
429.9
Bc-siRNA
3′CAGTTTGTCTCTCCTGGTTAGT 5′
118
3.5
AT5G04990.1
SAD1/UNC-


SIR3 LTR




   |||::| ||||||||||||||


1226~1248(CDS)
84 domain


transposon



Target
5′ATCAGGCTGAGAGGACCAATCA 3′
119


protein 1


TGATTGG


TCCTCTC


TGTTTGA


C (SEQ ID


NO: 118)






Bc-siRNA
3′CAGTTTGTCTCTCCTGGTTAGT 5′
118
4
Solyc02g069090.2.1
Cathepsin B







  |||||||| |||||:||||| |


2009~2031(cDNA)
(AHRD V1






Target
5′GTCAAACAAAGAGGGCCAATAA 3′
120


***-











Q1HER6_NICBE);











contains











Interpro











domain(s)











IPR015643











Peptidase











C1A,











cathepsin B






Bc-siRNA
3′CAGTTTGTCTCTCCTGGTTAGT 5′
118
4.5
Solyc03g007390.2.1
Pentatricopeptide







   |||:| | ||||||:||||||


2085~2107(cDNA)
repeat-






Target
5′TTCAGAAATAGAGGATCAATCA 3′
121


containing











protein











(AHRD V1











***-











D7ML46_ARALY);











contains











Interpro











domain(s)











IPR002885











Pentatricopeptide











repeat






Bc-siRNA
3′CAGTTTGTCTCTCCTGGTTAGT 5′
118
4.5
Solyc03g097450.2.1
SWI/SNF







  || |:||||||||||| |:|||


1351~1373(cDNA)
complex






Target
5′GTGAGACAGAGAGGACAAGTCA 3′
122


subunit











SMARCC1











(AHRD V1 *---











SMRC1_HUMAN);











contains











Interpro











domain(s)











IPR007526











SWIRM






Bc-siRNA
3′CAGTTTGTCTCTCCTGGTTAGT 5′
118
4.5
Solyc09g089970.1.1
Unknown







   || | |:|||||||:||||||


287~309(cDNA)
Protein






Target
5′ATCTACCGGAGAGGATCAATCA 3′
123


(AHRD V1)





siR25
2747.8
15.64
20.8
Bc-siRNA
3′TTTTGGTTTTAAACTAAGTGAT 5′
124
3.75
AT5G41250.1
Exostosin


SIR2 LTR




  :|:|:||: |||||||||||||


1349~1371(CDS)
family protein


transposon



Target
5′GAGATCAGTATTTGATTCACTA 3′
125


TAGTGA


ATCAAAT


TTTGGTT


TT (SEQ


ID


NO: 124)






Bc-siRNA
3′TTTTGGTTTTAAACTAAGTGAT 5′
124
4
AT5G44030.1
cellulose







  || || ||| |||||||||||


3330~3352(3′UTR)
synthase A4






Target
5′AATACAAAACTTTGATTCACTT 3′
126






Bc-siRNA
3′TTTTGGTTTTAAACTAAGTGAT 5′
124
4.5
Solyc01g044240.2.1
Unknown







   |||::|||||||||||:|:||


1312~1334(cDNA)
Protein






Target
5′TAAATTAAAATTTGATTTATTA 3′
127


(AHRD V1)






Bc-siRNA
3′TTTTGGTTTTAAACTAAGTGAT 5′
124
3.5
Solyc12g005790.1.1
Peroxidase 27







  |||| |||:|||||:||||:||


512~534(cDNA)
(AHRD V1






Target
5′AAAAACAAGATTTGGTTCATTA 3′
128


***-











D7LAI1_ARALY);











contains











Interpro











domain(s)











IPR002016











Haem











peroxidase,











plant/fungal/bacterial





siR1015
1200.3
574.4
2304
Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4
AT2G45030.1
Translation


SIR1015




  || | ||| |||||||||||


2328~2348(3′UTR)
elongation


Intergenic



Target
5′ACGGTTCACACAACCATCAA 3′
130


factor


region








EFG/EF2


TTGATGG








protein


TTGTCTG


ATCGGT


(SEQ ID


NO: 129)






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4.5
AT5G02500.1
heat shock







  ||:| |||||| ||||||:|


954~974(CDS)
cognate






Target
5′ACTGCTCAGACCACCATCGA 3′
131


protein 70-1






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4.5
Solyc05g005180.2.1
Naphthoate







  |::| | |||:|||||||||


437~457(cDNA)
synthase






Target
5′ATTGCTAAGATAACCATCAA 3′
132


(AHRD V1











***-











A8I2W2_CHLRE);











contains











Interpro











domain(s)











IPR010198











Naphthoate











synthase






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4.5
Solyc06g036150.1.1
Unknown







  ||:| || ||||:||||:||


564~584(cDNA)
Protein






Target
5′ACTGTTCTGACAGCCATTAA 3′
133


(AHRD V1)






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4.5
Solyc07g043250.1.1
Unknown







  :|| |||||||:|| |||||


116~136(cDNA)
Protein






Target
5′GCCCATCAGACGACGATCAA 3′
134


(AHRD V1);











contains











Interpro











domain(s)











IPR008889











VQ






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
3.5
Solyc08g063100.1.1
Ulp1 protease







  ||:| || |||||||||:||


438~458(cDNA)
family C-






Target
5′ACTGTTCTGACAACCATTAA 3′
135


terminal











catalytic











domain











containing











protein











(AHRD V1 *-*-











Q60D46_SOLDE)






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
4
Solyc10g006090.2.1
Genomic







  ||:|||::|||||||||| |


2583~2603(cDNA)
DNA






Target
5′ACTGATTGGACAACCATCCA 3′
136


chromosome 5











P1 clone











MTE17











(AHRD V1











**--











Q9FJ71_ARATH);











contains











Interpro











domain(s)











IPR011011











Zinc finger,











FYVE/PHD-











type






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
3.5
Solyc12g044780.1.1
F-box family







  ||:|:|::|||||||||||


816~836(cDNA)
protein






Target
5′ACTGGTTGGACAACCATCAC 3′
137


(AHRD V1 *-*-











D7LXD8_ARALY);











contains











Interpro











domain(s)











IPR001810











Cyclin-like F-











box






Bc-siRNA
3′TGGCTAGTCTGTTGGTAGTT 5′
129
3.5
Solyc12g044790.1.1
F-box family







  ||:|:|::|||||||||||


816~836(cDNA)
protein






Target
5′ACTGGTTGGACAACCATCAC 3′
138


(AHRD V1 *-*-











D7LXD8_ARALY);











contains











Interpro











domain(s)











IPR001810











Cyclin-like F-











box





siR20
1402.4
467.4
83.2
Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4
AT3G18010.1
WUSCHEL


SIR2 LTR




::| |||||:|||||||||:||


1076~1098(CDS)
related


transposon



Target
5′GGTGAGAAAGACAAGAACATTA 3′
140


homeobox 1


TAGTGTT


CTTGTTT


TTCTGAT


T (SEQ ID


NO: 139)






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
AT3G20660.1
organic







  || || |||||||| ||||||:


43~65(5′UTR)
cation/carnitine






Target
5′AAACACAAAAACAAAAACACTG 3′
141


transporter4






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
AT4G23882.1
Heavy metal







  ||| |||:||:||||||||| |


549~571(CDS)
transport/detoxification






Target
5′AATAAGAGAAGCAAGAACACAA 3′
142


superfamily











protein






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
A15G17680.1
disease







  |:|||| ||||| ||||||||


3220~3242(CDS)
resistance






Target
5′AGTCAGCAAAACCAGAACACTC 3′
143


protein (TIR-











NBS-LRR











class),











putative






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
Solyc02g076690.2.1
Cathepsin B-







  || ||| |:||||||| |||||


598~620(cDNA)
like cysteine






Target
5′AAACAGCAGAACAAGACCACTA 3′
144


proteinase











(AHRD V1











**-*











CYSP SCHMA);











contains











Interpro











domain(s)











IPR013128











Peptidase











C1A, papain






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
Solyc03g117110.2.1
DCN1-like







  |:|| ||||||||||:|:|||


462~484(cDNA)
protein 4






Target
5′AGTCTGAAAAACAAGGATACTT 3′
145


(AHRD V1











***-











B6TI85_MAIZE);











contains











Interpro











domain(s)











IPR014764











Defective in











cullin











neddylation






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
Solyc03g120530.2.1
BHLH







  |:| |||||||||| ||:||||


163~185(cDNA)
transcription






Target
5′AGTAAGAAAAACAATAATACTA 3′
146


factor-like











protein











(AHRD V1 *-**











Q5ZAK6_ORYSJ);











contains











Interpro











domain(s)











IPR011598











Helix-loop-











helix DNA-











binding






Bc-siRNA
3′TTAGTCTTTTTGTTCTTGTGAT 5′
139
4.5
Solyc11g039880.1.1
Nucleoporin







  |||:| ||||||||| |||||


1821~1843(cDNA)
NUP188






Target
5′AATTATAAAAACAAGCACACTC 3′
147


homolog











(AHRD V1 *-*-











NU188_HUMAN)





siR1021
2041.3
137.44
94.1
Bc-siRNA
3′TGTACAAAACAAGTAGTGACAT 5′
148
3
AT2G40520.1
Nucleotidyltransferase


SIR1021




  |||||| || |||||||||||


815~837(CDS)
family protein


CDS



Target
5′ACATGTCTTATTCATCACTGTC 3′
149


TACAGTG


ATGAAC


AAAACA


TGT (SEQ


ID


NO: 148)






Bc-siRNA
3′TGTACAAAACAAGTAGTGACAT 5′
148
3.5
AT3G11530.1
Vacuolar







  | | ||||| |||||||||||:


682~704(3′UTR)
protein sorting






Target
5′AAAAGTTTTATTCATCACTGTG 3′
150


55 (VPS55)











family protein






Bc-siRNA
3′TGTACAAAACAAGTAGTGACAT 5′
148
4.5
Solyc05g009280.2.1
Fatty acid







  ||| || || |||||||:|||:


1339~1361(cDNA)
elongase 3-






Target
5′ACACGTCTTCTTCATCATTGTG 3′
151


ketoacyl-CoA











synthase











(AHRD VI











****











Q6DUV5_BRANA);











contains











Interpro











domain(s)











IPR012392











Very-long-











chain 3-











ketoacyl-CoA











synthase





siR1002
1408.4
360.44
239.1
Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
4.5
AT1G62940.1
acyl-CoA


SIR1002




  |||| | |||:|| |||||||||


111~134(CDS)
synthetase 5


Intergenicregion



Target
5′TGTGCTCCAAGGAGTTGAAGAAT 3′
153


ATTCTTC


AAATCTT


TGTAACA


CA (SEQ


ID


NO: 152)






Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
4.5
AT4G30420.1
nodulin







  | ||| |:|||||| ||||||||


1039~1062(CDS)
MtN21/






Target
5′TCTGTAATAAAGATCTGAAGAAT 3′
154


EamA-like











transporter











family protein






Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
3.5
AT4G34380.1
Transducin/WD40







  | ||| |:||||||||||||||


285~308(5′UTR)
repeat-






Target
5′TTTGTGATAAAGATTTGAAGAAA 3′
155


like











superfamily











protein






Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
4
Solyc08g060920.2.1
Xenotropic







  || ||||||||||| |||||||


98~121(cDNA)
and polytropic






Target
5′TGAGTTACAAAGATCTGAAGAAA 3′
156


retrovirus











receptor











(AHRD V1











**--











B2GU54_XENTR);











contains











Interpro











domain(s)











IPR004331











SPX, N-











terminal






Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
4
Solyc08g081380.2.1
At5g63850-







  ||| ||:|||:|||||||:|||


989~1012(cDNA)
like protein






Target
5′TGTATTGCAAGGATTTGAGGAAA 3′
157


(Fragment)











(AHRD V1 *-*-











Q3YI76_ARALY);











contains











Interpro











domain(s)











IPR000210











BTB/POZ-like






Bc-siRNA
3′ACACAATGTTTCTAAACTTCTTA 5′
152
4.5
Solyc12g009480.1.1
Xenotropic







  ||| |||||:|||||||||||


67~90(cDNA)
and polytropic






Target
5′TGTCATACAAGGATTTGAAGAAA 3′
158


retrovirus











receptor











(AHRD V1











**--











B2GU54_XENTR);











contains











Interpro











domain(s)











IPR004331











SPX, N-











terminal





siR28
415.5
727.44
29.8
Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
2.5
AT1G16760.1
Protein kinase


SIR1 LTR




  |:|||||||||||||||| |||


1454~1476(CDS)
protein with


transposon



Target
5′AGGAAGATCACAGTTTCACAAA 3′
160


adenine


TTTTTGA








nucleotide


AACTGTG








alpha


ATCTTCT








hydrolases-


T (SEQ ID








like domain


NO: 159)






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
2
AT1G78940.1
Protein kinase







  |:|:||||||||||||||:|||


1425~1447(CDS)
protein with






Target
5′AGGGAGATCACAGTTTCAGAAA 3′
161


adenine











nucleotide











alpha











hydrolases-like domain






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4
Al2G28830.1
PLANT U-







  ||||||| || |||||||:|||


2571~2593(CDS)
BOX 12






Target
5′AAGAAGAACAAAGTTTCAGAAA 3′
162






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4.5
AT2G40720.1
Tetratricopeptide







  |||||| |:|||||||:| |||


2191~2213(CDS)
repeat






Target
5′AAGAAGCTTACAGTTTTATAAA 3′
163


(TPR)-like











superfamily











protein






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4.5
AT3G20200.1
Protein kinase







  |:||||||| || |||||||:|


1777~1799(CDS)
protein with






Target
5′AGGAAGATCTCAATTTCAAAGA 3′
164


adenine











nucleotide











alpha











hydrolases-











like domain






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
3
AT4G31230.1
Protein kinase







  |:| ||:|||||||||||:|||


1505~1527(CDS)
protein with






Target
5′AGGCAGGTCACAGTTTCAGAAA 3′
165


adenine











nucleotide











alpha











hydrolases-











like domain






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4.5
Solyc01g080610.2.1
Unknown







  ||||:| || |||||||||| |


852~874(cDNA)
protein






Target
5′AAGAGGTTCTCAGTTTCAAATA 3′
166


(AHRD V1);











contains











Interpro











domain(s)











IPR005508











Protein of











unknown











function











DUF313






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4.5
Solyc01g080720.2.1
Pentatricopeptide







  ||||:| || |||||||||| |


319~341(cDNA)
repeat-






Target
5′AAGAGGTTCTCAGTTTCAAATA 3′
167


containing











protein











(AHRD V1











***-











D7L610_ARALY);











contains











Interpro











domain(s)











IPR002885











Pentatricopeptide











repeat






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4.5
Solyc03g115850.2.1
NAC domain







  | |:| |||| |||||||||||


934~956 (cDNA)
protein






Target
5′ACGGACATCAGAGTTTCAAAAA 3′
168


IPR003441











(AHRD V1











***-











B9I557_POPTR);











contains











Interpro











domain(s)











IPR003441











No apical











meristem











(NAM)











protein






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
3
Solyc05g024450.1.1
Unknown







  |||||| |||:||||||||:||


196~218(cDNA)
Protein






Target
5′AAGAAGTTCATAGTTTCAAGAA 3′
169


(AHRD V1)






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
3.75
Solyc06g009200.2.1
Polygalacturonase







  || :| ||:|||||||||||||


664~686(cDNA)
(AHRD






Target
5′AATGACATTACAGTTTCAAAAA 3′
170


V1 ***-











Q2M4X6_LILLO);











contains











Interpro











domain(s)











IPR000743











Glycoside











hydrolase,











family 28






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4
Solyc06g031690.2.1
Ankyrin







  |||:| ||:|||||||||:|:|


345~367(cDNA)
repeat family






Target
5′AAGGATATTACAGTTTCAGAGA 3′
171


protein











(AHRD V1











***-











D7LCV0_ARALY);











contains











Interpro











domain(s)











IPR002110











Ankyrin






Bc-siRNA
3′TTCTTCTAGTGTCAAAGTTTTT 5′
159
4
Solyc07g041780.2.1
OBP3-







  ||||||||| ||||| |||||


450~472(cDNA)
responsive






Target
5′AAGAAGATCCCAGTTACAAAAT 3′
172


gene 4











(AHRD V1











**--











D7L9C5_ARALY)





siR31
117
803.16
4.7
Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
4.5
AT1G65550.1
Xanthine/uracil


SIR1 LTR




  ::||:|:||||||||| ||||


761~782(CDS)
permease


transposon



Target
5′TGTTTATGACCACAAGTCTCA 3′
174


family protein


TGAGTCT


TGTGGTC


GTGAAT


G (SEQ ID


NO: 173)






Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
4
AT2G05970.1
F-box family







  ::||:|||| |||||||||||


569~590(CDS)
protein with a






Target
5′TGTTTACGAACACAAGACTCA 3′
175


domain of











unknown











function











(DUF295)






Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
4.5
AT5G25420.1
Xanthine/uracil/







  ::||:|:||||||||| ||||


716~737(CDS)
vitamin C






Target
5′TGTTTATGACCACAAGCCTCA 3′
176


permease






Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
3.5
Solyc01g011090.2.1
Phospholipid-







  |||:| ||||||||||:|||


3435~3456(cDNA)
transporting






Target
5′AATTTAAGACCACAAGATTCA 3′
177


ATPase











(AHRD V1











***-











C5G6U4_AJEDR);











contains











Interpro











domain(s)











IPR001757











ATPase, P-











type,











K/Mg/Cd/Cu/











Zn/Na/Ca/Na/











H-transporter






Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
4.5
Solyc01g110700.2.1
Unknown







  |||:| ||:|||||||:|||


36445~36466(cDNA)
Protein






Target
5′AATTTAAGATCACAAGATTCA 3′
178


(AHRD V1)






Bc-siRNA
3′GTAAGTGCTGGTGTTCTGAGT 5′
173
4.5
Solyc01g111180.2.1
Unknown







  |||:| ||:|||||||:|||


6734~6755(cDNA)
Protein






Target
5′AATTTAAGATCACAAGATTCA 3′
179


(AHRD V1)





siR29
1843
87.24
28.9
Bc-siRNA
3′GGGTTTTTCCTGATAGGTTGT 5′
180
4.5
AT2G45110.1
expansin B4


SIR2 LTR




  ||| ||:||||| ||:|||||


729~750(CDS)


transposon



Target
5′CCCTAAGAGGACCATTCAACA 3′
181


TGTTGGA


TAGTCCT


TTTTGGG


(SEQ ID


NO: 180)






Bc-siRNA
3′GGGTTTTTCCTGATAGGTTGT 5′
180
3.75
AT5G38990.1
Malectin/receptor-







  : ||||:|||||||||||||


1156~1177(CDS)
like






Target
5′TACAAAGAGGACTATCCAACC 3′
182


protein kinase











family protein






Bc-siRNA
3′GGGTTTTTCCTGATAGGTTGT 5′
180
4
Solyc00g025660.1.1
Unknown







  :||||:|||||| |||||:||


576~597(cDNA)
Protein






Target
5′TCCAAGAAGGACAATCCAGCA 3′
183


(AHRD V1)






Bc-siRNA
3′GGGTTTTTCCTGATAGGTTGT 5′
180
4
Solyc03g117510.2.1
Formamidopyrimidine-







  :|||||:||||||:| |||||


745~766(cDNA)
DNA






Target
5′TCCAAAGAGGACTGTGCAACA 3′
184


glycosylase











(AHRD V1











****











C5JTH8_AJEDS);











contains











Interpro











domain(s)











IPR000191











DNA











glycosylase/AP











lyase





siR41
371.5
652.56
54.5
Bc-siRNA
3′AAGATGAGGGCTTTTGATAGT 5′
185
4.5
AT3G09530.1
exocyst


SIR3 LTR




  || |:|||||:|||||||||


826~847(CDS)
subunit exo70


transposon



Target
5′TTGGATTCCCGGAAACTATCA 3′
186


family protein


TGATAGT








H3


TTTCGGG


AGTAGA


A (SEQ ID


NO: 185)






Bc-siRNA
3′AAGATGAGGGCTTTTGATAGT 5′
185
4.5
AT3G19780.1







  | | |||:|||||||||:||


1248~1269(CDS)






Target
5′TGCCACTTCCGAAAACTGTCC 3′
187






Bc-siRNA
3′AAGATGAGGGCTTTTGATAGT 5′
185
4
Solyc05g014050.2.1
Inner







  ||| |||:|:|||||:||||:


1422~1443(cDNA)
membrane






Target
5′TTCCACTTCTGAAAATTATCG 3′
188


protein oxaA











(AHRD V1 *-*-











B9L0L4_THERP);











contains











Interpro











domain(s)











IPR001708











Membrane











insertion











protein,











OxaA/YidC





siR35
149.7
727.44
21.2
Bc-siRNA
3′TTGCGCTGTACCGTGTCATGT 5′
189
4
AT3G52810.1
purple acid


SIR2 LTR




  || || |||||:||||||||


978~999(CDS)
phosphatase


transposon



Target
5′CACACGCCATGGTACAGTACA 3′
190


21


TGTACTG


TGCCATG


TCGCGTT


(SEQ ID


NO: 189)






Bc-siRNA
3′TTGCGCTGTACCGTGTCATGT 5′
189
3.5
Solyc11g017230.1.1
DNA







  ||| | |::||||||||||||


721~742(cDNA)
polymerase I






Target
5′AACACTATGTGGCACAGTACA 3′
191


(AHRD V1











***-











B6U7X8_MAIZE);











contains











Interpro











domain(s)











IPR002421











5′-3′











exonuclease,











N-terminal





siR57
114
728.28
13.8
Bc-siRNA
3′GGTTGCTTGGTCTCTAATAGAT 5′
192
4.5
AT3G28390.1
P-glycoprotein


SIR1 LTR




  :|:|||||:|:||||||||| |


3253~3275(CDS)
18


transposon



Target
5′TCGACGAATCGGAGATTATCGA 3′
193


TAGATA


ATCTCTG


GTTCGTT


GG (SEQ


ID


NO: 192)






Bc-siRNA
3′GGTTGCTTGGTCTCTAATAGAT 5′
192
4.5
AT3G29575.1
ABI five







:|:| ||| ||||||||:|||:


350~372(CDS)
binding






Target
5′TCGAAGAAACAGAGATTGTCTG 3′
194


protein 3






Bc-siRNA
3′GGTTGCTTGGTCTCTAATAGAT 5′
192
2.5
Solyc03g007790.2.1
Receptor-like







  ||:| |||||||||:|||||||


2084~2106(cDNA)
protein kinase






Target
5′CCGAGGAACCAGAGGTTATCTA 3′
195


(AHRD V1











****











Q9FLV4_ARATH);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase





siR43
645
501.16
122
Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4
AT1G19050.1
response


SIR1 LTR




  :|:||||||||||||||:| |


592~613(CDS)
regulator 7


transposon



Target
5′TCTAACAAGAGAAAGCTTCAA 3′
197


TGGGAG


CTTTCTC


TTGTTGG


G (SEQ ID


NO: 196)






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.5
AT1G26450.1
Carbohydrate-







  |:| ||| ||||||||:|||


401~422(CDS)
binding X8






Target
5′ACTATCAAAAGAAAGCTTCCA 3′
198


domain











superfamily











protein






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.5
AT1G51600.1
ZIM-LIKE 2







| |:|||||||||| |||||


1398~1419(3′UTR)






Target
5′ACAAGCAAGAGAAAGATCCCA 3′
199






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.25
AT1G70190.1
Ribosomal







  ::|:|: ||||||||||||||


202~223(CDS)
protein






Target
5′TTCGATCAGAGAAAGCTCCCA 3′
200


L7/L12,











oligomerisation;











Ribosomal











protein











L7/L12, C-











terminal/adaptor











protein











ClpS-like






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.25
AT3G19860.1
basic helix-







  |:|||:|: |||||||||:||


979~1000(CDS)
loop-helix






Target
5′CTCAATAGAAGAAAGCTCTCA 3′
201


(bHLH) DNA-











binding











superfamily











protein






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.5
AT5G45030.1
Trypsin family







  | |:||| ||||||| |||||


65~86(5′UTR)
protein






Target
5′CACGACATGAGAAAGATCCCA 3′
202






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
4.5
Solyc01g093970.2.1
Glycosyltransferase







||::| || ||||||:|||||


809~830(cDNA)
(AHRD






Target
5′CCTGAAAAAAGAAAGTTCCCA 3′
203


V1 **--











B9IC41_POPTR);











contains











Interpro











domain(s)











IPR002495











Glycosyl











transferase,











family 8






Bc-siRNA
3′GGGTTGTTCTCTTTCGAGGGT 5′
196
3.5
Solyc04g039950.2.1
Mediator of







  ||| |||:|:||:||||||||


2037~2058(cDNA)
RNA






Target
5′CCCTACAGGGGAGAGCTCCCA 3′
204


polymerase II











transcription











subunit 13











(AHRD V1 *-*-











MED13_DICDI);











contains











Interpro











domain(s)











IPR009401











Mediator











complex,











subunit











Med13





siR40
693.6
473.16
43
Bc-siRNA
3′TTGGTTATGTTCGGGTAAGGT 5′
205
4.5
AT1G06910.1
TRF-like 7


SIR2 LTR




  |::|||| ||| |||||||||


756~777(CDS)


transposon



Target
5′AGTCAATTCAATCCCATTCCA 3′
206


TGGAAT


GGGCTTG


TATTGGT


T (SEQ ID


NO: 205)






Bc-siRNA
3′TTGGTTATGTTCGGGTAAGGT 5′
205
4.5
AT1G09350.1
galactinol







  :|| |||||||||:||||||


723~744(CDS)
synthase 3






Target
5′GACATATACAAGCCTATTCCA 3′
207






Bc-siRNA
3′TTGGTTATGTTCGGGTAAGGT 5′
205
3.5
AT4G38550.1

Arabidopsis








  || ||||:|:||||||||:||


604~625(CDS)
phospholipase-like






Target
5′AAGCAATGCGAGCCCATTTCA 3′
208


protein











(PEARLI 4)











family






Bc-siRNA
3′TTGGTTATGTTCGGGTAAGGT 5′
205
4
Solyc02g037560.1.1
Ulp1 protease







  |:|:||||||||| ||||:||


542~563(cDNA)
family C-






Target
5′AGCTAATACAAGCACATTTCA 3′
209


terminal











catalytic











domain











containing











protein











(AHRD V1











***-











Q60D46_SOLDE)






Bc-siRNA
3′TTGGTTATGTTCGGGTAAGGT 5′
205
4
Solyc08g074820.1.1
Unknown







  :||:||||||||| ||||:||


86~107(cDNA)
Protein






Target
5′GACTAATACAAGCACATTTCA 3′
210


(AHRD V1)





siR38
1765.5
35.4
23.3
Bc-siRNA
3′TGCTATAGCAGAGGACTTAAT 5′
211
4.5
AT3G23130.1
C2H2 and


SIR2 LTR




  || || |:||||||| |||||


1039~1060(3′UTR)
C2HC zinc


transposon



Target
5′ACAATTTTGTCTCCTTAATTA 3′
212


fingers


TAATTCA








superfamily


GGAGAC








protein


GATATCG


T (SEQ ID


NO: 211)






Bc-siRNA
3′TGCTATAGCAGAGGACTTAAT 5′
211
4.25
Solyc04g081500.2.1
BRCA1-A







   :|:|||| |||||||||||:


836~857(cDNA)
complex






Target
5′TTGGTATCTTCTCCTGAATTG 3′
213


subunit BRE











(AHRD V1











***-











BRE_XENTR);











contains











Interpro











domain(s)











IPR010358











Brain and











reproductive











organ-











expressed





siR46
1811.1
5.76
166.5
Bc-siRNA
3′CAACCACCGGAAGTTAGCAATC 5′
214
4
AT5G21430.1
Chaperone


SIR9




  | ||| || ||||||||||||


703~725(CDS)
DnaJ-domain


Intergenic



Target
5′TTCGGTTGCGTTCAATCGTTAG 3′
215


superfamily


region








protein


CTAACG


ATTGAA


GGCCAC


CAAC


(SEQ ID


NO: 214)






Bc-siRNA
3′CAACCACCGGAAGTTAGCAATC 5′
214
3
Solyc09g007340.2.1
PWWP







  |||||||||||||||||| |:|


938~960(cDNA)
domain-






Target
5′GTTGGTGGCCTTCAATCGCTGG 3′
216


containing











protein











(AHRD V1 *-*-











D7L8B3_ARALY);











contains











Interpro











domain(s)











IPR000313











PWWP





siR48
66.9
678.08
7.7
Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
4
AT2G03040.1
emp24/gp25L/


SIR1 LTR




  ||||| ||||||||:|:|||


444~465(CDS)
p24


transposon



Target
5′TTGATGGATACTGTTATTTCC 3′
218


family/GOLD


TGAAGT








family protein


GACAGT


ATCGATC


AA (SEQ


ID


NO: 217)






Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
4
AT2G03290.1
emp24/gp25L/







  ||||| ||||||||:|:|||


444~465(CDS)
p24






Target
5′TTGATGGATACTGTTATTTCC 3′
219


family/GOLD











family protein






Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
4
AT2G44430.1
DNA-binding







  ||| |||||||| ||:|||||


511~532(CDS)
bromodomain-






Target
5′TTGTTCGATACTATCGCTTCA 3′
220


containing











protein






Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
4.5
AT5G58160.1
actin binding







  || ||:| ||||||||| |||


1894~1915(CDS)






Target
5′TTCATTGTTACTGTCACCTCA 3′
221






Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
3
Solyc06g068240.2.1
Pyrophosphate-







  ||| |:|:|:|||||||||||


441~462(cDNA)
energized






Target
5′TTGCTTGGTGCTGTCACTTCA 3′
222


proton pump











(AHRD V1











***-











B0SRX3_LEPBP);











contains











Interpro











domain(s)











IPR004131











Inorganic H+











pyrophosphatase






Bc-siRNA
3′AACTAGCTATGACAGTGAAGT 5′
217
4.5
Solyc12g099250.1.1
Kinase family







  || || |:|:||||:||||||


1641~1662(cDNA)
protein






Target
5′TTCATGGGTGCTGTTACTTCA 3′
223


(AHRD V1











***-











D7KVQ9_ARALY);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase





siR1007
1641.7
14
0
Bc-siRNA
3′TAGGAAGGCGTCCTAGTGGATG 5′
224
4.5
AT3G09370.1
myb domain


SIR1007




  :|||| || ||| |||||||||


334~356(CDS)
protein 3r-3


LTR



Target
5′GTCCTGCCACAGTATCACCTAC 3′
225


transposon


GTAGGT


GATCCTG


CGGAAG


GAT (SEQ


ID


NO: 224)






Bc-siRNA
3′TAGGAAGGCGTCCTAGTGGATG 5′
224
3
Solyc12g099450.1.1
Genomic







  ||:||||| ||||||||:|||:


514~536(cDNA)
DNA






Target
5′ATTCTTCCACAGGATCATCTAT 3′
226


chromosome 5











TAC clone











K20J1











(AHRD V1 *-*-











Q9FH24_ARATH)





siR56
38.7
655.04
19.1
Bc-siRNA
3′TGCGTTGATGTCCTACTTGCT 5′
227
4
AT5G37010.1
unknown


SIR1 LTR




  |:||||||:|||||| ||||


1380~1401(CDS)
protein,


transposon



Target
5′ATGCAACTGCAGGATCAACGT 3′
228


hypothetical


TCGTTCA








protein,


TCCTGTA








uncharacterized


GTTGCGT








protein


(SEQ ID


NO: 227)






Bc-siRNA
3′TGCGTTGATGTCCTACTTGCT 5′
227
4
Solyc03g019870.2.1
Cytochrome







  | |||||||||||||||:| |


915~936(cDNA)
P450






Target
5′AAGCAACTACAGGATGAGCAA 3′
229





siR49
1079.5
228.76
50.6
Bc-siRNA
3′ATAGTTTTCTGTATTCGGTGT 5′
230
4.5
AT3G45700.1
Major


SIR2 LTR




  || |||| ||||||| ||||:


1535~1556(CDS)
facilitator


transposon



Target
5′TACCAAATGACATAAACCACG 3′
231


superfamily


TGTGGCT








protein


TATGTCT


TTTGATA


(SEQ ID


NO: 230)






Bc-siRNA
3′ATAGTTTTCTGTATTCGGTGT 5′
230
4.5
AT4G01410.1
Late







   ||:|||||:||||||||| |


940~961(3′UTR)
embryogenesis






Target
5′AATTAAAAGGCATAAGCCAAA 3′
232


abundant











(LEA)











hydroxyproline-











rich











glycoprotein











family






Bc-siRNA
3′ATAGTTTTCTGTATTCGGTGT 5′
230
4.5
Solyc01g107100.2.1
Beta-1,4-







  ||| ||:| ||| ||||||||


82~103(cDNA)
xylosidase






Target
5′TATGAAGAAACACAAGCCACA 3′
233


(AHRD V1











***-











D7LA14_ARALY)






Bc-siRNA
3′ATAGTTTTCTGTATTCGGTGT 5′
230
4.25
Solyc07g042160.2.1
Polygalacturonase







  || :|:|:|||||||||:|||


1440~1461(cDNA)
(AHRD






Target
5′TACTAGAGGACATAAGCTACA 3′
234


V1 **--











B6SZN5_MAIZE);











contains











Interpro











domain(s)











IPR012334











Pectin lyase











fold





siR58
39.5
636.12
7
Bc-siRNA
3′GTCTGTTACTTAGGGTTAAAT 5′
235
4.5
AT4G36080.1
phosphotransferases,


SIR1 LTR




  ||||||| |||||:|||| |:


4572~4593(CDS)
alcohol


transposon



Target
5′CAGACAAAGAATCTCAATATG 3′
236


group as


TAAATTG








acceptor; binding;


GGATTCA








inositol or


TTGTCTG








phosphatidylinositol


(SEQ ID








kinases


NO: 235)






Bc-siRNA
3′GTCTGTTACTTAGGGTTAAAT 5′
235
4.5
Solyc01g058540.2.1
WRKY







  | ||:||||||||::||||||


1023~1044(cDNA)
transcription






Target
5′CTGATAATGAATCTTAATTTA 3′
237


factor 31











(AHRD V1 *-*-











C9DI20_9ROSI);











contains











Interpro











domain(s)











IPR003657











DNA-binding











WRKY






Bc-siRNA
3′GTCTGTTACTTAGGGTTAAAT 5′
235
4
Solyc01g109980.2.1
BEL1-like







  :| |:|:| |||||||||||:


2186~2207(cDNA)
homeodomain






Target
5′TATATAGTCAATCCCAATTTG 3′
238


protein 6











(AHRD V1 *---











BLH6_ARATH);











contains











Interpro











domain(s)











IPR006563











POX





siR63
132.9
578.48
7.8
Bc-siRNA
3′TGTAAGAGAGTAGTTGATAAT 5′
239
4.5
AT5G04430.1
binding to


SIR1 LTR




   | ||||:|:||||||||||


1461~1482(3′UTR)
TOMV RNA


transposon



Target
5′TCTTTCTTTTATCAACTATTT 3′
240


1L (long


TAATAGT








form)


TGATGA


GAGAAT


GT (SEQ


ID


NO: 239)






Bc-siRNA
3′TGTAAGAGAGTAGTTGATAAT 5′
239
4.5
AT5G48385.1
FRIGIDA-like







  | |||:|||:||:||:|||||


2124~2145(3′UTR)
protein






Target
5′AGATTTTCTTATTAATTATTA 3′
241






Bc-siRNA
3′TGTAAGAGAGTAGTTGATAAT 5′
239
4.5
Solyc01g096910.2.1
Vacuolar







  :|||| | |||||||| ||||


975~996(cDNA)
protein sorting






Target
5′GCATTGTATCATCAACAATTA 3′
242


36 family











protein











(AHRD V1











***-











D7LY74_ARALY);











contains











Interpro











domain(s)











IPR007286











EAP30





siR1005
441.4
452.6
277.5
Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4
AT1G20200.1
PAM domain


SIR1005




  ||||| | ||||| |||||||


1224~1245(CDS)
(PCI/PINT






Target
5′TCCTACTCAAGAATCTCTTTA 3′
244


associated


LTR








module)


transposon








protein


TAAAGA


GTTTCTT


CAATAG


GA (SEQ


ID


NO: 243)






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT1G20650.1
Protein kinase







  ||:|| |||||||:||| |||


1502~1523(CDS)
superfamily






Target
5′TCTTAATGAAGAAGCTCATTA 3′
245


protein






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT1G67540.1
unknown







    |||||||:||||||||||:


352~373(CDS)
protein,






Target
5′GGCTATTGAGGAAACTCTTTG 3′
246


hypothetical











protein,











uncharacterized











protein






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT2G23790.1
Protein of







  |::||| |||||||||||| |


82~103(CDS)
unknown






Target
5′TTTTATCGAAGAAACTCTTCA 3′
247


function











(DUF607)






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT3G50950.1
HOPZ-







  ||:|:|| ||||||||| ||:


2116~2137(CDS)
ACTIVATED






Target
5′TCTTGTTCAAGAAACTCCTTG 3′
248


RESISTANCE 1






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT4G14510.1
CRM family







  | || |||:|||||||||| |


1862~1883(CDS)
member 3B






Target
5′TACTCTTGGAGAAACTCTTGA 3′
249






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
AT5G61290.1
Flavin-binding







  ||:| || ||||||||||| |


1366~1387(CDS)
monooxygenase






Target
5′TCTTCTTCAAGAAACTCTTCA 3′
250


family











protein






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
3.5
Solyc01g091200.2.1
NAD







   ||| |||||||||||:|||:


824~845(cDNA)
dependent






Target
5′CCCTCTTGAAGAAACTTTTTG 3′
251


epimerase/dehydratase











family protein











expressed











(AHRD V1











***-











Q2MJA7_ORYSJ);











contains











Interpro











domain(s)











IPR016040











NAD(P)-











binding











domain






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
Solyc04g028560.2.1
Zinc finger







  |:| |||||||||||||| |


2604~2625(cDNA)
transcription






Target
5′TTCAATTGAAGAAACTCTGTT 3′
252


factor (AHRD











V1 *-**











Q7K9G4_DROME);











contains











Interpro











domain(s)











IPR013087











Zinc finger,











C2H2-











type/integrase,











DNA-binding






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
3.5
Solyc05g050990.1.1
UDP-D-







   ||| |||||||||||:|||:


478~499(cDNA)
glucuronate 4-











epimerase 2






Target
5′CCCTCTTGAAGAAACTTTTTG 3′
253


(AHRD V1











****











D7M5S7_ARALY);











contains











Interpro











domain(s)











IPR016040











NAD(P)-











binding











domain






Bc-siRNA
3′AGGATAACTTCTTTGAGAAAT 5′
243
4.5
Solyc10g005940.1.1
CT099







  || ||| |:||| ||||||||


191~212(cDNA)
(Fragment)











(AHRD V1 *---






Target
5′TCATATCGGAGATACTCTTTA 3′
254


Q4KR02_SOLCI);











contains











Interpro











domain(s)











IPR003245











Plastocyanin-











like





siR60
33.4
599.88
34.1
Bc-siRNA
3′GGCAGAAGCTTAAGGTAACGT 5′
255
4.5
AT1G55610.1
BRI1 like


SIR1 LTR




  ::||||||||||||:||| ||


817~838(CDS)


transposon



Target
5′TTGTCTTCGAATTCTATTTCA 3′
256


TGCAATG


GAATTCG


AAGACG


G (SEQ ID


NO: 255)






Bc-siRNA
3′GGCAGAAGCTTAAGGTAACGT 5′
255
4.25
Solyc08g067800.1.1
Acetyltransferase







  || |||| |||||||||||::


261~282(cDNA)
(AHRD






Target
5′CCATCTTGGAATTCCATTGTG 3′
257


V1 **-*











B4RG69_PHEZH);











contains











Interpro











domain(s)











IPR016181











Acyl-CoA N-











acyltransferase





siR61
230.9
515.12
10.3
Bc-siRNA
3′GTGCATATGCTAAGATAAGAT 5′
258
4.25
AT2G17510.2
ribonuclease II


SIR3 LTR




   |: ||| |||||||||||||


1543~1564(CDS)
family protein


transposon



Target
5′AATTTATTCGATTCTATTCTA 3′
259


TAGAAT


AGAATC


GTATACG


TG (SEQ


ID


NO: 258)






Bc-siRNA
3′GTGCATATGCTAAGATAAGAT 5′
258
4
Solyc03g078160.2.1
POT family







  || ||:||:||||:|:|||||


896~917(cDNA)
domain






Target
5′CAAGTGTATGATTTTGTTCTA 3′
260


containing











protein











expressed











(AHRD V1











***-











D8L9H8_WHEAT);











contains











Interpro











domain(s)











IPR007493











Protein of











unknown











function











DUF538






Bc-siRNA
3′GTGCATATGCTAAGATAAGAT 5′
258
3.5
Solyc03g121810.2.1
Phospholipid-







  :|:|||||:|||||||||| |


2888~2909(cDNA)
transporting






Target
5′TATGTATATGATTCTATTCAA 3′
261


ATPase 1











(AHRD V1











****











C5FPS3_NANOT);











contains











Interpro











domain(s)











IPR006539











ATPase, P-











type,











phospholipid-











translocating,











flippase






Bc-siRNA
3′GTGCATATGCTAAGATAAGAT 5′
258
4.5
Solyc04g082430.2.1
B-like cyclin







  ||:|| |||||||| |||:||


8~29(cDNA)
(AHRD V1






Target
5′CATGTTTACGATTCAATTTTA 3′
262


****











Q40337_MEDSA);











contains











Interpro











domain(s)











IPR014400











Cyclin,











A/B/D/E





siR62
149.7
547.24
8.6
Bc-siRNA
3′AAATGAACGCTTAGGCAGCAT 5′
263
4.25
AT1G11620.1
F-box and


SIR2 LTR




  |||: ||||||||||||:||


353~374(CDS)
associated


transposon



Target
5′TTTGGTTGCGAATCCGTTGTT 3′
264


interaction


TACGAC








domains-


GGATTCG








containing


CAAGTA








protein


AA (SEQ


ID


NO: 263)






Bc-siRNA
3′AAATGAACGCTTAGGCAGCAT 5′
263
4
AT4G10030.1
alpha/beta-







  | || ||||||||:||||||


100~121(5′UTR)
Hydrolases






Target
5′TGTAATTGCGAATTCGTCGTT 3′
265


superfamily











protein






Bc-siRNA
3′AAATGAACGCTTAGGCAGCAT 5′
263
4
Solyc01g009570.2.1
Unknown







  |||||||| |||||||| ||


236~257(cDNA)
Protein






Target
5′TTTACTTGGGAATCCGTAGTC 3′
266


(AHRD V1)





siR65
14.4
583.44
22.2
Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4
AT1G75950.1
S phase


SIR1 LTR




  || ||:||:|||||||| |||


282~303(CDS)
kinase-


transposon



Target
5 ′ACAACGGAGTCCCTCTTCCTA 3′
268


associated


TAGCAA








protein 1


GAGGGA


TTCTGTA


GT (SEQ


ID


NO: 267)






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4
AT2G21330.1
fructose-







  :| |||||||||||| ||||:


974~995(CDS)
bisphosphate






Target
5′GCAACAGAATCCCTCCTGCTG 3′
269


aldolase 1






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4.5
AT3G23670.1
phragmoplast-







  ::| || |:|||:||||||||:


3292~3313(CDS)
associated






Target
5′GCAACTGGATCTCTCTTGCTG 3′
270


kinesin-related











protein,











putative






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4.5
AT4G25980.1
Peroxidase







  || |:| |||:|||||||||


187~208(CDS)
superfamily






Target
5′TCTTCGGCATCTCTCTTGCTA 3′
271


protein






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4.5
A14G27680.1
P-loop







  |:||| |||||:||||||:|


1507~1528(3′UTR)
containing






Target
5′ATTACTGAATCTCTCTTGTTC 3′
272


nucleoside











triphosphate











hydrolases











superfamily











protein






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4
Solyc07g007790.2.1
Sucrose







  ::||:||||||:||:||||||


3439~3460(cDNA)
phosphate






Target
5′GTTATAGAATCTCTTTTGCTA 3′
273


synthase











(AHRD V1











****











Q2HYI0_CUCME);











contains











Interpro











domain(s)











IPR012819











Sucrose











phosphate











synthase, plant






Bc-siRNA
3′TGATGTCTTAGGGAGAACGAT 5′
267
4.5
Solyc12g008370.1.1
Pre-mRNA-







  ::|||| ||||||||||| ||


496~517(cDNA)
processing






Target
5′GTTACACAATCCCTCTTGATA 3′
274


protein 45











(AHRD V1











**--











D6RKF6_COPC7);











contains











Interpro











domain(s)











IPR017862











SKI-











interacting











protein, SKIP





siR67
687.5
297.88
25.7
Bc-siRNA
3′TTTTTTAAGAGGCTAGCTAAAT 5′
275
4
AT1G27880.1
DEAD/DEAH


SIR2 LTR




  | ||||||||||||| |||||


3~25(CDS)
(SEQ ID


transposon



Target
5′ATAAAATTCTCCGATGGATTTC 3′
276


NOS: 277 and


TAAATCG








278) box RNA


ATCGGA








helicase


GAATTTT








family protein


TT (SEQ


ID


NO: 275)






Bc-siRNA
3′TTTTTTAAGAGGCTAGCTAAAT 5′
275
3
Solyc05g055050.1.1
Calcium-







   ||:||||:||||||||||||


568~590(cDNA)
dependent






Target
5′CAAGAATTTTCCGATCGATTTC 3′
279


protein kinase











2 (AHRD V1











****











B4FZS4_MAIZE);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase






Bc-siRNA
3′TTTTTTAAGAGGCTAGCTAAAT 5′
275
4
Solyc07g053900.2.1
Plant-specific







  |:|:|| ||||||||||| |||


421~443(cDNA)
domain






Target
5′AGAGAAATCTCCGATCGACTTA 3′
280


TIGR01615











family protein











(AHRD V1 *-*-











B6UDN7_MAIZE);











contains











Interpro











domain(s)











IPR006502











Protein of











unknown











function











DUF506,











plant





siR68
20.5
534.88
6.4
Bc-siRNA
3′GTTAAGGCTAGTGACGTAGGT 5′
281
4.25
AT4G21700.1
Protein of


SIR1 LTR




  : ||||||||||||||| |||


167~188(CDS)
unknown


transposon



Target
5′TTATTCCGATCACTGCAACCA 3′
282


function


TGGATGC








(DUF2921)


AGTGATC


GGAATT


G (SEQ ID


NO: 281)






Bc-siRNA
3′GTTAAGGCTAGTGACGTAGGT 5′
281
4
Solyc04g009560.2.1
TBC1 domain







  |||| |:|:||||||:|||:|


2811~2832(cDNA)
family






Target
5′CAATACTGGTCACTGTATCTA 3′
283


member 8B











(AHRD V1 *---











B9A6K5_HUMAN);











contains











Interpro











domain(s)











IPR000195











RabGAP/TBC






Bc-siRNA
3′GTTAAGGCTAGTGACGTAGGT 5′
281
4.5
Solyc10g007340.2.1
Unknown







  |:| ||||:|||||| ||||:


453~474(cDNA)
Protein






Target
5′CGAATCCGGTCACTGAATCCG 3′
284


(AHRD V1)





siR73
478.6
305.28
141.6
Bc-siRNA
3′AGGCTTTTATCTAACCCGTGT 5′
285
4
AT1G17020.1
senescence-


SIR3 LTR




  || |||| ||||||||||| |


459~480(CDS)
related gene 1


transposon



Target
5′TCAGAAACTAGATTGGGCAGA 3′
286


TGTGCCC


AATCTAT


TTTCGGA


(SEQ ID


NO: 285)






Bc-siRNA
3′AGGCTTTTATCTAACCCGTGT 5′
285
4.5
Solyc01g111250.2.1
Phosphatidylinositol-







  |||||| | || ||||||||:


533~554(cDNA)
specific






Target
5′TCCGAACAGAGTTTGGGCACG 3′
287


phospholipase











c (AHRD V1











*-*-











B9UXN2_LISMO);











contains











Interpro











domain(s)











IPR017946











PLC-like











phosphodiesterase,











TIM











beta/alpha-











barrel domain






Bc-siRNA
3′AGGCTTTTATCTAACCCGTGT 5′
285
4.5
Solyc01g111260.2.1
Phosphatidylinositol-







  |||||| | || ||||||||:


543~564(cDNA)
specific






Target
5′TCCGAACAGAGTTTGGGCACG 3′
288


phospholipase











c (AHRD V1











*-*-











B9UY71_LISMO);











contains











Interpro











domain(s)











IPR017946











PLC-like











phosphodiesterase,











TIM











beta/alpha-











barrel domain






Bc-siRNA
3′AGGCTTTTATCTAACCCGTGT 5′
285
4.5
Solyc06g069280.2.1
Protein







  || ||:|| |||| |||||||


1359~1380(cDNA)
LSM14






Target
5′TCAGAGAAGAGATGGGGCACA 3′
289


homolog A











(AHRD V1 *---











LS14A_PONAB);











contains











Interpro











domain(s)











IPR019053











FFD and TFG











box motifs





siR81
28.1
438.6
3.6
Bc-siRNA
3′GGGTTGCGAACTAATCTCTGT 5′
290
4.5
AT5G48670.1
AGAMOUS-


SIR1 LTR




  ||||:|:||||||:|| |||


403~424(CDS)
like 80


transposon



Target
5′TCCAATGTTTGATTGGAAACA 3′
291


TGTCTCT


AATCAA


GCGTTGG


G (SEQ ID


NO: 290)






Bc-siRNA
3′GGGTTGCGAACTAATCTCTGT 5′
290
4.5
Solyc03g082940.2.1
Importin







  ::||| || |||||:||||||


1376~1397(cDNA)
subunit beta






Target
5′TTCAAAGCCTGATTGGAGACA 3′
292


(AHRD V1











***-











BOWBR4_CULQU);











contains











Interpro











domain(s)











IPR011989











Armadillo-like











helical






Bc-siRNA
3′GGGTTGCGAACTAATCTCTGT 5′
290
4.5
Solyc08g062940.2.1
Calmodulin







  :|||| ||||| ||||||||


810~831(cDNA)
binding






Target
5′TCCAAAGCTTGCTTAGAGACT 3′
293


protein











(AHRD V1











**-*











B6T951_MAIZE);











contains











Interpro











domain(s)











IPR000048











IQ











calmodulin-











binding region





siR82
275
335.76
26.9
Bc-siRNA
3′TAGTCAATTCTTTAGGCATAGT 5′
294
4.5
AT2G45540.1
WD-40 repeat


SIR1 LTR




  ||::||||| |||||:|||||


4598~4620(CDS)
family protein/


transposon



Target
5′ATTGGTTAAAAAATCTGTATCC 3′
295


beige-related


TGATACG


GATTTCT


TAACTGA


T (SEQ ID


NO: 294)






Bc-siRNA
3′TAGTCAATTCTTTAGGCATAGT 5′
294
4
Solyc11g006560.1.1
Glycosyl







  ||| ||||| :|||||||||||


922~944(cDNA)
transferase






Target
5′ATCTGTTAACGAATCCGTATCA 3′
296


group 1











(AHRD V1











***-











B6T775_MAIZE);











contains











Interpro











domain(s)











IPR001296











Glycosyl











transferase,











group 1





siR86
695.9
147.28
89.9
Bc-siRNA
3′TGGTAGTTTAGTCGATAGTTGT 5′
297
3.25
AT1G10180.1
uncharacterized


SIR2 LTR




  :||: |||:|||||||||||||


2187~2209(CDS)
protein.


transposon



Target
5′GCCGCCAAGTCAGCTATCAACA 3′
298


hypothetical


TGTTGAT








protein


AGCTGAT


TTGATGG


T (SEQ ID


NO: 297)






Bc-siRNA
3′TGGTAGTTTAGTCGATAGTTGT 5′
297
4.5
AT5G66650.1
Protein of







  |:||| ||||||| ||||:|||


734~756(CDS)
unknown






Target
5′ATCATAAAATCAGATATCGACA 3′
299


function











(DUF607)






Bc-siRNA
3′TGGTAGTTTAGTCGATAGTTGT 5′
297
4.5
Solyc01g058190.2.1
30S ribosomal







  ||:||:|:|||| ||||||||


1101~1123(cDNA)
protein S6






Target
5′ACTATTAGATCATCTATCAACC 3′
300


(AHRD V1 *-*-











B4WMV0_9











GAMM);











contains











Interpro











domain(s)











IPR000529











Ribosomal











protein S6






Bc-siRNA
3′TGGTAGTTTAGTCGATAGTTGT 5′
297
4.5
Solyc05g052280.2.1
Peroxidase







  || :|: |||||||||||||||


211~233(cDNA)
(AHRD V1






Target
5′ACAGTTCAATCAGCTATCAACA 3′
307


***-











B9VRK9_CAPAN);











contains











Interpro











domain(s)











IPR002016











Haem











peroxidase,











plant/fungal/bacterial





siR91
533.3
187.64
32.5
Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4
AT1G70620.1
cyclin-related


SIR2 LTR




  :|:| ||||||||:|||||:||


654~676(CDS)


transposon



Target
5′GAGTAAGCTATCAGCAGCATCA 3′
303


TGGTGCT


GTTGATA


GCTGATT


T (SEQ ID


NO: 302)






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4.5
Solyc01g006030.2.1
E3 ubiquitin-







  :|| ||| |||||||||||| |


449~471(cDNA)
protein ligase






Target
5′GAAGCAGGTATCAACAGCACAA 3′
304


bre1 (AHRD











V1 *-*-











B6K254_SCHJY);











contains











Interpro











domain(s)











IPR018957











Zinc finger,











C3HC4











RING-type






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4.5
Solyc01g060270.1.1
Os06g0207500







  :|  || |||||||||||||||


975~997(cDNA)
protein






Target
5′GATACAACTATCAACAGCACCA 3′
305


(Fragment)











(AHRD V1











***-











Q0DDQ9_ORYSJ);











contains











Interpro











domain(s)











IPR004253











Protein of











unknown











function











DUF231,











plant






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4
Solyc05g026330.1.1
Caffeoyl-CoA







  ||:|:||||||||| ||:||||


322~344(cDNA)
O-






Target
5′AAGTTAGCTATCAAAAGTACCA 3′
306


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4
Solyc05g026350.1.1
Caffeoyl-CoA







  ||:|:||||||||| ||:||||


444~466(cDNA)
O-






Target
5′AAGTTAGCTATCAAAAGTACCA 3′
307


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4
Solyc05g041300.1.1
Caffeoyl-CoA







  ||:|:||||||||| ||:||||


183~205(cDNA)
O-






Target
5′AAGTTAGCTATCAAAAGTACCA 3′
308


methyltransferase











(AHRD











V1 ***-











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4.5
Solyc05g041320.1.1
Caffeoyl-CoA







  :|:|:||||||||| ||:||||


322~344(cDNA)
O-






Target
5′GAGTTAGCTATCAAAAGTACCA 3′
309


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR02935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4.5
Solyc05g041610.1.1
Caffeoyl-CoA







  :|:|:||||||||| ||:||||


415~437(cDNA)
O-






Target
5′GAGTTAGCTATCAAAAGTACCA 3′
310


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4.5
Solyc05g041620.1.1
Caffeoyl-CoA







  :|:|:||||||||| ||:||||


322~344(cDNA)
O-






Target
5′GAGTTAGCTATCAAAAGTACCA 3′
311


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3






Bc-siRNA
3′TTTAGTCGATAGTTGTCGTGGT 5′
302
4
Solyc05g041690.1.1
Caffeoyl-CoA







  ||:|:||||||||| ||:||||


475~497(cDNA)
O-






Target
5′AAGTTAGCTATCAAAAGTACCA 3′
312


methyltransferase











(AHRD











V1 ****











A2PZD5_IPONI);











contains











Interpro











domain(s)











IPR002935











O-











methyltransferase,











family 3





siR92
29.6
374.44
22.5
Bc-siRNA
3′GGATGCTATGGTCTTGTCATGT 5′
313
3.5
AT3G45620.1
Transducin/WD40


SIR3 LTR




  :|||||||||:|||| ||||||


701~723(CDS)
repeat-


transposon



Target
5′TCTACGATACTAGAAGAGTACA 3′
314


like


TGTACTG








superfamily


TTCTGGT








protein


ATCGTAG


G (SEQ ID


NO: 313)






Bc-siRNA
3′GGATGCTATGGTCTTGTCATGT 5′
313
4
Solyc02g085760.2.1
Rhomboid







   ||| || ||:|||||||||||


491~513(cDNA)
family protein






Target
5′GCTAAGAAACTAGAACAGTACA 3′
315


(AHRD V1











***-











D7MJX8_ARALY);











contains











Interpro











domain(s)











IPR002610











Peptidase S54,











rhomboid





siR95
20.5
373.6
3.2
Bc-siRNA
3′AGATGATATGTATTGAAGCGT 5′
316
4.5
AT2G03060.1
AGAMOUS-


SIR1 LTR




  |:| ||||||||||:||| ||


1405~1426(3′UTR)
like 30


transposon



Target
5′TTTTCTATACATAATTTCTCA 3′
317


TGCGAA


GTTATGT


ATAGTA


GA (SEQ


ID


NO: 316)






Bc-siRNA
3′AGATGATATGTATTGAAGCGT 5′
316
4
Solyc08g016050.2.1
Dedicator of







   ||||| ||:||||||||||


1697~1718(cDNA)
cytokinesis






Target
5′ACTACTTTATATAACTTCGCT 3′
318


family protein











(AHRD V1











***-











A8P5S7_BRUMA);











contains











Interpro











domain(s)











IPR010703











Dedicator of











cytokinesis





siR1017
711.8
95.44
113.1
Bc-siRNA
3′CTTACAGGCTTGAGAGAGGTGGGA 5′
319
4.5
AT3G11910.1
ubiquitin-


SIR1017




  ||:|||||| | ||||| ||||||


1418~1442(CDS)
specific


Intergenic



Target
5′GAGTGTCCGCAATCTCTACACCCT 3′
320


protease 13


region


AGGGTG


GAGAGA


GTTCGGA


CATTC


(SEQ ID


NO: 319)






Bc-siRNA
3′CTTACAGGCTTGAGAGAGGTGGGA 5′
319
4.5
Solyc03g007760.2.1
Cell division







  ||||||||||:||||:|:||| ||


1996~2020(cDNA)
protease ftsH






Target
5′GAATGTCCGAGCTCTTTTCACACT 3′
321


(AHRD V1 *---











FTSH_SHIFL);











contains











Interpro











domain(s)











IPR003959











ATPase,











AAA-type,











core





siR97
114
331.64
40.2
Bc-siRNA
3′GGGTTCTTCCTACCTGGGCTAT 5′
322
4.5
AT4G17505.1
Protein of


SIR3 LTR




  :||:|||:|||||| ||||||


185~207(CDS)
Unknown


transposon



Target
5′TCCGAGAGGGATGGTCCCGATC 3′
323


Function


TATCGGG








(DUF239)


TCCATCC


TTCTTGG


G (SEQ ID


NO: 322)






Bc-siRNA
3′GGGTTCTTCCTACCTGGGCTAT 5′
322
4.5
Solyc01g091370.2.1
AT-hook







  ||:|:|||| ||||:||:|||:


1179~1201(cDNA)
motif nuclear






Target
5′CCTAGGAAGTATGGGCCTGATG 3′
324


localized











protein 1











(AHRD V1











***-











Q8VYJ2_ARATH);











contains











Interpro











domain(s)











IPR005175











Protein of











unknown











function











DUF296






Bc-siRNA
3′GGGTTCTTCCTACCTGGGCTAT 5′
322
3
Solyc01g094640.2.1
uncharacterized







  :|||| |:|||||||||:||||


2690~2712(cDNA)
protein






Target
5′TCCAAAAGGGATGGACCTGATA 3′
325


LOC101249582











(related)











(AHRD V1











***-











Q2HTJ8_MEDTR)





siR99
366.9
216.44
13.1
Bc-siRNA
3′GAGGACTTAATCGACTGTGAT 5′
326
4.5
AT2G07360.1
SH3 domain-


SIR2 LTR




  :|| ||||||||||| ||||


412~433(CDS)
containing


transposon



Target
5′TTCATGAATTAGCTGCCACTT 3′
327


protein


TAGTGTC


AGCTAAT


TCAGGA


G (SEQ ID


NO: 326)






Bc-siRNA
3′GAGGACTTAATCGACTGTGAT 5′
326
4.5
AT2G39100.1
RING/U-box







   |:|| || |||||||||||


1127~1148(3′UTR)
superfamily






Target
5′ATTCTCAAATAGCTGACACTT 3′
328


protein






Bc-siRNA
3′GAGGACTTAATCGACTGTGAT 5′
326
3
AT5G13320.1
Auxin-







   |||||||||||| |||||||


889~910(CDS)
responsive






Target
5′GTCCTGAATTAGCAGACACTA 3′
329


GH3 family











protein






Bc-siRNA
3′GAGGACTTAATCGACTGTGAT 5′
326
4.5
Solyc02g067320.1.1
Zinc finger-







  | || ||||||||||| |||:


52~73(cDNA)
homeodomain






Target
5′CACCAGAATTAGCTGAAACTG 3′
330


protein 1











(Fragment)











(AHRD V1











**--











B0LK19_CUCSA);











contains











Interpro











domain(s)











IPR006456











ZF-HD











homeobox











protein











Cys/His-rich











dimerisation











region






Bc-siRNA
3′GAGGACTTAATCGACTGTGAT 5′
326
4.5
Solyc08g066940.2.1
Peptide







  :||:||:| ||||||||:||


1557~1578(cDNA)
transporter 1






Target
5′TTCTTGGACTAGCTGACGCTT 3′
331


(AHRD V1











**-*











Q7XAC3_VICFA);











contains











Interpro











domain(s)











IPR000109











TGF-beta











receptor, type











I/II











extracellular











region





siR1013
521.1
149.76
24.4
Bc-siRNA
3′AAATTTCAAACAAGTAGTATATT 5′
332
4.5
AT1G79840.2
HD-ZIP IV


SIR1013




  |||:|| |||| ||||||||||


77~100(5′UTR)
family of


CDS



Target
5′TTTGAATTTTGCTCATCATATAT 3′
333


homeobox-


TTATATG








leucine zipper


ATGAAC








protein with


AAACTTT








lipid-binding


AAA (SEQ








START


ID








domain


NO: 332)






Bc-siRNA
3′AAATTTCAAACAAGTAGTATATT 5′
332
4
Solyc03g098070.2.1
C2H2L







  ||| | ||||||||||:||||:|


1258~1281(cDNA)
domain class






Target
5′TTTTATGTTTGTTCATTATATGA 3′
334


transcription











factor (AHRD











V1 *--*











D9ZIU3_MALDO);











contains











Interpro











domain(s)











IPR007087











Zinc finger,











C2H2-type





siR102
827.3
20.56
101.5
Bc-siRNA
3′GTTACATAGTTAGAGGGGAGGT 5′
335
3.5
AT3G13750.1
beta


SIR13




  ||||||:| |||| ||||||||


3258~3280(3′UTR)
galactosidase 1


Intergenic



Target
5′CAATGTGTGAATCACCCCTCCA 3′
336


region


TGGAGG


GGAGAT


TGATACA


TTG (SEQ


ID


NO: 335)






Bc-siRNA
3′GTTACATAGTTAGAGGGGAGGT 5′
335
4.5
AT5G43100.1
Eukaryotic







  | ||| |||:||||:||||||


139~161(CDS)
aspartyl






Target
5′CCATGGATCGATCTTCCCTCCT 3′
337


protease











family protein






Bc-siRNA
3′GTTACATAGTTAGAGGGGAGGT 5′
335
4
Solyc11g067000.1.1
ATP-binding







  |||| ||| ||||||:||||:|


2884~2906(cDNA)
cassette






Target
5′CAATCTATGAATCTCTCCTCTA 3′
338


transporter











(AHRD V1











***-











D8T797_SELML);











contains











Interpro











domain(s)











IPR013525











ABC-2 type











transporter





siR1011
413.3
172.8
117.2
Bc-siRNA
3′TGGTTAGAACGAGTAGTATAAT 5′
339
4.5
AT4G21215.1


SIR1011




  |:||||||||:| ||||||||


724~746(CDS)


CDS



Target
5′ATCAATCTTGTTAATCATATTC 3′
340


TAATATG


ATGAGC


AAGATT


GGT (SEQ


ID


NO: 339)






Bc-siRNA
3′TGGTTAGAACGAGTAGTATAAT 5′
339
3
AT5G51530.1
Ubiquitin







  || ||| |||:|||||||||||


3078~3100(CDS)
carboxyl-






Target
5′ACAAATATTGTTCATCATATTA 3′
341


terminal











hydrolase-











related protein






Bc-siRNA
3′TGGTTAGAACGAGTAGTATAAT 5′
339
4
AT5G67140.1
F-box/RNI-







   |:|:| ||||||||||||||


772~794(CDS)
like






Target
5′TCTAGTGTTGCTCATCATATTT 3′
342


superfamily











protein






Bc-siRNA
3′TGGTTAGAACGAGTAGTATAAT 5′
339
4.5
Solyc02g093150.2.1
AP2-like







  | ||||:| |||||||| ||||


1404~1426(cDNA)
ethylene-






Target
5′AGCAATTTGGCTCATCAAATTA 3′
343


responsive











transcription











factor











At1g16060











(AHRD V1 *-*-











AP2L1_ARATH);











contains











Interpro











domain(s)











IPR001471











Pathogenesis-











related











transcriptional











factor and











ERF, DNA-











binding





siR109
437.6
160.48
150
Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
4.5
AT5G64390.1
RNA-binding


SIR3 LTR




  |:||||| ||||:||| ||||


377~398(CDS)
KH domain-


transposon



Target
5′ATCACGATAATCGCACAAGCA 3′
345


containing


TGCTGGT








protein


GTGATTT


TCGTGGT


(SEQ ID


NO: 344)






Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
4.5
Solyc01g103350.2.1
Cell division







   |:|||||||||:|| |||||


2540~2561(cDNA)
protein kinase






Target
5′TCTACGAAAATCGCAGCAGCA 3′
346


13 (AHRD V1











*-*-











CDK13_MOUSE);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase






Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
4.25
Solyc02g069630.2.1
Subtilisin-like







   |:|:|||::|||||||||||


2706~2727(cDNA)
serine protease






Target
5′TCTATGAAGGTCACACCAGCA 3′
347


(AHRD V1











**-*











Q948Q4_ARATH);











contains











Interpro











domain(s)











IPR015500











Peptidase S8,











subtilisin-











related






Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
3.5
Solyc05g015510.2.1
Squamosa







  ||||:| |||||| |||||||


3013~3034(cDNA)
promoter-






Target
5′ACCATGCAAATCAGACCAGCA 3′
348


binding-like











protein 11











(AHRD_V1











***-











B6TF72_MAIZE);











contains











Interpro











domain(s)











IPR004333











Transcription











factor, SBP-











box






Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
4.5
Solyc09g007710.2.1
Tir-nbs-lrr,







   |||:| |||||||:|||||


3351~3372(cDNA)
resistance






Target
5′TCCATGTAAATCACGCCAGCT 3′
349


protein






Bc-siRNA
3′TGGTGCTTTTAGTGTGGTCGT 5′
344
4
Solyc10g081020.1.1
Transcription







  ||||:|||:|||:|||:|||


3688~3709(cDNA)
elongation






Target
5′ACCATGAAGATCGCACTAGCT 3′
350


factor SPT6











(AHRD V1











***-











A8NF94_COPC7);











contains











Interpro











domain(s)











IPR017072











Transcription











elongation











factor Spt6





siR1018
618.4
51
288.2
Bc-siRNA
3′GGCTCGGCCCATACGTTGTAGT 5′
351
4.5
AT1G62970.1
Chaperone


SIR8




  |:||||||| || ||||:||||


1017~1039(CDS)
DnaJ-domain


Intergenic



Target
5′CTGAGCCGGCTAGGCAATATCA 3′
352


superfamily


region








protein


TGATGTT


GCATACC


CGGCTCG


G (SEQ ID


NO: 351)






Bc-siRNA
3′GGCTCGGCCCATACGTTGTAGT 5′
351
4.5
Solyc04g007510.2.1
ATP-







  :||||| || ||||||||| ||


3230~3252(cDNA)
dependent






Target
5′TCGAGCAGGATATGCAACACCA 3′
353


RNA helicase











A-like protein











(AHRD V1











***-











Q9FF84_ARATH);











contains











Interpro











domain(s)











IPR007502











Helicase-











associated











region





siR114
395.8
138.24
14.3
Bc-siRNA
3′GGATAAGGTTTTCCTGGGACCT 5′
354
4.5
AT1G78960.1
lupeol


SIR2 LTR




  | ||||:| |||||| ||||||


1445~1467(CDS)
synthase 2


transposon



Target
5′CATATTTCCAAAGGAGCCTGGA 3′
355


TCCAGG


GTCCTTT


TGGAAT


AGG (SEQ


ID


NO: 354)






Bc-siRNA
3′GGATAAGGTTTTCCTGGGACCT 5′
354
4.5
Solyc12g006510.1.1
Cycloartenol







  | ||||:||||||||:| ||||


1377~1399(cDNA)
Synthase






Target
5′CATATTTCAAAAGGATCGTGGA 3′
356


(AHRD V1











***-











O82139_PANGI);











contains











Interpro











domain(s)











IPR018333











Squalene











cyclase





siR1020
138.3
209
10.1
Bc-siRNA
3′ACAGGACCAAGCAGCACCGTT 5′
357
4
AT2G22810.1
1-


SIR1020




  | ||||||||||||||| ||


1176~1197(CDS)
aminocyclopropane-


Intergenic



Target
5′TCTCCTGGTTCGTCGTGCCAT 3′
358


1-


region








carboxylate


TTGCCAC








synthase 4


GACGAA


CCAGGA


CA (SEQ


ID


NO: 357)






Bc-siRNA
3′ACAGGACCAAGCAGCACCGTT 5′
357
4
Solyc04g005650.1.1
Mitochondrial







  | ||:||| ||||:||||||:


337~358(cDNA)
carrier family






Target
5′TTTCTTGGCTCGTTGTGGCAG 3′
359


(AHRD V1











***-











C1MWU5_MICPS);











contains











Interpro











domain(s)











IPR001993











Mitochondrial











substrate











carrier






Bc-siRNA
3′ACAGGACCAAGCAGCACCGTT 5′
357
4.5
Solyc09g091210.2.1
Disease







  ||||:|| ||| |:|||||||


861~882(cDNA)
resistance






Target
5′TGTCTTGTTTCATTGTGGCAA 3′
360


response/











dirigent-like











protein











(AHRD V1











***-











Q0WPQ6_ARATH);











contains











Interpro











domain(s)











IPR004265











Plant disease











resistance











response











protein





siR1016
22.8
255.08
5
Bc-siRNA
3′AGGCAAACTGAATCGAGAGTT 5′
361
3.5
AT1G23190.1
Phosphoglucomutase/


SIR1 LTR




  ||:| ||||||||||||| ||


1753~1774(CDS)
phosphomannomutase


transposon



Target
5′TCTGGTTGACTTAGCTCTAAA 3′
362


family


TTGAGA








protein


GCTAAGT


CAAACG


GA (SEQ


ID


NO: 361)






Bc-siRNA
3′AGGCAAACTGAATCGAGAGTT 5′
361
4.25
AT5G19260.1
Protein of







   || ||||::|||||||||||


184~205(CDS)
unknown






Target
5′ACCATTTGGTTTAGCTCTCAA 3′
363


function











(DUF3049)






Bc-siRNA
3′AGGCAAACTGAATCGAGAGTT 5′
361
3.5
Solyc01g101090.2.1
TBC1 domain







   |||||| ||||:|||||||:


1040~1061(cDNA)
family






Target
5′CCCGTTTCACTTGGCTCTCAG 3′
364


member











CG11727











(AHRD V1











**-*











Y1727_DROME);











contains











Interpro











domain(s)











IPR000195











RabGAP/TBC






Bc-siRNA
3′AGGCAAACTGAATCGAGAGTT 5′
361
4
Solyc02g082060.1.1
PPPDE







  |||| ||||:|| ||||||||


497~518(cDNA)
peptidase






Target
5′TCCGGTTGATTTTGCTCTCAA 3′
365


domain-











containing











protein 1











(AHRD V1 *---











PPDE1_XENLA);











contains











Interpro











domain(s)











IPR008580











Protein of











unknown











function











DUF862,











eukaryotic






Bc-siRNA
3′AGGCAAACTGAATCGAGAGTT 5′
361
3.5
Solyc04g076690.2.1
Unknown







  |::||||| |||||||:||||


623~644(cDNA)
Protein






Target
5′TTTGTTTGTCTTAGCTTTCAA 3′
366


(AHRD V1)





siR1003
615.3
2.48
0.5
Bc-siRNA
3′CGTAGCGGTCAAGACCAATGG 5′
367
4
AT2G31220.1
basic helix-


SIR1003




   || ||| ||||||||||:||


223~244(CDS)
loop-helix


LTR



Target
5′CCACCGCAAGTTCTGGTTGCC 3′
368


(bHLH) DNA-


transposon








binding


GGTAAC








superfamily


CAGAAC








protein


TGGCGAT


GC (SEQ


ID


NO: 367)






Bc-siRNA
3′CGTAGCGGTCAAGACCAATGG 5′
367
4
Solyc06g050170.2.1
Potassium







  ||||:|:| ||| ||||||||


1771~1792(cDNA)
transporter






Target
5′GCATTGTCCGTTATGGTTACC 3′
369


(AHRD V1











****











Q1T761_PHRAU);











contains











Interpro











domain(s)











IPR018519











Potassium











uptake











protein, kup











IPR003855











K+ potassium











transporter





siR124
17.5
232.88
3.6
Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4
AT1G13270.1
methionine


SIR1 LTR




  :|:|:|:|||||||| |||||


140~161(CDS)
aminopeptidase


transposon



Target
5′GCTTTCTCGGAGCTCCGGTCA 3′
371


1B


TGACCA


GAGCTCC


GGGGAG


GT (SEQ


ID


NO: 370)






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4.5
AT3G59040.1
Tetratricopeptide







  |::|:|||||| ||||||||:


1252~1273(CDS)
repeat






Target
5′ATTTTCCCGGACCTCTGGTCG 3′
372


(TPR)-like











superfamily











protein






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4.5
Solyc02g065550.2.1
Coiled-coil







  |||||:||||| ||| |||||


280~301(cDNA)
domain-






Target
5′ACCTCTCCGGATCTCCGGTCA 3′
373


containing











protein 109A











(AHRD V1 *---











C109A_MOUSE);











contains











Interpro











domain(s)











IPR006769











Protein of











unknown











function











DUF607






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4
Solyc04g045540.1.1
Ycf1







   |||:|:| ||||||||||:|


127~148(cDNA)
(Fragment)






Target
5′TCCTTCTCCGAGCTCTGGTTA 3′
374


(AHRD V1











***-











A6YA36_9MAGN);











contains











Interpro











domain(s)











IPR008896











Ycf1






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4
Solyc05g047440.1.1
Ycf1







   |||:|:| ||||||||||:|


127~148(cDNA)
(Fragment)






Target
5′TCCTTCTCCGAGCTCTGGTTA 3′
375


(AHRD V1











***-











A6Y9X6_HAMJA);











contains











Interpro











domain(s)











IPR008896











Ycf1






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4.25
Solyc05g055360.2.1
Unknown







   ||||||: |||||:||||||


1577~1598(cDNA)
Protein






Target
5′TCCTCCCTCGAGCTTTGGTCA 3′
376


(AHRD V1)






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4
Solyc10g062330.1.1
Hypothetical







   |||:|:| ||||||||||:|


82~103(cDNA)
chloroplast






Target
5′TCCTTCTCCGAGCTCTGGTTA 3′
377


RF1 (AHRD











V1 **--











C3UP30_9MAGN);











contains











Interpro











domain(s)











IPR008896











Ycf1






Bc-siRNA
3′TGGAGGGGCCTCGAGACCAGT 5′
370
4
Solyc11g021310.1.1
Hypothetical







   |||:|:| ||||||||||:|


127~148(cDNA)
chloroplast






Target
5′TCCTTCTCCGAGCTCTGGTTA 3′
378


RF1 (AHRD











V1 ***-











C3UP30_9MAGN);











contains











Interpro











domain(s)











IPR008896











Ycf1





siR127
451.3
54.32
19.2
Bc-siRNA
3′GCAGTTTGTTGTACAGTTTTGT 5′
379
4
AT5G10450.3
G-box


SIR2 LTR




  | ||||| |||||||:|||||


932~954(3′UTR)
regulating


transposon



Target
5′CATCAAAGAACATGTTAAAACT 3′
380


factor 6


TGTTTTG


ACATGTT


GTTTGAC


G (SEQ ID


NO: 379)






Bc-siRNA
3′GCAGTTTGTTGTACAGTTTTGT 5′
379
4.5
Solyc01g068430.1.1
Os06g0207500







   ||:| | |||||||||||:||


871~893(cDNA)
protein






Target
5′AGTTACAAAACATGTCAAAGCA 3′
381


(Fragment)











(AHRD V1











**--











Q0DDQ9_ORYSJ);











contains











Interpro











domain(s)











IPR004253











Protein of











unknown











function











DUF231,











plant





siR128
574.3
3.28
7.7
Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
3
AT1G48210.1
Protein kinase


SIR15




  ||:|||:||||||||| ||||


1343~1364(3′UTR)
superfamily


Intergenic



Target
5′ATTTTGGTTCTGTATTGTGTA 3′
383


protein


region


TACAGA


ATACAG


AATCAA


GAT (SEQ


ID


NO: 382)






Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
4
AT2G23348.1
unknown







  |||| | |||| |||||||||


402~423(3′UTR)
protein,






Target
5′ATCTAGTTTCTTTATTCTGTA 3′
384


hypothetical











protein,











uncharacterized











protein






Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
3
AT4G08990.1
DNA







  :|||||:||||| ||||||||


2536~2557(CDS)
(cytosine-5-)-






Target
5′GTCTTGGTTCTGGATTCTGTA 3′
385


methyltransferase











family











protein






Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
4
AT4G14140.1
DNA







  :||| |:||||| ||||||||


2560~2581(CDS)
methyltransferase 2






Target
5′GTCTAGGTTCTGGATTCTGTA 3′
386






Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
4.5
Solyc04g005530.2.1
Unknown







  :|||| | |:||||||:||||


1196~1217(cDNA)
Protein






Target
5′GTCTTTACTTTGTATTTTGTA 3′
387


(AHRD V1)






Bc-siRNA
3′TAGAACTAAGACATAAGACAT 5′
382
4.5
Solyc11g012550.1.1
F-box family







  || ||||| |||||||| ||:


49~70(cDNA)
protein






Target
5′ATATTGATCCTGTATTCCGTG 3′
388


(AHRD V1











***-











D7L4T6_ARALY);











contains











Interpro











domain(s)











IPR001810











Cyclin-like F-











box





siR130
400.4
65
6.5
Bc-siRNA
3′TGGTTATATCTGAACAACTTGT 5′
389
4
AT2G42340.1
unknown


SIR2 LTR




  ||:| |||:||||||||||| |


486~508(CDS)
protein,


transposon



Target
5′ACTACTATGGACTTGTTGAAAA 3′
390


hypothetical


TGTTCAA








protein,


CAAGTCT








uncharacterized


ATATTGG








protein


T (SEQ ID


NO: 389)






Bc-siRNA
3′TGGTTATATCTGAACAACTTGT 5′
389
4
Solyc01g008080.2.1
Ribosomal







  | |:||:| ||||||||||||


2214~2236(cDNA)
protein S27






Target
5′AACGATGTCGACTTGTTGAACC 3′
391


(AHRD V1











***-











Q3HVK9_SOLTU);











contains











Interpro











domain(s)











IPR000592











Ribosomal











protein S27e






Bc-siRNA
3′TGGTTATATCTGAACAACTTGT 5′
389
3.5
Solyc01g095740.2.1
ATP-







  || |:|| |||||||||||||


2485~2507(cDNA)
dependent






Target
5′ACAAGTACAGACTTGTTGAACT 3′
392


RNA helicase











DBP4 (AHRD











V1 *-**











C1GZM0_PARBA);











contains











Interpro











domain(s)











IPR011545











DNA/RNA











helicase,











DEAD/DEAH











box type, N-











terminal





siR1004
485.4
14
32.8
Bc-siRNA
3′CTTGAGGAAGGAAGGTTAGTAA 5′
393
4.5
AT3G07990.1
serine


SIR15




    ||||:|||||||:|||||||


72~94(CDS)
carboxypeptidase-


Intergenic



Target
5′TTACTCTTTCCTTCTAATCATT 3′
394


like 27


region


AATGATT


GGAAGG


AAGGAG


TTC (SEQ


ID


NO: 393)






Bc-siRNA
3′CTTGAGGAAGGAAGGTTAGTAA 5′
393
4.5
AT4G21740.1
unknown







  |||:| | |||||||:|||||


99~121(CDS)
protein,






Target
5′GAATTACGTCCTTCCGATCATG 3′
395


hypothetical











protein,











uncharacterized











protein






Bc-siRNA
3′CTTGAGGAAGGAAGGTTAGTAA 5′
393
4.25
Solyc07g042910.2.1
Genomic







  ||||| :|| |||:||||||||


1930~1952(cDNA)
DNA






Target
5′GAACTATTTGCTTTCAATCATT 3′
396


chromosome 5











TAC clone











K21L19











(AHRD V1











**--











Q9FGT4_ARATH)





siR144
471
9.88
46.1
Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4
AT2G46330.1
arabinogalactan


SIR6 CDS




  | ||| || |||||||||||


471~492(3′UTR)
protein 16


(spurious



Target
5′GTTAATTTCATCATCATGTTC 3′
398


gene)


TAACATG


ATGATTA


ATTTATC


(SEQ ID


NO: 397)






Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4
AT4G12040.2
A20/AN1-like







  |:| | ||:||:|||||||||


513~534(5′UTR)
zinc finger






Target
5′GGTTATTTGATTATCATGTTA 3′
399


family protein






Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4.25
Solyc01g080260.2.1
At4g14280-







  || :||| ||||||||||||


2174~2195(cDNA)
like protein






Target
5′GAAGAATCAATCATCATGTTC 3′
400


(Fragment)











(AHRD V1 *-*-











C7FD87_ARALP);











contains











Interpro











domain(s)











IPR011989











Armadillo-like











helical






Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4.5
Solyc01g098240.1.1
RNA







   | |||||:||| ||||||||


3823~3844(cDNA)
polymerase






Target
5′CAGAAATTGATCTTCATGTTA 3′
401


Rpb1 C-











terminal











repeat











domain-











containing











protein











(AHRD V1 *---











C5GU31_AJEDR);











contains











Interpro











domain(s)











IPR012474











Frigida-like






Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4.5
Solyc10g005650.2.1
Peroxisomal







   | |||||:|| |||||||||


814~835(cDNA)
targeting






Target
5′TAGAAATTGATAATCATGTTA 3′
402


signal 1











receptor











(AHRD V1











****











Q9ZTK6_TOBAC);











contains











Interpro











domain(s)











IPR011990











Tetratricopeptide-











like helical






Bc-siRNA
3′CTATTTAATTAGTAGTACAAT 5′
397
4.5
Solyc12g007150.1.1
Pollen-







  || | | | |||||||||||:


73~94(cDNA)
specific kinase






Target
5′GACATACTCATCATCATGTTG 3′
403


partner











protein-like











protein











(Fragment)











(AHRD V1 *---











Q5DK68_SOLLC);











contains











Interpro











domain(s)











IPR005512











Rop











nucleotide











exchanger,











PRONE





siR137
376.8
46.08
3
Bc-siRNA
3′ATGATGATCTTATCTTAGCAT 5′
404
4
AT1G22110.1
structural


SIR2 LTR




  ||||| || ||| ||||||||


1283~1304(3′UTR)
constituent of


transposon



Target
5′TACTAATAAAATCGAATCGTA 3′
405


ribosome


TACGATT


CTATTCT


AGTAGT


A (SEQ ID


NO: 404)






Bc-siRNA
3′ATGATGATCTTATCTTAGCAT 5′
404
4.5
AT3G25510.1
disease







   |:|||||||||:|:|||||


5473~5494(CDS)
resistance






Target
5′GATTACTAGAATGGGATCGTT 3′
406


protein (TIR-











NBS-LRR











class),











putative






Bc-siRNA
3′ATGATGATCTTATCTTAGCAT 5′
404
4.5
Solyc04g063230.2.1
Dehydration-







  | || ||||||| |||||||:


1354~1375(cDNA)
responsive






Target
5′TTCTCCTAGAATTGAATCGTG 3′
407


family protein











(AHRD V1











**--











D7LF23_ARALY);











contains











Interpro











domain(s)











IPR004159











Protein of











unknown











function











DUF248,











methyltransferase











putative





siR140
417.1
27.16
49.1
Bc-siRNA
3′TGTATGCTTTGCCGTTTTAGTT 5′
408
4.5
AT2G07360.1
SH3 domain-


SIR8




   || | | |||||||||||||:


3291~3313(CDS)
containing


Intergenic



Target
5′TCACAAGCAACGGCAAAATCAG 3′
409


protein


region


TTGATTT


TGCCGTT


TCGTATG


T (SEQ ID


NO: 408)






Bc-siRNA
3′TGTATGCTTTGCCGTTTTAGTT 5′
408
4.25
Solyc04g080720.2.1
Transferase







  ||: |||| ||||:||||||||


1084~1106(cDNA)
family protein






Target
5′ACGAACGATACGGTAAAATCAA 3′
410


(AHRD V1











**-*











D7KBT0_ARALY);











contains











Interpro











domain(s)











IPR003480











Transferase






Bc-siRNA
3′TGTATGCTTTGCCGTTTTAGTT 5′
408
4
Solyc07g017860.2.1
Acetyl-







  |||| || ||:||||||||:||


436~458(cDNA)
coenzyme A






Target
5′ACATTCGCAATGGCAAAATTAA 3′
411


synthetase











(AHRD V1











***-











Q2J3D0_RHOP2);











contains











Interpro











domain(s)











IPR011904











Acetate--CoA











ligase






Bc-siRNA
3′TGTATGCTTTGCCGTTTTAGTT 5′
408
3.5
Solyc12g098610.1.1
Xyloglucan







  || ||:| |||:|||||||||||


641~663 (cDNA)
endotransglucosylase/






Target
5′AGATGCAAAATGGCAAAATCAA 3′
412


hydrolase











8 (AHRD











V1 ***-











C0IRG7_ACTDE);











contains











Interpro











domain(s)











IPR016455











Xyloglucan











endotransglucosylase/











hydrolase





siR141
11.4
187.64
3
Bc-siRNA
3′TGTCTTCAGGCTTACAAAGAT 5′
413
4
AT3G01350.1
Major


SIR1 LTR




  |::|:|||| |||||||||||


1191~1212(CDS)
facilitator


transposon



Target
5′ATGGGAGTCGGAATGTTTCTA 3′
414


superfamily


TAGAAA








protein


CATTCGG


ACTTCTG


T (SEQ ID


NO: 413)






Bc-siRNA
3′TGTCTTCAGGCTTACAAAGAT 5′
413
4.5
Solyc03g113070.2.1
ATP-binding







  ||| || ||||||| |||||:


1358~1379(cDNA)
cassette






Target
5′ACATAATTCCGAATATTTCTG 3′
415


(ABC)











transporter 17











(AHRD V1 *-*-











Q4H493_RAT)





siR156
335
9.88
251.1
Bc-siRNA
3′AGGGTTAGGGTAGGGTAGGGT 5′
416
4.5
AT5G45973.1
unknown


SIR18




  |||| |||:|||||:||| ||


62~83(CDS)
protein,


Intergenic



Target
5′TCCCTATCTCATCCTATCGCA 3′
417


hypothetical


region








protein,


TGGGAT








uncharacterized


GGGATG








protein


GGATTG


GGA (SEQ


ID


NO: 416)






Bc-siRNA
3′AGGGTTAGGGTAGGGTAGGGT 5′
416
2
Solyc01g112220.2.1
Serine/threonine







  ||:|||||:|||||||||||


163~184(cDNA)
protein






Target
5′TCTCAATCTCATCCCATCCCT 3′
418


kinase-like











(AHRD V1











****











Q5XWQ1_SOLTU);











contains











Interpro











domain(s)











IPR002290











Serine/threonine











protein











kinase






Bc-siRNA
3′AGGGTTAGGGTAGGGTAGGGT 5′
416
4.5
Solyc12g019040.1.1
Exostosin







  || || |::||||:|||||||


100~121(cDNA)
family protein






Target
5′TCACATTTTCATCTCATCCCA 3′
419


(AHRD V1 *-*-











D7LPB7_ARALY)






Bc-siRNA
3′AGGGTTAGGGTAGGGTAGGGT 5′
416
4.5
Solyc12g096410.1.1
Unknown







  ||:| ||| ||||||||:||


54~75(cDNA)
Protein






Target
5′TCTCCATCACATCCCATTCCT 3′
420


(AHRD V1)





siR161
9.9
120.16
5.7
Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
4.5
AT2G16270.1


SIR1 LTR




  ||||||||||||:|| ||:||:


295~317(CDS)


transposon



Target
5′CCAAGGAAGAGAGTGTTGTCTG 3′
422


TAGGCAT


CATTCTC


TTCCTTG


G (SEQ ID


NO: 421)






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
4.5
AT3G18660.1
plant







  |:|||| |||||| |||||:||


1168~1190(CDS)
glycogenin-






Target
5′CTAAGGCAGAGAAAGATGCTTA 3′
423


like starch











initiation











protein 1






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
4
AT3G63380.1
ATPase E1-E2







  :| | |||||||||||||:||:


1416~1438(CDS)
type family






Target
5′TCCATGAAGAGAATGATGTCTG 3′
424


protein/











haloacid











dehalogenase-











like hydrolase











family protein






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
3.75
AT5G17400.1
endoplasmic







  |: ||||:|||||||||||:||


863~885(CDS)
reticulum-






Target
5′CTTAGGAGGAGAATGATGCTTA 3′
425


adenine











nucleotide











transporter 1






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
2.5
Solyc03g083340.1.1
Response







  :|||| |:|:||||||||||||


1152~1174(cDNA)
regulator 8






Target
5′TCAAGTAGGGGAATGATGCCTA 3′
426


(AHRD V1 *-*-











Q9AV93_MAIZE);











contains











Interpro











domain(s)











IPR001789











Signal











transduction











response











regulator,











receiver











region






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
4.5
Solyc04g005430.2.1
Dehydration-







  ||| ||||:|||| |||||||


1312~1334(cDNA)
responsive






Target
5′GCAAAGAAGGGAATCATGCCTA 3′
427


protein-like











(AHRD V1











**--











Q653G1_ORYSJ);











contains











Interpro











domain(s)











IPR004159











Protein of











unknown











function











DUF248,











methyltransferase











putative






Bc-siRNA
3′GGTTCCTTCTCTTACTACGGAT 5′
421
4.5
Solyc11g005760.1.1
Glycogenin-







  |:|| | |||||| ||||||||


892~914(cDNA)
like protein






Target
5′CTAAAGCAGAGAAAGATGCCTA 3′
428


(AHRD V1











***-











Q5NA53_ORYSJ);











contains











Interpro











domain(s)











IPR002495











Glycosyl











transferase,











family 8





siR163
275
8.24
74.2
Bc-siRNA
3′ATGTGTAACATGAAACCTAGT 5′
429
2.5
AT3G07140.1
GPI


SIR8




  | |:|||||||:|||||||||


1754~1775(CDS)
transamidase


Intergenic



Target
5′TTCGCATTGTATTTTGGATCA 3′
430


component


region








Gpi16 subunit


TGATCCA








family protein


AAGTAC


AATGTGT


A (SEQ ID


NO: 429)






Bc-siRNA
3′ATGTGTAACATGAAACCTAGT 5′
429
4.5
AT5G46640.1
AT hook







  |||::||| |||||||||||


1159~1180(CDS)
motif DNA-






Target
5′AACATGTTGAACTTTGGATCA 3′
431


binding family











protein






Bc-siRNA
3′ATGTGTAACATGAAACCTAGT 5′
429
4.5
AT5G59810.1
Subtilase







  ||||:| ||||||| |||||


293~314(CDS)
family protein






Target
5′TACATAGTGTACTTGGGATCT 3′
432






Bc-siRNA
3′ATGTGTAACATGAAACCTAGT 5′
429
4.5
Solyc06g084310.2.1
Small nuclear







  |:|||| | ||:||||||||


598~619(cDNA)
ribonucleoprotein






Target
5′TGCACAATTTATTTTGGATCT 3′
433


Sm D1











(AHRD V1











***-











B6TXH2_MAIZE);











contains











Interpro











domain(s)











IPR006649











Like-Sm











ribonucleoprotein,











eukaryotic











and archaea-











type, core






Bc-siRNA
3′ATGTGTAACATGAAACCTAGT 5′
429
4.25
Solyc08g079630.2.1
AT-hook







  ||||: |||||||||||| ||


1618~1639(cDNA)
motif nuclear






Target
5′TACATTTTGTACTTTGGACCA 3′
434


localized











protein 1











(AHRD V1











***-











Q8VYJ2_ARATH);











contains











Interpro











domain(s)











IPR005175











Protein of











unknown











function











DUF296





siR1001
218
7.4
8.4
Bc-siRNA
3′TAATACAAAATTATTAGTACACT 5′
435
3.5
AT1G77470.1
replication


SIR1001




  |||||||||||||:||| ||||:


1437~1460(3′UTR)
factor C


CDS



Target
5′ATTATGTTTTAATGATCTTGTGG 3′
436


subunit 3


TCACATG


ATTATTA


AAACAT


AAT (SEQ


ID


NO: 435)






Bc-siRNA
3′TAATACAAAATTATTAGTACACT 5′
435
4.5
Solyc04g055110.2.1
Mitochondrial







  |||:||| || |||||| |||||


1474~1497(cDNA)
import






Target
5′ATTGTGTCTTCATAATCCTGTGA 3′
437


receptor











subunit











TOM34











(AHRD V1 *---











TOM34_RAT);











contains











Interpro











domain(s)











IPR011990











Tetratricopeptide-











like helical





Normalized read counts are given in reads per million B. cinerea sRNAs. Reads were summed from individual sRNA libraries for each category: B. cinerea-infected Arabidopsis (“A”), B. cinerea-infected S. lycopersicum (“S”), and cultured B. cinerea (“B”).


*AS (aligned score): Target gene alignment was scored as described in Materials and Methods.













TABLE 2







Primers for constructing short tandem target mimic (STTM) against selected B.



cinerea sRNAs listed in Table 1










sRNA
Primer*
Primer sequence





Bc-
3.2-
GccATTTAAATatggtctaaagaagaagaatACCTACAAGATctaCCACAATGTAgaattcggtacgctgaaatcaccag


siR3.2
STTMSwa48
(SEQ ID NO: 438)



ntlink-PF



3.2-
GccATTTAAATtagaccataacaacaacaacTACATTGTGGtagATCTTGTAGGTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 439)



ntlink-PR





Bc-
3.1-
GccATTTAAATatggtctaaagaagaagaatGCCCACCTACActaAGATCCACAAgaattcggtacgctgaaatcaccag


siR3.1
STTMSwa48
(SEQ ID NO: 440)



ntlink-PF



3.1-
GccATTTAAATtagaccataacaacaacaacTTGTGGATCTtagTGTAGGTGGGCaagcttgggctgtcctctccaaatg



STTMSwa49
(SEQ ID NO: 441)



ntlink-PR





Bc-siR5
5-
GccATTTAAATatggtctaaagaagaagaatAAGTATACATTctaCCGAGTCAAAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 442)



ntlink-PF



5-
GccATTTAAATtagaccataacaacaacaacTTTGACTCGGtagAATGTATACTTaagcttgggctgtcctctccaaatg



STTMSwa49
(SEQ ID NO: 443)



ntlink-PR










3.1-3.2-STTMSwa48ntlink-PF (=3.2-STTMSwa48ntlink-PF)


3.1-3.2-STTMSwa48ntlink-PR (=3.1-STTMSwa48ntlink-PR)


5-3.2-STTMSwa48ntlink-PF (=3.2-STTMSwa48ntlink-PF)


5-3.2-STTMSwa48ntlink-PR (=5-STTMSwa48ntlink-PR)


5-3.1-STTMSwa48ntlink-PF (=3.1-STTMSwa48ntlink-PF)


5-3.1-STTMSwa48ntlink-PR (=5-STTMSwa48ntlink-PR)









SiR1
SiR1-
GccATTTAAATatggtctaaagaagaagaatCAGAATTCTACTctaCTTGCTTCGAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 444)



ntlink-PF



SiR1-
GccATTTAAATtagaccataacaacaacaacTCGAAGCAAGtagAGTAGAATTCTGaagcttgggctgtcctctccaaatg



STTMSwa49
(SEQ ID NO: 445)



ntlink-PR





siR1010
1010-
GccATTTAAATatggtctaaagaagaagaatAGCAATCAAAActaATTCCCCCGAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 446)



ntlink-PF



1010-
GccATTTAAATtagaccataacaacaacaacTCGGGGGAATTAGTTTTGATTGCTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 447)



ntlink-PR





siR1008
1008-
GccATTTAAATatggtctaaagaagaagaatGCATAAACTGATctaCATCATCACAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 448)



ntlink-PF



1008-
GccATTTAAATtagaccataacaacaacaacTGTGATGATGTAGATCAGTTTATGCaagcttgggctgtcctctccaaatg



STTMSwa48



ntlink-PR
(SEQ ID NO: 449)





siR9
9-
GccATTTAAATatggtctaaagaagaagaatTCTAAAAATGCTctaCATCATAAAAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 450)



ntlink-PF



9-
GccATTTAAATtagaccataacaacaacaacTTTTATGATGTAGAGCATTTTTAGAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 451)



ntlink-PR





siR10
10-
GccATTTAAATatggtctaaagaagaagaatAGCACCCTACActaACCTAGAAAAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 452)



ntlink-PF



10-
GccATTTAAATtagaccataacaacaacaacTTTTCTAGGTTAGTGTAGGGTGCTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 453)



ntlink-PR





siR18
18-
GccATTTAAATatggtctaaagaagaagaatTGATCGACTCTctaGTTTTGGCTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 454)



ntlink-PF



18-
GccATTTAAATtagaccataacaacaacaacTAGCCAAAACTAGAGAGTCGATCAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 455)



ntlink-PR





siR15
15-
GccATTTAAATatggtctaaagaagaagaatTCAAACAACAAGctaGTTCAACACAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 456)



ntlink-PF



15-
GccATTTAAATtagaccataacaacaacaacTGTGTTGAACTAGCTTGTTGTTTGAaagcttgggctgtcctaccaaatg



STTMSwa48
(SEQ ID NO: 457)



ntlink-PR





siR17
17-
GccATTTAAATatggtctaaagaagaagaatCCAGTGCCATTctaCATCATTTTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 458)



ntlink-PF



17-
GccATTTAAATtagaccataacaacaacaacTAAAATGATGTAGAATGGCACTGGaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 459)



ntlink-PR





siR22
22-
GccATTTAAATatggtctaaagaagaagaatACTACACCCTTctaGACCACGTTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 460)



ntlink-PF



22-
GccATTTAAATtagaccataacaacaacaacTAACGTGGTCTAGAAGGGTGTAGTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 461)



ntlink-PR





siR24
24-
GccATTTAAATatggtctaaagaagaagaatGTCAAACAGAGActaGGACCAATCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 462)



ntlink-PF



24-
GccATTTAAATtagaccataacaacaacaacTGATTGGTCCTAGTCTCTGTTTGACaagcttgggctgtcctaccaaatg



STTMSwa48
(SEQ ID NO: 463)



ntlink-PR





siR25
25-
GccATTTAAATatggtctaaagaagaagaatAAAACCAAAATTctaTGATTCACTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 464)



ntlink-PF



25-
GccATTTAAATtagaccataacaacaacaacTAGTGAATCATAGAATTTTGGTTTTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 465)



ntlink-PR





siR1015
1015-
GccATTTAAATatggtctaaagaagaagaatACCGATCAGActaCAACCATCAAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 466)



ntlink-PF



1015-
GccATTTAAATtagaccataacaacaacaacTTGATGGTTGTAGTCTGATCGGTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 467)



ntlink-PR





siR20
20-
GccATTTAAATatggtctaaagaagaagaatAATCAGAAAAACctaAAGAACACTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 468)



ntlink-PF



20-
GccATTTAAATtagaccataacaacaacaacTAGTGTTCTTTAGGTTTTTCTGATTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 469)



ntlink-PR





siR1021
1021-
ccATTTAAATatggtctaaagaagaagaatACATGTTTTGTTctaCATCACTGTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 470)



ntlink-PF



1021-
GccATTTAAATtagaccataacaacaacaacTACAGTGATGTAGAACAAAACATGTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 471)



ntlink-PR





siR1002
1002-
GccATTTAAATatggtctaaagaagaagaatTGTGTTACAAAGActaTTTGAAGAATgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 472)



ntlink-PF



1002-
GccATTTAAATtagaccataacaacaacaacATTCTTCAAATAGTCTTTGTAACACAaagcttgggctgtcctctccaaat



STTMSwa48
g (SEQ ID NO: 473)



ntlink-PR





siR28
28-
GccATTTAAATatggtctaaagaagaagaatAAGAAGATCACActaGTTTCAAAAAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 474)



ntlink-PF



28-
GccATTTAAATtagaccataacaacaacaacTTTTTGAAACTAGTGTGATCTTCTTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 475)



ntlink-PR





siR31
31-
GccATTTAAATatggtctaaagaagaagaatCATTCACGACCctaACAAGACTCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 476)



ntlink-PF



31-
GccATTTAAATtagaccataacaacaacaacTGAGTCTTGTTAGGGTCGTGAATGaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 477)



ntlink-PR





siR29
29-
GccATTTAAATatggtctaaagaagaagaatCCCAAAAAGGActaCTATCCAACAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 478)



ntlink-PF



29-
GccATTTAAATtagaccataacaacaacaacTGTTGGATAGTAGTCCTTTTTGGGaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 479)



ntlink-PR





siR41
41-
GccATTTAAATatggtctaaagaagaagaatTTCTACTCCCGctaAAAACTATCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 480)



ntlink-PF



41-
GccATTTAAATtagaccataacaacaacaacTGATAGTTTTTAGCGGGAGTAGAAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 481)



ntlink-PR





siR35
35-
GccATTTAAATatggtctaaagaagaagaatAACGCGACATGctaGCACAGTACAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 482)



ntlink-PF



35-
GccATTTAAATtagaccataacaacaacaacTGTACTGTGCTAGCATGTCGCGTTaagcttgggctgtcctaccaaatg



STTMSwa48
(SEQ ID NO: 483)



ntlink-PR





siR57
57-
GccATTTAAATatggtctaaagaagaagaatCCAACGAACCAGctaAGATTATCTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 484)



ntlink-PF



57-
GccATTTAAATtagaccataacaacaacaacCCAACGAACCAGctaAGATTATCTAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 485)



ntlink-PR





siR43
43-
GccATTTAAATatggtctaaagaagaagaatCCCAACAAGAGctaAAAGCTCCCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 486)



ntlink-PF



43-
GccATTTAAATtagaccataacaacaacaacTGGGAGCTTTTAGCTCTTGTTGGGaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 487)



ntlink-PR





siR40
40-
GccATTTAAATatggtctaaagaagaagaatAACCAATACAActaGCCCATTCCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 488)



ntlink-PF



40-
GccATTTAAATtagaccataacaacaacaacTGGAATGGGCTAGTTGTATTGGTTaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 489)



ntlink-PR





siR48
48-
GccATTTAAATatggtctaaagaagaagaatTTGATCGATACctaTGTCACTTCAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 490)



ntlink-PF



48-
GccATTTAAATtagaccataacaacaacaacTGAAGTGACATAGGTATCGATCAAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 491)



ntlink-PR





siR49
49-
GccATTTAAATatggtctaaagaagaagaatTATCAAAAGACctaATAAGCCACAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 492)



ntlink-PF



49-
GccATTTAAATtagaccataacaacaacaacTGTGGCTTATTAGGTCTTTTGATAaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 493)



ntlink-PR





siR58
58-
GccATTTAAATatggtctaaagaagaagaatCAGACAATGAActaTCCCAATTTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 494)



ntlink-PF



58-
GccATTTAAATtagaccataacaacaacaacTAAATTGGGATAGTTCATTGTCTGaagcttgggctgtcctctccaaatg



STTMSwa48
(SEQ ID NO: 495)



ntlink-PR





siR1005
1005-
GccATTTAAATatggtotaaagaagaagaatTCCTATTGAAGctaAAACTCTTTAgaattcggtacgctgaaatcaccag



STTMSwa48
(SEQ ID NO: 496)



ntlink-PF



1005-
GccATTTAAATtagaccataacaacaacaacTAAAGAGTTTTAGCTTCAATAGGAaagcttgggctgtcctaccaaatg



STTMSwa48
(SEQ ID NO: 497)



ntlink-PR





*Forward primers are denoted as “PF.” Reverse primers are denoted as “PR.”













TABLE 3







Predicted B. cinerea sRNA targets in V. vinifera













SEQ




sRNA and target in

ID

Target site



V. vinifera

Alignment
NO:
Molecular function
position










Bc-siR3.2












VIT_10s0092g00240
Target
5′ CCCUACAAGAUUAACAAUGUA
498
carbohydrate binding,
CDS + UTR




    ||||||||||: ||||||||

hydrolase activity



Bc-siR3.2
3′ UGGAUGUUCUAGGUGUUACAU
24
carbohydrate metabolic






process










Bc-siR3.1












VIT_12s0028g01140
Target
5′ ACCCAAUUACAAGAUCCACGA
499
Pentatricopeptide repeat
INTRON




    |||| : ||||||||||||: |



Bc-siR3.1
3′ CGGGUGGAUGUUCUAGGUGUU
30





VIT_06s0009g01890
Target
5′ ACCAAUCUACAAAAUCCACAA
500
exonuclease
intron




    || |: |||||| ||||||||



Bc-siR3.1
3′ CGGGUGGAUGUUCUAGGUGUU
30





VIT_10s0116g00190
Target
5′ CCCCAAGUACAAGAACCACAA
501
KNOX1,2 domain
Intron




    ||||  ||||||| ||||||

containing protein



Bc-siR3.1
3′ CGGGUGGAUGUUCUAGGUGUU
30










Bc-siR5












VIT_05s0020g01790
target
5′ UAUAUUACAUUCCGAGUCAUG
502
Lipase
CDS




    |   |||||||||||||| :



Bc-siR5
3′ UUCAUAUGUAAGGCUCAGUUU
36





VIT_01s0011g01000
target
5′ AAGCAUACAUACCGAGUCAAU
503
NB-ARC and LRR
intron




   ||| |||||| |||||||||

domain



Bc-siR5
3′ UUCAUAUGUAAGGCUCAGUUU
36





VIT_05s0077g01510
target
5′ AAGTAATCATTCCAAGTCAAA
504
DUF7 domain
intron




   |||||  |||||| |||||||



Bc-siR5
3′ UUCAUAUGUAAGGCUCAGUUU
36









Example 2: Sequences of Promoters and sRNA-Resistant Targets










A. thaliana (At) BIK1 Promoter:








SEQ ID NO: 1







attttattatattatatagcgatgagagagacagagcttgaaggttcttt





ttagcgaaagagaaaaatccaggaagataggcgaaaaggaagatgaagcg





aagatgaggttaatataatactcatgttaaatgacaaaaatgcccttata





tgattaatgatattaccatttgagcttgctgtggaagctgtaacgaaccg





aaaattaaaaacagaataacgaacatagacggagaatatgatattattcg





ttttaccaaagaaactaacaaatagttttaactttatctaacaaaggggt





aaaacgggtaatttgtttgggatgaggtggagcgtagcggacaatcgaga





aattaaaagtttggcttggggacgaagttaaaggtgggctttaacgtttt





aaattggctgactcggacgatatttcttgtatttaataccaaaaatgaat





gactttataattcatttgtagattgaaagttacgtattgattcgaaaatc





aacacattgtgttttcaagtgggcataaactataacaccttgttgattga





ttaatagattacctaaagacattatggtttattactggtctttcaatata





tttttatcgcattgtcaatgatattgtttttgtatcccaagtccactgtt





ttggtctctacattcattttgattgggatttatctttttaaaatttcttc





taatgttttttcgatatggttattacttgctttgattttcttttcagtat





gtgtattgctttgcaaattgtttttttcttaagatgaaaaacaactcatt





aaattgtttgagaaatactactaaaacaaataaacaatgaggagaattat





ggaaaacaaagtgtaataggctttaattcattgctagtgggctttttggg





cctatgggcatattacttaccactatccaacccaaaatgccaaataaccg





acatgtctcaccaatccaattttgggccatacggccgaaattatttaaac





ctgtgctcataatttactttacaaattattacttttccataaattgtgga





aaagttatctgtaacatccgattcaactggagtctagactactatagaca





ttgatacgttttgagtttttagatacttggaagatatatgcatttatgaa





tacagattacagacacatactagtactactgtatgtctgtatatggatac





aaaaaaaatcatgtatgaatactaaaattttattagaaatctatttttca





attgttgcaacaatcaagttgtcaaatttatttttgtaaccgttaaacaa





acaaatatcgatttaggtttctaatctgaattgacatctcaaacaaaaaa





ggctgaatactttctgaaaatagtgtatggaatgaaggtggcttttagag





ccattataaccggaagaaaattcaggtgacttttagaaccattataaccg





gaagaaaaggtgaattttaatttttagctgtgtggaagacacggcaagtc





caagtagtaccttcgtacgtcaatattgtccaaccggccgtgtcgaaaat





cttcttgagaaaaattggattttcatctataaaaaaaaaaagtccaagta





ataccaaacaaagacagcgacgtgtaaaacaatacaagactcataatcac





aaacctaccacccaagtcaaacctatattccatttagtgaattcttgatt





atgacttcttgaaatcatttgtattcatatgtataattatttaagtcatt





tttctgtaagtaaaatttttatatatctagaataacgagttccctacgac





aagatacagttgaacgtaaatgtgacatctcaattttcattggtgtctag





tactctagtgattaggttttcgacatttattgtactgattaagtaaaaat





tcatggtacaaacatcgaatatatatttttctgcttacacacaccaatta





acgtggatagaccaattgaaatattttgttacgacaaagcaaaacaaaac





aaacgtcatgtttcgctgtttgtttgtcgtcccgttaatggtaatctttc





agacacatacagtacccaaacaagtaatttgactaaaattttctctctgt





ctaaatttcagaagaaaaaaaaactttaggatatattgccaaaagatctt





aaaaatgggtcatatcattttgatcatatagaatccaacgacctttatct





tttcgccgaactatacttttttgtgtccatttgtttgactttctttcaca





cacacatccacaaagaaaaaaggaccattcttctccttcttctagtcacc





cctcgtgcctctctttaacaccaaacccaaaactcccttctctttcttcc





ttcctctccgatctccgttcacatctctctctcatctttatcttcttctt





tttttgccttgtgggttgaaagtttctatattttctctttctcttctgtt





tacataatccattttcagctcaagcagctgaagaataacgatcaagaacc





aaaaaagaagaaaacgaatctgttcttagctttg





At PDF1.2 Promoter







SEQ ID NO: 2







ACGACGTTGGACTGTTTCATCATATCCCATAAAAATACATGATTGGGGTG





AAAATCTTGAACATATTAAAAAAATATTAAATCAAAATGATAAAGATAGG





GATTTATAAATGTAAAACGGGCGTGTCGAGAATTTTATGGACATTGGGAC





AAGCTTTATATGCAGCATGCATCGCCGCATCGATATCCCGAGGTGCATCG





TTTCTACTTTCATGTCCAAATTTGGGGTTAACTCACAATATATATCATGT





TGCCTATGTAAATTTATAATCATAAATCTAAACCCAAATTTTAATCCTCA





TTCCAAAGCAAAAGTTCTAAGCCCTACAAAAATATGTATTTCCCAAGTTT





AAAAAGAATTAATCTATACTTTTACAAATTTAAATTCTGATCTCTTATAA





TGTTCGGTTTTTCCTTTTTTATTTATTAAGTTAGTTAAAATTTGCAGTTA





TTTTGTTGAATGTCGTTGTTTACGAATTTACGAATAATACCTTTATAGCT





AATCTACAAAATTTTGATGACTGACAACACCGTTAATGTTTTTTTTTAAA





TTACCCTGAGCCTCTCACTTGCGGTCAGACCATGCATGTCGATAGTCCAT





TACGTTTAAGGCCACAATCAACTATAGTTTGTTTATCAATAGCCAACTAA





GCTAACTTTTAGGTTCCTGCCCTCTCCGTTCCTCCGGTACCAATCGTTTC





TTTGTCCCTTCGATAGTTTGAAAACCTACCGACGGTGAGAGCAAAATATT





GATGAATCATCCAATTTTCAGTAATAGGTGTGTCCCAGGGATATATAAAT





GGCGAAACTACGCGAGAACGGTTCCTTGTTCTGCAAACTTGGCGGAACAA





TGCTGCTCTTGAGATCAACCAAACCATATGTTTAGTCCACAACGATCTAT





ATGTCTAGGGGTGATCCTCTAATCGAAAAATGTTGTATTTGTTCGACGAT





GACGAAGGTCAGACTATGAACTGCACAGTCTGCACTTGTCCTAACCGCGA





GAATCTCTGACATCAATATACTTGTGTAACTATGGCTTGGTTAAGATATT





ATTTTCTTGAGTCTTAATCCATTCAGATTAACCAGCCGCCCATGTGAACG





ATGTAGCATTAGCTAAAAGCCGAAGCAGCCGCTTAGGTTACTTTAGATAT





CGACAGAGAAATATATGTGGTGGAGAAACCAGCCATCAACAAACAAAAAG





CAAGATCTTATCTTTTGATATTGGCTACGGGAAGATGATGTCTGTTTAAT





GTGTGGGGTTACCACGTTATTGTACGATGCACAAGTAGAAGATTAACCCA





CTACCATTTCATTATAAATAGACGTTGATCTTTGGCTTATTTCTTCACAC





AACACATACATCTATACATTGAAAACAAAATAGTAATAATCATC





At BIK1 homologous gene in tomato (TPK1b) Promoter







SEQ ID NO: 3







TTGCGTTTAATTTGTATGAATGTCATTTAATTTTTAGGATCGGCTTAAAT





TTGAAATTAAAAAAGCAAAATAATAATACTAGTATTTTCTAACTTTGTAT





TTTAATGCATGACATTATTTTTAGAAAAAATTGTAACGAAGAGAATCATA





TTTATGATAGAATTATTTGTAATTACTATTTGACTGATATTACTAGTTTA





ATTATTTCGCACACAAAGTATATTTTTTTAAAAAAAAATATTTTACATTG





ATTATTTTCTCTCTATCCCAACACCCCATCCCGTCTTTATTTTTATAGTA





TTTATTATACAAATATTTTAAAAGTATCTTATTGAACATCAAAATAATCT





TTTTTAAAAATTATTTATATCCCCAAAAAAATTATATGCACGTGTGAAAA





TGAGAAAATGTTGGTTGGGTGTGAATAATTTGTTGGTTCCCAAATATGAT





TATAATCCAAGAAAATTGGAAATTTGATTATTGCTTCCTTTTGACTTAAA





ACTCTTTGCTAAATTGCTAAGCATTCTTTTTAATTTTGTTTTTCCATTAA





TAACAATTTGGGTAATTCATATCCACTAGTCGGTGGATTTAATAGAAGTG





ATACATATTTTTTTGATGTTATTGTTAATTAATAGTGAAAGGTCCTTTTT





TCTCTCTCCTAATTTATATATAATTCATTTTTTAAAATCAATTTTGAAAG





AATGATATAGTTTCTATATTTAAGTAATGATTTATTTTATTGATAATAAA





ATAAGTTATAATCATATATATATTTTTAATATATTTAAAATTATAATTTA





AATTATTTATATCACATCAATTGAAACGGATGAAATTATTTATTTTAAAA





AAAATGATGAATGGGTGGCATCCATAAAAATGTGACATTTCTCCATGTGT





TTTGCTTAAATGAGATTTTTGACTATTTTTCTTGTGTTCATATTTATGAA





GAAGATCAACAATAAATTTTTATCAATAAAGAGGAAATTAAAAGTTGATT





AATATTAAAAATCACAAATATTTATTGAAAGTGAATAAATTTATAGTTAT





TACACATATATGGAGAGAGATCAAAATCAATATGCTAATTTTTTGTAATG





GAAGGGCACAATGAAAATAAAGTTAATTTTCATGACTAATTTAATCCATA





TAGTTAAATTCTAATCATATAAATTTCAGTGAATAAGTTCATTTGATTTT





TTTTAGATCTAATATTAATTATTAAGATGTAAATGTTAACTATGTTTTTA





TTAATGTTTCAATCACTGTGTCTATATTTGAATGATTACTACTTGTAATT





AAGTGAAAAAATTCAGTATTTTGTGTATTAAAATTTTTTATTATTGAAAG





AGATATAGATTTAAGTGGAAAGTTAATAAAGAAAATTGCAGTTCGCCCTC





AAATGAATTATCTTTAAAATTTGTTTAATAATATTTGGATCAATAAGTTA





ACGGAGTGGAGATTTTTAAAAGATGATAGTTAAAATTTGCACATAACCGA





ACAAATTGTCTATTTAGGTATGTAATTTAGAGAGTGTCTCTTTTGAGGTT





TGATGTTTAGGGTTCAAAAATTGTCCGTTTTGGTGCCAGAAACGTGCCTA





CAACCACCATCCAATCCATTCTCAATCACAATCACCATCACTGACACCCA





ATCACTACAATAAGTCGTCATTGCCGCCATCCTTATAACAAAAGTAATTT





YTTTGCAGTCATAACTATATACTTTAATAAAAAAATGTAAATTTTTATCG





ACATTACTTAAGTATCATTAAATTTACTATCGCTAAAATCTTTAGGGAAA





TTTATAAAGAGTGTTAATTGTTATTAAAAAAATTATATTTATCGATAATT





AAATTATTGTTGCTAATTACTTACCATTGACGACCATTTTCAATGTAGTA





CATCCAATATTATCGCAATAAATCATTATCACCCGTCATTACTATTAATT





ACTACTTATATATCGTCAATCACCATCATCATTAACCATTGCTCTTCATC





CACCATAGTTATTGTCTTTCAAGCATTACCATCATTCATCATCATTATTA





ACTACTTATATATCATCAATAACGATTTATCATTCATCACAATTATTATT





TATCAACATCACCTATCGCTCTTGATCATTACTATTAATCATCATTAACC





TTTAACTGCAACTTACACTATTGTTCTTAATCGATATTCACAATCACCAT





AGTTAGTCATCACCATGAGTCCTAGCCACAAATTCAAAGCAAAACACCCT





TAAAGCCTGGTAGTGTGTGTGAATTAAAGACCAGCAGTCCAAAGAGAGAG





AGAGAGAGAGAAAATGTAGACTTTAAAGATATGTAGTAGGACCAGTCTGC





CATTAATATCTCCTTCTACCAACCTTCCTCTCCTCTTTCACTACCCTACA





TTTAACATTTTCCTATAACCACTGCTTTAGATAAGTCAAATTTAGCTCTT





TGTTTTGATCTCTGTTTCAAAAGAAAACACCTATTAAGCAGCCATCATCT





TTCTTATCTTTTCCAAAACCAAAACTACTGACTTTTCTTGAAAAAAGAAG





AGGTGGGGTGCTTTCTTTTCTTCAAAAACCTTCTCTTTGTTCTTGAAAAA





ACAGGACTCATTCATTTTTTTTTGTGTGTTTCTTTCAGAAGAAATAACAA





AGACCCTTTCTCTGTTTTCTTCATATTTCAGCTTTGAGCTACTTGGATCT





GTTTTTTTTTTTTGAATATACAAGTAGTTTGTGTGTTCTGGGGTCTACAG





AAGAAGGAGAAGCTAAAAGGGGTGATTTTGTTTTTTGTTTGTTGTTGTTC





TA





AtML1 promoter (AT4G21750.1 promoter sequence)







SEQ ID NO: 14








aagcttatcaaagaaaaaacaagaacaaaacgatgcatagtttctaaaat






gtgctaaaattcagaaactgaaacatgattcattgtctgaaactttgttt





caaattactgaaaataatcattcactggaccaaaacaaataaataaaata





aaatcgaatttctgaatttggaaattggtttttggtttttaattttaaac





aaaacaaaaacgaaatttgaaggcaataaatgagttagttggtaggcaga





agtcactcgttcccactagctattattattagaagaaacgtccccacaac





tccaaggcgtttcagttcctttaatttactgaattaccctcctcatatct





ataaaaaatcacctcttgtaccaatgccccatttacacatcctgtcgttt





atttctagactaagtggactacatgtcggttatttgattcgcaccatgcg





tatttggattatcgctaacacaccccttcaaacaatacgcttaactcgta





ttacaaaatttcaagtgatgaattatctatgtataagatatagataggaa





caactaagcatcgagaaatttgtatataaatcaactagacttatatatat





ttcgatacagaatttatacgtattatatcaaattaattagtaattgtttc





ctctacgtgagtttaattaacaatgataagctacattgagtgtatcagtt





ctaaaactttatagtatgctacaatcaatttttctaagtaacaacttcaa





gcaaggaatcacacacacacagtggtacataataaacttgattttaatat





catatgatcagcatcattaacggaataagttaagtaattcgtcatccata





ctactaagtcatattaaaatcataatcaaacttaaaagccgattagaaag





agagcaaatatatctaaaaattcacgaggaagacgacaaatgcaaggaaa





cacagctagtattattaaacttaatagatattggatgaatgactgcataa





tatatatcacattaaaagtggacataaatttgcatatgtgtaatgtacct





ctccacaattaatcgcggaccatttattttactattacaagtcaagtaac





tttatattgttgatccataattcttttcgaacataaaatcatatacttag





gccattttcaactgtcaaaactcgaatccgagaaccaaatttcaccattt





tccaaaaatgatgagtgtcgaccaaatggggtactactgtctaatcagga





acttgtgaacaaattttcaaccttttccaaataagacgagtgtcaaccaa





ctttttccaaccaagagatattgggttgctacacaaatacttaatagcca





ttgcatatttatgcatatgcaaatgcagggtcgtggcgtcagaaagaaac





ataggaccctcaacatatttaatattttgggagctatatttgactatttc





atattagaaaataataataaaaaagtgttggttttatatcaaattgtaat





ttacgaaaaacttatgcttttgcgcaatgatttttgtaaagtatctacta





tgtttagtgtttacattgattagtaggctgccgttttttttcttgtgtat





tatgtactatatatgaatatgaacatttgtaaaagtgaatcttgtcattt





tcttgttgaaaacatatatagtatgtgcaaacaaagcataggttaatcca





ataccacacaaataacacgtcaggtaaatccaataataaatcgtatgtgc





atgtatgtgtattcatgtatgttacatgaatgtctgaatcagtcagtgta





cgtatatgatgtaggtgatgtaaatcttaatgtatgagctgtttcttgga





ccatggtccacaatggatattgctccccaactacattagtcaatcgactg





gccaatttttaattaagataattaatccaaactaccattaaatataactt





tgaccttttttctattcatttttagatattattggaacttacgtagttta





catgcatctcatccctttcttttgctccttgaaagtgggtccaatcacaa





aaaatgatcttatattttgtattttgtattttaaaaactcataattatat





aggttcaaaaatttaattaacatcagtgtatactataattactactctag





ccaacaagataaattcattttgacatcagccaaaagataaaaatttggtt





aaaaactattggattagcttttagtatttaatattttatgtactgattaa





atacgaatttagaaatctaggatataagtgagggtgtataataagggagg





ggtggaccattaatagcgatgtgcaattaaaaattatgattaagaatcta





ggaaatttgtagattgcttagttatttttatggcgatcgtcgtgtcaatg





tcatggattttgaaactttaaattaatctcttaaattagcacctaccttt





gaattttatagaatctttttattttatatgtttaattttatagaatctaa





ctagcttattttgagattaaattgtttagttacttttataacagtataaa





tgtataatgaggacctaagaatgtagtcctgtaatgttcttgctattcta





cttaatctcatcaccaatcaaccatcaaaagaagctagtactaataaaac





ctgcaggtattcgaataataattaagctcaaacactatactaatttatgg





aggattatatattcaatgaattaggaacctcatgatggacattattgact





gatataatgtgtatactaattgtgagtatttaaaaaccatacaaagcatt





tatatgtccacatatattggacacacatgcaatcaatgttcaatatgctc





cacacacagaaataaaaatactctttctgatcatatgatacatcatacat





atactaaaaaaatctaaaatgaactataaccacaagcatatataataaca





atgaaatggtaatgtttcttcatttttatttgttcaaattcttattcggt





tgttttttcttaccctacgagaatccgtgaggtcaaagggaaacagtgat





tttttttttgtattttgttttttaaattgatgaactgtaaaactctctct





ctagaaaaatatataagtagtagtatgaattttctctcactaaaagcatt





aatggacctttcgataatcataaatgcaatgcaccctctctatgcatttc





gcaataactccttttccttctgccacatcctcttcctcacctctttctct





tcttccctttctcctaagttcctcctccaccaaattctccatttatttcg





ttaactatcctccatttgttttcttctgaagagtgatatattctaccttt





ctctggttaaagaaactccctgaatccaccggttatgtcttgaccggcta





taagcctataaactgatgccctaagacacctttttaggtttctcaataat





tctccgcatctatcttttcttctccacaagtaagagaaccagaaaaccag





agaagaagccgagctagctagggtttcattgtgtgcacaaaagtaagatc





tctctctctaaccaatacttgtgtaatttgtctttgtttctttgagcaaa





tattgcatgtttgttcatattagccggatccgttttatattttttcatga





tctacattttatctttattttgtttgtaaattaatgagtttttttttttt





ttttctgtttttgtcacgatctaaaaaacaagcgttacaaagaagaagaa





aaacctttttggagttagaagtgtaaaaggggtttcagtttgacgaattt





tccttagtagttgtgtaaaaaaaggccattgacttaatgtcaactctata





tatctacacatttttttattaattagtttttgtttttttcccacttcatt





tacctttagtcaatgaatttttactgaaaacgttttttcaaggtcaattt





cactgagttaaaaaaaaaagttttatttttaaccaaaaattacgtttttt





cctaggcttcggtaacctgtgaattcctctatctcactagcttttatgta





gaagagagagaaggcaacattaaattcgatctaaaacttcaagaaaccaa





aacaacacttcaaaaaaaaaaagagatctgttctatagagttttaatctt





ttctttcgactcgagtttggctcaacaaagtttatatcgatttggcactc





taaaatgtaagtagaaccaaatgaatcttgtattttatgtacgttaataa





aaaattagggtttcctagacgacaatctcgtcatccgtttcttctttgtc





tacctctgcgttttcttgtagatccgatgatgtgctcagtcttgtgactt





tcaagattgattttatcgttattgtttgaagatatgtggtttgattattt





tctcaacacattgtgtccttttagcgctttacttcagtttctctctaatt





ttcataatattattattgaacattatgcttaattattcatccgaatattc





gtgtcccattttttaaattgaatttcaggataacttgtattttatatgca





acgaggttatgtcacgtagtgggtgcatttatattcataccctttttgat





aagatgaatgcatatgcttatataagcgtataggtataaataaccatcaa





aaatagagaaaaagaccaatattttgcttttcggttacttatgaaatgtg





aaaaagaccatataaatatatctattaaagggaagtatagtttcataaaa





tcttgaggattacattccataaaccaagattaccttccgtttttgctttg





atcctcttcttatcaaatatataaacatgaccatttgatctttcattttg





gatagtgggatatacaggcagaagaaaatcgagataaatcaactaaatga





tttggataatcatcttgaagatttgaaggaaaatccaagagcttcaaaaa





ctccaaaaattgataggcatccatcatcatc





Tomato ML1 Solyc10g005330.2.1 promoter sequence







SEQ ID NO: 15








ATTTTGACACACGAAAAAGTAGTACGAATATTGAACTCATGATAACTTTA






TCAGTTACTTCAAGACTCTCATTTTAACACAAGAAATATATTTTACAAAG





AAAAAGGGAACATATTTTACAAAGCTTTATTTTGTATTTTCATTAATAAT





TATTTTCAAGGCTTGAACTCATAATAATTTTATCAGTTTTTTCAAGATTT





TCATTTTAACACACGAAAAAGTAATATGAATATTGAACTCATGATAATTT





TATCAGTTACTTTAAGACACTTATTTTGACACACGAAAAAAGTAATACGA





ATATCAAACACCGAATACGAAAGAAAAAAAGAAATGAAAGCATTATAGTA





GTTGCCAACCGCCCCTTCCTCCTCCTCTCTCTCTTCAACAACAACATTAA





CACCTCTATAGCAAGTCATAAATGCTATTTCATCCTCTCTATACCCTTTG





CATTAACTCCTTTGCTTCCACAATCTCTTCTCCCACCTCTTCACCTTCCC





CTTTTCACACTTTCTTTCTCTTTCTTTTTTTCTTTCATCCTTAGCCTCAA





AACTATTCTTCTTAAATTCTAGTCACAAGAAAAGTGTTCAATTTCAACCT





AGCTTCACTAAAATATATACATGTTCATTCTCCAAAAAGTACTTCTTGTC





AAAACTTAGATTTAACCATTTTCTCAAAAACCCTAATAACATCAACAACA





AAAAAGAAGAAGAAGGTGTGTTCTTGCTTTTGTCACAAGGCTTCTCTACA





ACTCATGTAAGTCAAACATATACTATCATCTTCTTGAATTTGTTGAATTC





TTTTTTACTAGCTTATAAGTGTACTATATTGTTCGAATTTTCTAAAAATA





TTATCCGATCTTTTAGGAACAATATATATTTTTAAAGATCCAATACAAAT





ATAACATTAGTTTCACAGAGTCCGAGCAAAATAGATAAATAGTTGTAAAT





TCACTTGTATTTGACTTACCTTTTCATTTTTCCGTTATATTTTGCAGAAA





TAGAAATGCCAGTGAAGTTGGACTCTGCCTAGATACTCGTGGACGTTATA





TCATATACAAGTACCTAAGTTTTGAAAAAAAAATTAACAGTGAAAAAATA





TTAGTTTTTGAGTTCACACTATGTCAACTCTATCTTTGTTTTTTGCTAAA





TTTTTCTAGTTTCAAGTCTTTTTTTTTGTTTGACTTGTAAAACTTTTTTC





TTTTACATTATTTTTATCCCCTTAGAGATTCTATAAAAACTCTATGCCCT





AACAAAATTTCTTACTAAACAAACAGATATATCAACATATATAGAAACAA





AGGAGAGAGAAATTGTTTCTATGGCTTGAAGGGCTTATGTCATATATGTT





ATATATGGTGTAAACTCCATCACTATGAAGTTTCTGGCAAGCGGTGAATT





TCATCGTAGGTAATAGGAGGTAACAGGTATTCAGTAAGTCGTAATTTTAA





CATCGAATGTTTATACGAATCATTTTTATACAATAGATGTGAGTTCAATT





CTCTCTGTTATTCTTTGTCTAGAGAGTAGTAAAAAAAAAGATAAAAAGAT





CCGTTCGTTCTCATCTCTCTCCAATTGTTGAGATCTGTTTGGATCTTGAG





TTATTAGGTACTAATAAAGACCTTTCAAGTTGAATTATTCAATTTTATTA





TTATTTTTGCACTTTTGGACATCATTTTATGTTTTTAATCATGTCATAAT





TATATATGCATGTAGATGAAATAAATCAAAAAGTAGATTTTTATTCAAGA





ATCAAATAATTTCTTTATGTTTTTTTTCTTAAATTTATCTTCTTTTGCTT






TTTTTAGGGGCAGATTAAAA







Example 3: Sequences of sRNA Targets and Mutations for Making sRNA-Resistant Targets

Polynucleotide sequences for sRNA targets (MPK1, MPK2, WAK, PRXIIF, MAPKKK4, Sl F-box (Solyc03g061650.1.1), Autophagy-related protein 2 (Solyc01g108160.2.1), Sl Vacuolar protein-sorting (Solyc09g014790.2.1), Sl Pentatricopeptide (Solyc03g112190.2.1), and TOM34 (Solyc07g066530.2.1)) are provided. Underlined sequences represent target sequences for sRNAs. Alignments of sRNAs to wild-type target sequences and mutated target sequences (target site synonymous mutations) are also provided.










SEQ ID NO: 4—Bc-siR3.2 Target At-MPK1



GTCAACTGTCCGAGCGTTGGCCAAATCTCTCTCACTTCCACAGGTTTCTCTCTCCGGCCAAAT







embedded image




GGTTGATCCTCCTAATGGGATAAGGAATGAAGGGAAGCATTACTTCTCAATGTGGCAAACTC





TGTTCGAGATCGACACTAAGTACATGCCTATCAAGCCTATTGGTCGTGGAGCTTACGGTGTT







embedded image






embedded image




GACATGAGAATGTCATTGCTTTGAAAGATGTCATGATGCCAATTCATAAGATGAGCTTCAAG





GATGTTTATCTTGTTTATGAGCTCATGGACACTGATCTCCACCAGATTATCAAGTCTTCTCAA





GTTCTTAGTAACGATCATTGCCAATACTTCTTGTTCCAGTTGCTTCGAGGGCTCAAGTATATT







embedded image




CGATTTAAAGATATGCGATTTTGGACTAGCGCGTGCGAGCAACACCAAGGGTCAGTTCATGA





CTGAATATGTTGTGACTCGTTGGTACCGAGCCCCAGAGCTTCTCCTCTGTTGTGACAACTATG





GAACATCCATTGATGTTTGGTCTGTTGGTTGCATTTTCGCCGAGCTTCTTGGTAGGAAACCGA







embedded image




AGAGAAGAAGATCTTGAGTTCATAGATAACCCGAAAGCTAAAAGATACATTAGATCACTTC





CGTACTCACCTGGGATGTCTTTATCCAGACTTTACCCGGGCGCTCATGTTTTGGCCATCGACC





TTCTGCAGAAAATGCTTGTITTTGATCCGTCAAAGAGGATTAGTGTCTCTGAAGCACTCCAG





CATCCATACATGGCGCCTCTATATGACCCGAATGCAAACCCTCCTGCTCAAGTTCCTATCGAT





CTCGATGTAGATGAGGATTTGAGAGAGGAGATGATAAGAGAAATGATGTGGAATGAGATGC







embedded image




GGGTAATTTACAGAAAACTTCTTCTTCTTATGTCTGATTGTCATCATAGACTCATAGTGTATA





TAGTCTTGAAAAATAAGATGAAGACTAACTTATAGTTTAAGCGAATAGTGATGCCATGGAA





GCTCTGTTTTATTTAATTACAAGCTTGATGTGTGTCTGTAACATATGTACATAGAGAGAGCTG





TTTTTTTTTTTTAATTACAAGTTTGATGTGTGTCTGTAACATATGTACATAGAAAGAGCTGTG





TTTTTTTTTTAATTACAAGCTTGATGTGTGTCTGTAACATATGTTCATAGAGAGAGCTGTGTT





TCTGTTTCTCTGTTTGTTTGTTGCGTTCTTGCAGAACTTTTAACCCTCTCATGCAATCCAAGCC





TTTTGATG





Alignments of sRNA sequence Bc-siR3.2 to wild-type (WT) At-MPK1 target and mutated


(MU) At-MPK1 target









miRNA:
3′UGGAUGUUCUAGGUGUUACAU5′ (SEQ ID NO: 24)



alignment:
  |:| | |||||:||||||||


WT Target:
5′ATCAAGAAGATTCACAATGTT3′ SEQ ID NO: 59)





miRNA:
3′UGGAUGUUCUAGGUGUUACAU5′ (SEQ ID NO: 24)


alignment:
  |:  | || || ||:|| ||


MU Target:
5′ATAAAGAAAATACATAACGTT3′ (SEQ ID NO: 505)











SEQ ID NO: 5—Bc-siR3.2 Target At-MPK2



ATGGCGACTCCTGTTGATCCACCTAATGGAATTAGGAATCAAGGGAAGCATTACTTCTCAAT





GTGGCAAACACTTTTCGAGATCGATACCAAATACGTGCCTATCAAACCGATAGGCCGAGGC







embedded image






embedded image





TACGTCATCTTCGACATGAGAATGTGGTTGCTCTTAAAGATGTAATGATGGCTAATCATAAGA






GAAGCTTTAAGGATGTTTATCTTGTTTATGAGCTTATGGATACTGATCTTCATCAGATTATTA





AGTCTTCTCAAGTTCTAAGTAATGACCATTGCCAATACTTCTTGTTCCAGTTGCTTCGAGGGC





TCAAGTATATTCATTCAGCAAACATTCTCCATCGGGATCTGAAACCCGGTAACCTCCTTGTG





AATGCAAACTGCGACTTAAAGATATGTGACTTTGGGCTAGCGAGGACGAGCAACACCAAAG





GTCAGTTCATGACTGAATATGTTGTGACTAGATGGTACCGAGCACCAGAGCTACTCCTCTGT





TGTGACAACTATGGAACCTCCATTGATGTCTGGTCAGTCGGTTGCATATTCGCCGAGCTTCTT





GGAAGAAAACCAGTATTCCCGGGAACAGAATGTCTAAACCAGATTAAACTCATCATTAACA





TTTTGGGTAGCCAGAGAGAGGAAGATCTCGAGTTTATAGATAACCCAAAAGCCAAAAGATA





CATAGAATCACTCCCTTACTCACCAGGGATATCATTCTCTCGTCTTTACCCGGGTGCAAATGT





TTTAGCCATTGATCTGCTTCAGAAAATGCTCGTTCTTGACCCTTCGAAAAGGATTAGTGTCAC





GGAAGCGCTTCAACATCCTTACATGGCGCCTTTATATGACCCGAGTGCAAATCCTCCTGCTC





AAGTTCCTATTGATCTCGATGTAGATGAAGACGAGGATTTGGGAGCAGAGATGATAAGAGA





ATTAATGTGGAAGGAAATGATTCATTATCATCCAGAAGCTGCTACCATAAACAACAATGAG





GTCTCTGAGTTTTGA





Alignments of sRNA sequence Bc-siR3.2 to wild-type (WT) At-MPK2 target and mutated


(MU) At-MPK2 target









miRNA:
3′UGGAUGUUCUAGGUGUUACAU5′ (SEQ ID NO: 24)



alignment:
  |:| | ||||||||||||||:


Target:
5′ATCAAGAAGATCCACAATGTG3′ (SEQ ID NO: 60)





MUTANT



miRNA:
3′UGGAUGUUCUAGGUGUUACAU5′ (SEQ ID NO: 24)


alignment:
  |:  | || || ||:|| ||:


MU Target:
5′ATAAAGAAAATACATAACGTT3′ (SEQ ID NO: 505)











SEQ ID NO: 6—Bc-siR5 Target-WAK



ATGAAAATCTTGATCTTGATTCTATCCTTTGTGACACTCTTTGAGATTTGCGTTGTGGACGC





ATGTCGATCATACTGTGGAAACATAACCGTTGATTATCCGTTTGGGATCCGAAACGGATGT





GGGCATCCAGGGTATAGAGATCTATTGTTTTGTATGAACGATGTGTTGATGTTTCACATAAG





TTCAGGTTCTTATAGAGTTTTGGACATCGATTACGCATATCAGTCCATAACACTGCATGATC





CTCACATGTCGAACTGCGAAACCATCGTGCTCGGTGGCAAAGGCAATGGCTTTGAAGCTGA





GGATTGGAGAACTCCATATTTCAATCCTACCTCAGATAATGTCTTTATGTTGATCGGATGTT





CTCCTAAATCTCCTATATTTCAAGGCTTCCCGGAAAAGAAAGTGCCGTGCCGCAACATCTCT





GGAATGAGCTGCGAAGAATACATGTCATGTCCAGCTTGGGACATGGTCGGATACAGACAAC







embedded image




AGCGATTAATCTAAGTAAGTTGGAGTGTGAAGGATACAGTAGTGCGTATAATCTAGCACCC





TTGAAACTTAGAGGACCCTCTGATTGGGCTTATGGGATACGTGTTAAGTATGAACTCCAAG





GAAGTGATGCGTTTTGTCGTGCGTGTGTTGCAACTTCTGGGACTTGTGGCTATGAACCTGCT





GATGGTGGAGGGCTTAGACATGTTTGCATGTGTGACAACCATAATTCCACTACAAACTGTG





ATTCAGTTATATCACCAACCGGTGCATCATCAAGTGTTCGACCAAAAGCTATCGGATCACT





GATCATCTACTTCATAGCTATGAACATAGGCTTTCAGAGAAGACAGCGATGA





Alignments of sRNA sequence Bc-siR5 to wild-type WAK target (WAK) and mutated


WAK (WAK-m) target









WAK
5′GGGUAUACAUUCCGGGUCAGG3′ (SEQ ID NO: 21)




  ::||||||||||||:||||::


Bc-siR5
3′UUCAUAUGUAAGGCUCAGUUU5′ (SEQ ID NO: 22)



  :| || || || |: || ::


WAK-m
5′UGGAAUUCACUCGGGCUCUGG3′ (SEQ ID NO: 23)











SEQ ID NO: 7—Bc-siR3.1 Target AtPRXIIF



ATGGCGATGTCAATTCTAAAGCTAAGAAATTTATCGGCACTAAGATCGGCGGCAAATAGTG





CCCGGATCGGAGTTTCATCGAGGGGTTTCTCAAAGCTCGCGGAAGGCACTGACATAACCTC





GGCGGCGCCTGGCGTTTCTCTCCAGAAAGCTCGCAGCTGGGACGAAGGTGTTTCCTCCAAA





TTCTCCACCACGCCATTGTCAGATATCTTCAAGGGGAAGAAAGTCGTCATCTTTGGTCTTCC







embedded image




AAGTTTAAAGCCAAAGGCATTGATTCTGTCATCTGTGTCTCTGTTAATGATCCCTTTGCTAT





CAATGGTTGGGCAGAGAAGCTTGGTGCCAAAGATGCAATTGAGTTTTATGGAGATTTTGAT





GGGAAATTTCACAAAAGCTTGGGGCTAGACAAGGATCTCTCTGCTGCATTGCTCGGGCCAC





GGTCTGAGAGATGGTCGGCTTATGTAGAAGACGGGAAGGTTAAGGCGGTGAATGTGGAAG





AAGCACCGTCTGACTTCAAGGTTACAGGGGCAGAAGTCATCTTAGGACAGATCTAA





Alignments of sRNA sequence Bc-siR3.1 to wild-type AtPRXIIF target and mutated


AtPRXIIF (MU) target




embedded image




SEQ ID NO: 8—B-siR3.2 target in tomato: MAPKKK4 Solyc08g081210.2.1


ATGCGTTCATGGTGGGGGAAGTCTTCATCTAAGGATGTAAGGAGGAAATCCACTAAGGAGA





GTTTCATTGACATAATAAATCGGAAACTGAAGATTTTCACCACGGAAAAATCAAGTGGTAAA





TCTGGATCATCTCGAAGACGACGTAAAGATACAAATTCAGTGAAGGGTTCTCAATCAAGGGT





TTCAAGGTCACCATCACCATCTACTGGATCCATAATATTAGTGACCGGTGAAGTCTCCGAGC





CATCATTGACTTTGCCTCTTCCCATGCCCAGGCATCTTCCACATGGACCAACTGCTGCAGGAG





TTGACAGGGACTTACCAACTGCTTCTGTTTCTTGTGACAGCTCCAGTGACAGTGATGATCTTA





CTGACTCACGATTTCTAAGTCCCCAAACATCTGATTATGAAAACGGGAGCAGAACTGCCTTG





AATAGTCCTTCCAGTTTGAAGCAGAAGGTTCAGTCCCCTATTGCATCCAATGCAAGCTCAGG





AGAGATGCTGAAGTCAGCTACTCTTTTGTCAGACAATCAGGCGATCCCTACATCTCCTAGAC





AGAGGCTTTTAAGATCTCATGTACCACCAGGCTTACAGATTCCTCATCATGGCGCTTCCTACA





GTGCTCCTGACAGCTCGATGTCAAGTCCTTCAAGAAGTCCCATGAGGGTATTTGGGCATGAA





ACGGTCATGAACCCTGGTTTCTGGCTAGGGAAGCCACATGGAGAGATAACCTTCTTAGGATC





AGGGCACTGCTCCAGTCCAGGTTCTGGCCAAAACTCTGGGCACAATTCAATTGGAGGTGATA





TGTTAGCGCAGCCCTTTTGGCCACACAGCAGGTGTAGTCCTGAGTGTTCACCTGTACCTAGC





CCTAGAATGACTAGTCCTGGTCCTGGCTCTAGGATACATAGTGGTGCTGTAACTCCCTTGCAT





CCTCGAGCTGGAGGAACGTTGGCTGAGTCTTCCACAGCTTCACTTGATAATGGAAAACAACA





AAGTCATCGTCTGCCTCTTCCTCCCATATCAATCCCTCATTCTTCTACTTTTTCTTTGTCATGT





TCAATGACTCCTGCAATTCCACGAAGTCCTGGTAGAACAGGTAATCCTCCAAGCCCTGGGCC





ACGTTGGAAGAAAGGACGTCTGATTGGTAGTGGCACATTTGGACATGTGTACCTTGGTTTTA





ACAGTGAAAGCGGTGAAATGTGTGCAATGAAGGAAGTAACACTTTTTTCAGACGACCCAAAG






TCAAGAGAAAGTGCACAGCAGCTTGGACAAGAAATATCTCTGCTAAGTCGGTTACGCCATCCA






AATATTGTGCAATATTATGGCTCTGAAACGGTAGATGACAAGCTATACATATACCTTGAGTA





TGTTTCAGGTGGTTCGATCTATAAAATTCTTCAAGAATACGGTCAGTTGGGTGAGCTAGCAA





TTCAAAGTTACACTCAACAAATTCTGTCTGGACTTGCATATTTGCATGCTAAAAACACAGTG





CACAGAGATATTAAAGGAGCAAATATACTGGTTGACCCAAATGGCCGCGTTAAATTGGCAG





ACTTTGGGATGGCAAAACATATAACTGGTCACTACTGTCCTTTGTCTTTCAAGGGAAGTCCTT





ACTGGATGGCACCTGAGGTTATTAAAAATTCAAATGGTTGCAATCTTGCGGTAGATATATGG





AGCCTTGGATGCACGGTTTTGGAGATGGCAACAACAAAACCACCTTGGAGTCAGTATGAAG





GGGTCGCTGCTATTTTTAAGATTGGAAACAGCAAGGAAGTTCCAGCAATTCCCTATCACCTG





TCAGATAAGGGCAAGGATTTTGTGCGGCAATGTCTACAACGCAATCCACTCCACCGTCCAAC





AGCTTCTCAGCTCTTGAAACATCCCTTTGTCAAAAGTACTGCTCCAATGGAAAGATTCATTG







embedded image




CCTAGAAGTTCAATTTTTTTTCCTGGATTTAGCGACGTACCTGTTCCAAGATCTTGCCCAGTT





TCTCCAGTTGGGATAGAGAGCCCTGTTTACCATTCACAATCACCTAAACATATGAGTGGAAG





ATTGTCCCCCTCTACCATATCAAGCCCCCGTGCTGTATCTGGTTCATCAACACCTCTTAGCGG





TGGTGGTGGTGCTGTTCCACTATCTAACCCAATTATGCCTACAACTTCTTCATCAGAAGACAT





GGGAACATCACCAAAGGCCCAAAGTTGTTTTTACCCTGATGCTTACACTAGTCACGGTCTGA





AGTCTGACATGTCTCGAGAAGCACCTCCATATGGCAATGGTTTTTTTGGAGAAAATTTTGGG





GGCCATGCTCAAAGTGGTGTTAATGGACAACCATATCAGGGACAGTCAGTATTAGCTAATAG





GGTTGCTCAGCAGCTTTTAAGGGACCAAGTAAAATTGAGCCCATCGTTTGACCTGAACCCAG





GCTCTCCAGTTTTTAGTTGGGATAATGGGGTCTAA





Alignments of sRNA sequence Bc-siR3.2 to wild-type MAPKKK4 target and mutated


MAPKKK4 (MU) target




embedded image




SEQ ID NO: 9—Bc-siR3.2 Target in tomato: Sl F-box (Solyc03g061650.1.1)







embedded image




AAATGATATAGACAAAATCTCTAATTTGCCCATGGATATCCTTGATAAAATATTCAAGGACA





TGTCATTTCTAGAATTGGTAAAAACGTGCGTCTTGTCGAAGAAATGGGTACATTTCTGGGCT





ATGCATCCAATTCTTGTTCTAGATGGAGATTTTTTTAGAAAGATAAGTGGTAATATAAAATT





GATTGAAGATGGTTTTAGTGGCCTAATTGACAAAATTCTCTTTCAACATGTTGGATCAATAGT





CAAGTTTTCCCTTGATTTGTCAACTATCTATTATAATAATAATAGGGACCTTGGTCATTGGTT





GATTTGCGTAACAAGTAAGTGTGTCAAAGAACTTACCCTAAAAAATCACAAACACAAACAC





TATAATTTACCTTTTTGCGTATTTGATTGCCCAACTCTCACATATTTAGACGTAACCAATTTC





ATAGTTAAATTACCATCTTCCAAAACATTATTCCCAAATCTCCTTGAATTAACCTTGAAGTCC





ATCAAATTTCGCCCAACCAATGCAAATTATGTCTTGAATGCCCCTTTTCTTACCTCCTTAACA





TTAATTTCTTGCAATGGTGTTCATTGGCTCACCATATTTGCTCCCAGGATTAAGTTCTTGACA





ATTAATGATAGCCATGACATTTGCGCAAATTTTTTTGTAAATTTCTCAAATGTTAGGGAGTTG





TTATTCCGTGAAGAATCTTATTATGAAGAAGGGAGGTTCATCACATGGTCACATCTTCTTTCT





TTGTGCCCTAACCTAACAAGGCTTGTTTTGAATAATTCTTGCATTCAGGTTTTCAATACCTTG







embedded image




AATTTGAGAAGCTTGAATTTGTGGAACTAAGAAAGTTTGAGGGGACACACTTTGAGCTCATT





TTCTTAAAGAAAATATTGGGATATTCTCCTTCGCTTTCAAGGATTATTGTTGAACCTTCTGAT





GATATTGATGTTGCAGAGATATTGGATTTGTATGAAGAACTAATGATGTTTTTAAAAGCATC







embedded image




Alignments of sRNA sequence Bc-siR3.2 to wild-type S1F-box target and mutated S1F-box


(MU) target




embedded image




SEQ ID NO: 10—Bc-sRNA 3.1 target Autophagy-related protein 2 (Solyc01g108160.2.1)


ATGTGGAACTTCGCGAGGTCTGCGGAGAAGTTGTTCTCGCGCTGGGCAATCAAGAGGTTT





TGCAAGTTCTGGTTGAAGAAGAAATTGGGGAAATTTATACTTGGTGATATTGATCTCGAT





CAACTCGATGTGCAAGCCAGGGCCGGTATCATTCAGCTCTCTGATCTTGCCCTCAATGTT





GATTATCTCAATCAAAAGTTTGGTTCCGCAGCAGCCGTATATGTTCAAGAAGGATCAATC





GGCTCTCTGCTTATGAAAATGCCTTGGCAAGGGGATGGCTTTCGGATAGAGGTGGATGAA





CTTGAGCTTGTGCTTGCTCCTGAGGCAACCTTTTCTCCTAGCACATTTGGAAATTGTCTT





TCAACTCAAGATGGTGCTGCTTCGGTGAACCAAGAATCAGGAAACCGCAAGGATGTTGCT





GTCGATGATTGTGGGGCTAAAACAACTGCTTTTGATGTTCATGAAGGGGTCAAGACCATT





GCTAAAATGGTTAAATGGTTTCTTACTAGGTTGAATGTAGAAGTTAGAAAATTGATCATA





GTATTTGATCCCTGTTTAGGTGAGGAAAAACAGAGAGGGCTTTGCAGAACCTTAGTATTA





AGAGTAAGTGAAGTAGCCTGTGGGACATGCATCTCGGAAGGGGATTCTCTGGATACTGAA





GCAGCGGATGCTAACCTTTTGGGGTTGACTCAAATGACAAATTTTATCAAATTTAGTGGA





GCAGTTCTTGAATTCCTTCAAATTGATGAGGTTGTTGATAAGACACCAAATCCATGTGCT





TCAGGAACAGCTACAGGTGAGTGGTCAAGAAACTATTCACCAAATGTCACAACTCCTATA





ATAACCGGGGAAAGAGGCGGACTTTCTGGGAACCTAAAATTGACTATACCTTGGAGAAAT





GGTTCCTTAGATATCCGCGAAGTGGAGGTAGATGCTTCTATTGATCCTCTGGTAATCAAA





CTTCAACCTAGTAGCATCAGATGCCTAATACATTTGTGGGGAATTTTGAAAGATACGGGT





CAGAAGAAGGATACAGAATTTCCATTCTGTAATTCAGTAATGACTTGTGATTCAACAAAG





GCAGATACTTCTCTGCTCAGTATGGATGAGGTGCTTCCAGATTCTAAAGCAAATTCTGCT





GAATGTGCATTTGAGAGTGAACCTGTGAGGGAAGCTTTGCTGTCTGAGTCCCGTCTTATA





TCGAACTGGGTGAGTAGAAGCCGGAAAGTCAATGACGAAGAGGAACCAGACTTTGGGGAA





AGCGTGCACCAGTTTTTTGAGTGCTTTGATGGTCTGAGAAACTCGCAGTCAGCTCTAGGA





AACAGTGGGATGTGGAATTGGACTTGTTCTGTTTTTAGTGCGATAACTGCTGCTTCTAAT





CTTGCTTCTGGGTCGTTGCTTGTTCCTTCTGATCAGCAGCATCTTGAAACCAATATTAGG





GCTACAGTTGCCAAAGTATCTCTTCTTTTTTCTTTTATTGACGAGGAAGAGAGACATTGC





TGCACTGTGGATGCTGATAAAGGGAATGCTGGTTTTTATGTTCATTATATAAGTGCAAGT





TTTCAAGATTTGCTTCTGGTATTGCAGGTACAGCGCCAGGAAGTGAATTTTGAAGCAACA





GTTCAACATGTGGCACTTACTGATCACTTCTCAAGAGAAGATGACACTGTTGATTTCAAA





TGGTGTACATATAATAACATCAAAAAAATTCAAGACGCAATTCAAACTGCCATCCCACCT





CTTGATTGGTCCACCAAGAATGTTGATCTGGATAATCAGAGTGCATCTGCTGCTCCTTAT





CCATTAAGGATGAATTTTACTGATGGGTTCCCTCATCCAAGGAAGAAAATAAGTCTTTTT





GCTGACGATGGAGTGCAGGTAGAATTGCTTAAGACTTTTGGTGCTAGCCTCTGTCAAGCA





ACCATAAGTTCTTCAGGAAACTCATTTGTTGGGCCAACATCTTTTTCATTGAAGTTTCCA





CCATTTGTTTTCTGGGTGAACTTTAATTTGTTAACTAAAATCTCAGAATTTTTCAAGAAA





ATTGAGGATCCTATTGGAACATCTAGCACTCTGGCTCATGAGGATAAGTGTGTAGCTTCA





TCCAAAGGGAATGGAAGGACTAGCCCTTGCTCTGATACTAGAAGAAGTTCAGAACAAGAA





AGTTTCAGGGGCACTGTATCTCTTCCAACTGCCAGGATTATATTGGCTTTTCCTTGTGGA





AAAGGTGAAGATTTTAGGAGCTATTACTGTTGGCAACAGTTTATTTCTCTTGATGTTTCT





TCACCATCAGCTCCTGTGGACAAAGCAAGTCATGCAACTAAAAAATGTTCTGCTACTAGT





TCTAAAAGTTGGAATTCCGTGGCTAAATTGTGCTCTTTGTCCTTGAATTTTGGGAAGCTT





GATGTCAACTTAATCACACCATTGTCTGGAGAGAATGTTGAAATTACCTATGATAGTGTT





CTAAAGTATAGACTTTCAGCTCAGAAATTAATGACCACATCAAATGGAAGAGGGCCTTCT





GTTGTTACCTTTTCTTGGCAGGACTGTGCCAGTACTGGTCCTTGGATAATGAAGAGAGCC





AGACAGCTTGCTTGTTCAGAGAATGCAAGGTGCTTAGAGAAGTTCAGAGGAAAAGGATAT





GACTTTTCGTCTGTAACCACTGTCAAGGATTCTGGGGACATTGATAACATTCGACAAGAA





ATGATTATAAGCTCTGAGTTCTGCATTCATGCACATTTATCTCCCGTTATAATTTCTTTA





AGCAAATCAGAATTTCTTAAATTAAATGATATTGTGAGTCAGGTGATTGATAGGTTATCA





GGACTGGACTTAAATCTTGTTGATACTGAAAAAGTGACTGCTGCCTCTCAGTCATCAGTT





CTTGTTGAATGTGATTCTGTAACCATATCAATTAATGAGGAAGCCATGGAGAAGAATAAT





AAGGGTTCACTACAGAATGAAATTACTGGTTCTTGGCATAGCTTTACTCTGGAACTTCAG





AACTTTGGCCTATTATCTGTTTCAGATCTTGGAGGAACAAATGGTTCTAGCTTTCTCTGG





GTAACCCATGGTGAGGGCAACTTGTGGGGTTCAGTTACAGGGGTCCCGAGTGAAAAGTTT





CTCCTCATCTCCATCAATGACTCTTCCAGTAGCCGTGGTGACGGAGAAGGTTCAAATGTA







embedded image




GTGTCCATCACTGTCCGGTGCGGCACTGTTGTTGCAGTTGGTGGACGCTTGGATTGGTTT





GACACAATTTTCTCATTTTTCGCTTCACCCTCCCCTGAAGCTACACAAGAATGTGATAGT





AATGTGCAGAAAGAGGGTGAAACTAGTGTTCCTTTTGAATCTTCTTTTATCCTTAGCTTG





ATAGACATTGCCTTGAGTTACGAGCCATACTTAAATAAATTGACGATGCATGGATGCGCT





GATTCTCAGTCAAGTTCTCCCAATTGTGAGGAAGCAATAGATGAGCAACATGTAGCATGT





CTGTTGGCTGCATCTTCCTTGAGGTTTTCCAGTACAACCTTTGCTGATTCTGTTATCAAG





GATTACAAAATTACTGCGCAGGATCTGGGTCTGCTTCTTTCTGCAGTGCGTGCACCGAAC





TGTGCTGGCAGTGTCTACAGTGTGGAGCATCTTCGCAAGACGGGATATGTTAAAGTTGCT





CAAGGGTCAGATGTTGAAGCTCTTTTAAGAATCAGTTCTGGAAGTGGTGCTCTTTGGGAA





ATTGATTGTTCAGAGTCACAGATTGTTCTGAACACTTGCCATGATACAGCTAGTGGATTG





ACACGTTTAGCTGCTCAAATGCAACAGCTTTTTGCCCCTGACCTGGAAGAATCTGTGGTT





CACTTGCAGACAAGGTGGAATAATGTTCAGCATGCACGTGAGGGCAAAGAATTCTGCACT





TTTGACGTGGCTGTAGCATCAACTTCAGATATGCAGCCTATGACTGGTGATGTAAGTAGC





AAATGCGGTAATATCAACTTGATGGATGAAATCTGTGAAGATGCATTTCAATTGAACCAC





GAGGAGGATGACCAAGCTGATCATCTTGAATCACCCATTTACCTGTCACCTAATAATAGT





TTCATTGGCGAGACATTTTACTACAGTAATGAAGACTCTCCAAGGTTTTTGAATAGCTCG





CCTCTCACTTGCTCAGTCCCAGTAGGTGGACAAGAAACTAGTGAGACTCCATTATCACCT





GAACAGCCACCTCAGTTTATCGAAGAATATTTCTTGTCTGACCTATGTCCTCTGTCTGAA





CTAGCATTGACAGATCAGTCATCGAAGGATATTATTAGATACGCGCCCAGTCCTCTAAGG





AGTGGTGATGATTTTAGGGGAAGTACTGGATGGTATGGGGGCAACTGTTTAAGAATTTTA





GAGAATCATGTTTCAGAAGTCGACAGAAAAGCTGGTTCGGAGGAGTTGACAGAGTCTGAG





GCTTCTAGCATTCTCAGTGAACCTGATGAAAATAAAAATGTTAAGGGTCGCATAGTTCTT





AATAACATGAATATCATCTGGAGATTGTATGCGGGATCTGATTGGCAAAATGTTGAGAGT





AATACCCAGCAATCTACAGGAACTTGTGGGCGGGATACAACTGTTTGTTTAGAACTGACA





CTGTCTGGAATGCGATTTCTGTATGACATCTTTCCTGATGGTGGAACTCGGGTATCTAGG





CAGTCCATAACAGTTCATGATTTCTTTGTTAAAGACAACAGTAATGCTGCCCCTTGGAAA





CTGGTGCTGGGGTACTATCAATCAAAAGGCTGTTTAAGGAAGTCTTCTTCCAAAGCATTT





AAGCTGGATCTGGAAGCAGTAAGACCTGATCCTGCTATCCCTCTTGAGGAGTACCGGTTA





CGAATTGCATTCCTCCCGATGCGCTTACATCTTCATCAAAACCAGTTAGATTTTCTCATC





AGCTTTTTTGGAGGAACAAAGTCAGCAGTTACCCCCTCCCAAAGTTCTTCACAAAATTTG





AGTAAATCGGAAATAGTAGCAAAGAGAACTAAATTTGGGGGTAAAGCAGTCATTGAAGAG





GCACTGCTTCCTTATTTTCAGAAATTTGATATCTGGCCTGTTCATCTTCGGGTTGACTAT





AGCCCTTGCCGTGTTGATTTAGCTGCATTAAGGGGTGGCAAGTATGTTGAGCTTGTTAAC






CTTGTGCCTTGGAAGGGGGTTGACCTGCATCTCAAACATGTTCAAGCTCTAGGTGTCTAT






GGCTGGAGTGGCATAGGTGAAATAATAGTAGGTGAATGGTTGGAAGATATATCCCAAAAT





CAGATTCATAAACTATTGAAAGGCCTTCCTCCTATTCGGTCATTGGTAGCTGTTGGTTCT





AGTGCAGCAAAGTTGGTTTCTCTGCCTGTGAAGAGTTACAAGAAGGATCAAAAGTTGCTA





AAAGGAATGCAAAGAGGTACAATAGCGTTCCTTAGAAGTATTTCGCTTGAAGCAATTGGG





CTTGGAGTGCACTTGGCTGCTGGCGCTCATGAAATCCTTCTGCAAGCAGAATATATCCTT





ACAAGTGTTCCACCATCAGTAACATGGCCTGTGCAAAGTGGAGGAAACACTAGTGTGAGA





TTTAATCAACCTAGAGATTCCCGACAAGGGATCCAACAGGCTTATGAAAGTATGAGTGAT





GGCTTCAGTAAATCTGCTTCTGCTCTAATACGCACTCCCATCAAACGGTATCAGCGTGGT





GCTGGAATGGGATCTGCTTTTGCAACTGCTGTCCAAGCAGCTCCAGCAGCAGCCATTGCC





CCAGCTTCTGCCACAGCACGAGCTGTTCATTGTGCTCTTCTAGGTGTAAGGAACAGCCTC





AATCCGGAGCGTAAGAAAGAGTCTTTGGAGAAATATTTGGGGACAAATCCATCTCAGCAG





TACATGTATTTCTCCATGAAGAGCTCCAACAAAATTTGCAAGCCAGCATTAGTTTTGTAT





AGGTGTACAGATCGTAGGACAATTAGACAAATTCTTTTATCTGAGGAGACAGGTAATCAT





GTAAATTATGTAATATCAGAGTGGTAAACTTATTTTTATGTAATATCAGAGTGGTAAACT





TATTTTTTTTGCTCGTATGGCCGGGCCTGCCACTAGTTTCAATTTTTCGGTTATGTCAGC





TGTGTTATGTGCAAATTGTGAATATATTGATTCCCTTGGTTTTGCTGGCAGAATTGTCAT





CTGTACAACATTGTTTCTTGTAATTATCTTCTGTTTGAACTT





Alignments of sRNA sequence Bc-siR3.1 to wild-type Autophagy-related protein 2 target


and mutated Autophagy-related protein 2 (MU) target




embedded image




SEQ ID NO: 11—Bc-siR3.1 Target Sl Vacuolar protein-sorting (Solyc09g014790.2.1)


ATGATTTCATCATTGGGTGCAACTTCTTCTTCGTCTTCATCATCATCATCATCAGCTGCTGTTC





GTGTTGAGAAGGCAACGAGCGAGTTCTTGATAGGTCCTGATTGGACGATGAATATTGATATT





TGTGATACAATCAATTCTAACCAATGGTTGGCAAAAGATGTCGTCAAAGCTGTGAAAAAGA





GGTTGCAGCACAAGAACCCCAAAGTTCAGCTACTCGCTTTAACACTTATGGAGACAATGGTG





AAGAACTGTGGTGATAATGTGCATTTTCAAATTACTGAAAGAACTATACTGCAAGACATGGT





CAAAATTGTAAAGAAGAAGACTGATATGCATGTGAGAGATAAAGTGCTAGTACTACTGGAC





TCTTGGCAAGAAGCATTTGGTGGCCCTGGAGGAAAGTATCCCCAGTATTATTGGGCTTATGA





AGAATTGAGGCGCGCTGGTGTTGAATTTCCCAAGCGTTCATTTGATACAGCTCCTATCTTTAC





TCCTCCTGTTACTCATCCTGCACCAAGACAAGCGCAACCTGGTTATGGAATGCCAAACAATT





CCTCAACAAGACTTGACGAGGCAATGGCAGCAGACGTGGGAAACTTAAGCTTGTCCAGCAT





AAATTCTATGAGGGATGTTGCTGATCTGTTGGCTGATATGCTACAAGCTGTGACCCCAGGCG





ATCGTTTGGCTGTAAAGGATGAAGTTATAGCCGATCTTGTTGATCGGTGTCGCTCTAACCAG





AAGAAGTTGATGCAAATGTTAACAACAACAGGGGATGAAGAACTTCTTGCCCAGGGTCTTG





AATTGAATGACAACCTCCAAACTGTACTGGCTAAACATGATGCAATAGCTTCTGGTTCTCCA





CTCCCAACTCAAGTCCCAAATGACAACTTCTCTGCAAGAGAAATGCATGATCCAAGCCTCAA





ACCTGTTGAAGTTAAGCCACCCAGTCCAATAGCAGATGTCAAACCTTCTGCGCCAGTTCTTG





TAGCAACCGCAGGTCAAATTGATGAAGAGGAAGATGAGGAAGATGACTTTGCTCAACTAGC





TCGAAGACATTCAAAAACAAGTCCAGCAGCACAAACAAGTGAAGGAATGGTCTCTGCCAAT







embedded image




CAAGTGTTTATCCCGAAACATCACAAAATTCTGCTTCAGCTACTCAAAACACGCATCAGGAG





CCTCTTGCCTCAACCACACATGGAAATCCATATGCATCTCAAGCTTATATTGGGTATCAGGA





TCAGAGCTTTAACAGTTATGTAGCTCCTTGGGCTCAGCCCCAACCCCAGCATCAGTCACCAC





CCCAGTTTCATCCTCAATATCAACACCAAGGCCAACCTCAGTTTCATCCTCAATTTCAACACC





CAACCCAAGCCCAGGTCCAGTCCCAACCTCAACCTCATCCACAGCAACAACCTCAATCACAA





CTTCATCATCAATCCCGACCCCAACCATCCACTCAGCCTCAACGGCAGCAACCCCAAGAATC





TTCATTACAGTCTCAGCATACATCACAACAGCTTCCACAATCTCCTGTGCAACCTGAACTGA





ACCAACCTAGAACTCAGCAAGAACTTCATCCTCAGTCTCAACCGTTATCACCACGTACTCAG





ACTCAGTTCCCACAGTACTCTGCTTATCCACCTCCACCTTGGGCAGCAACTCCCGGATATCTG





AGCAATACAACATCTAGACCAACCTACATGTACCCAACTCCACAAGCAGCCACAAATACAC





CCATGTCTTTGCAAGCCACTAGACCCATACAGAATGTTAACTCGTTCCCTAATATGGGAAGC





AATGGTATAGCTATTAATGGTGACACTCAAGTTCATCCCCACCCCAAGACAACTCCTGCTTC





TGGTCAAAAAACCTTCATTCCATCTTATAGGCTGTTTGAAGATCTTAATGTTTTTGGCAACAG





CGATCAAAGACACAACTCATCTTCTGGTTTATCAGGAACTAACAGCCAAAGTATGGTTGGTG





GACGAAAATGA





Alignments of sRNA sequence Bc-siR3.1 to wild-type Sl Vacuolar protein-sorting target


and mutated Sl Vacuolar protein-sorting (MU) target




embedded image




SEQ ID NO: 12—Bc-siR5 target: Sl Pentatricopeptide (Solyc03g112190.2.1)


ATGAATCACGGCAAGAGAATACTGAGTTCGCTTCGATTGAGGAATTCTCTTTTTTTCACTCAG





CTTTCACGAGCCACTTCTTCCAATCATCAGGTGACTCAACACTTATATCTTTCTCCTTCACTTC





TCACGCAAATTTACACTTCTACTAGTATTCTCGGTTCAAGTCAAAATGTCTTCTTTTCATCAA





AAACTGAATCTTTTGTTGACATTATACTATCCAACGACTGGTCGAAACAATTAGAAAAGGAT





TTAGGAAAAAATGACTTTCCTGTGACCCATGAAGCTGTTATGTATTTGTTGAAGAAACTTGA





TAAAGAACCGCGAAAGGCAGGGGATTTCTTGAAATGGGTTGTTAAGCAAAAGGGGTTTAAA





CCTAGTTCTTCTATGTACAGTCTGATGCTTAGAATTTATGCTAACAGGGATTCAATGAAGGA





CTTTTGGACTACTATTAAGGAAATGAAAGAGAACGGGTTTTATATTGATGAGGAAACGTATA





AATCAATTTATTCTATTTTTCGGAATTTGAAAATGGAAACTGATGCCACTGCTTTGAAGCATT





TTTATGGGAGGATGATTAAAGATAATGCTATGGGTGATGTGGCGAAAGATGTGTCTGAATTG





ATTACAAAACAAGAATGGGGAGTTGAGGTGGAGAGACAATTAGGGGAGATGAAACTCTCGG





TGTCGGATAATTTTGTGCTTAGGGTGTTGAAGGAACTTAGAGAAGTAGGAAATCCACTGAAA





GCTTTCAGCTTTTTCAAATGGGTTGCGAGGAATTTAGATTTTCAGCACAGCACTGTTACTTAT





AATGGGATTCTTAGGGTTCTTTGCCGAGAAGAGTCGATTGAGGAGTTCTGGGGTGTAGTAAA





AGAGATGATGAGCCTTGGGTTTGAAATAGATCTTGATACATATATAAAGATCTCGAGGCATT





TTCAGAAGATTAAGATGTTGAAAGATGCAGTAGAACTATATGAACTGATGATGGATGGTCA





GTTTAAACCATCACTTGGGCATTCACGCTCAAAGATTATTTATGATGTCATTCATAGGTGTTT





GACTAACTTGGGGCGATTTGAGGAAGCAGAGAAGATAACAGAAGCTATGAGAGATGCAGG





ATTTGAACCTGACAATATTACCTATAGCCAATTAATATATGGACTTTGCAAAGTGAGGAGGC





TGGAGGAGGCATCAAAGGTGATAGATGTGATGGAAGAATGTGGATGCATTCCGGATATCAA





GACTTGGACTGTTCTAATACAAGGGCATTGTTTTGCTGGTGAAGTTGATAAGGCGCTGTTTTG





TTTTGCTAAGATGATGGAGAAAAATGTTGATACAGATGCTGATCTGTTGGATGTACTACTTA





ATGGTTTTTTGAGTCAAAGAAGAGTTTTTGGTGCATATCAGTTATTGACCGAGTTGGTGAAT





AAGTTTCAAATGCGCCCATGGCAAGCAACATACAAACTTGTCATCCAAAAGCTCTTGGGGGA





AAGGAAATTCGAAGAAGCGCTTGATCTACTCCGTCGGATGAAGAAACACAATTATCCACCTT





TTCCAGAACCCTTTCTTCAATATATTTCAAAGTCAGGAACAGTGGAAGATGCAGTGGAGTTT





TTAAAGGCGTTGAGCGTCAAGGACTATCCATCTGTTTCAGCCTATCAACATGTTTTCCAGTCC







embedded image




TCGGCAACACCCAGCAATTTGTGGCCTCTTTGGTTCGTCAAATTCTAACAGTGGAAAAATGA





AGAAAAAGCAGGAGCCTCATCAAGATGAAGAACATGATGTTGAAATCCTCAAGGCTGTGGC





ACAAGCCTGGCATGGACACTCGAGCAGCCGTGGAACTACTGCTGAATTCGACGCCCACCGC





CACAATTTCAAGAATAAGCCATCAAGATTCAAGCTTGAAGCTATGAACAAGGCAACCTCCA





GAGAATATGATGGAACAATTAGTAGATGGGATTTCAGCCAGTCTCTTTGGGATTCTTATGAG





ATACTCAATGTGTCCAAAAAGTTAGAAACTGGGCTAATGCTGGACCATCCATTGGATGGGTC





TATCCGAATTGGACAGAAGAGGAAAGAGAGTAAGAATAGCTTAAGAAATTTGCTCAATAGG





GTGTCTTCAAGAAGATATAATGATGCTGATTCAACACTAGACAAGGATGGTTAA





Alignments of sRNA sequence Bc-siR5 to wild-type Sl Pentatricopeptide target and


mutated Sl Pentatricopeptide (MU) target




embedded image




SEQ ID NO: 13—siR5 Target TOM34 (Solyc07g066530.2.1)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




Alignments of sRNA sequence siR5 to wild-type TOM34 target and mutated TOM34 (MU)


target









TargetMU
5′CAAUACAGGUUUCGUGUGAAG3′ (SEQ ID NO: 512)




   | || | :||:|| || ||:


Bc-siRNA
3′UUCAUAUGUAAGGCUCAGUUU5′ (SEQ ID NO: 22)



   |||||| |||||| ||||||


Target
5′CAGUAUAGAUUCCGUGUCAAA3′ (SEQ ID NO: 41)






Example 4: STTM Primers for Blocking the Function of Pathogen sRNAs

STTM primer sequences were designed against 30 Botyritis sRNAs (“Bc-sRNAs”) from Table 1 that were identified as having targets in both Arabidopsis and tomato. The designed STTM sequences can be used in other species which are also targeted by the Bc-sRNAs. The STTM primer sequences (forward primers and reverse primers) for generating STTM constructs, and the Bc-sRNAs targeted by each set of primers, are shown in Table 2.


STTM sequences can be expressed in plants according to the methods described in Yan et al., Plant Cell 24:415-427 (2012). Briefly, the STTM modules are inserted in a vector (e.g., the pOT2 vector) between the promoter and terminator. Insertion of the STTM modules is accomplished by PCR amplification of the vector with a proofreading Taq polymerase and a pair of long primers covering the entire STTM sequences (to minimize errors in STTM regions during the PCR reaction). The PCR product is and transformed into cells, e.g., XL1-blue. Single colonies are propagated for plasmid isolation and the recombinant constructs are verified, e.g., by linearization of the plasmids by a restriction enzyme. The recombinant plasmids are further amplified, and the PCR products containing the STTM and a selection marker (e.g., chloramphenicol) are introduced into a binary vector. Recombinant binary plasmids are selected on Luria-Bertani plates containing the appropriate selection antibiotics (e.g., chloramphenicol and kanamycin). The final constructs are verified by DNA sequencing before being used for plant transformation.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims
  • 1. A pathogen-resistant plant comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is complementary to a plant immunity suppressing small RNA (sRNA) of a Botrytis pathogen or a polynucleotide that encodes a short tandem target mimic (STTM) of the sRNA, wherein the sRNA comprises the sequence set forth in SEQ ID NO:52 or SEQ ID NO:73, and wherein the plant is less susceptible to the pathogen compared to a control plant lacking the expression cassette.
  • 2. The pathogen-resistant plant of claim 1, wherein the pathogen is Botrytis cinerea.
  • 3. The pathogen-resistant plant of claim 1, wherein the polynucleotide encodes a STTM of the sRNA.
  • 4. The pathogen-resistant plant of claim 3, wherein the STTM is generated using the primer pair: (a) SEQ ID NO:440 and SEQ ID NO:441; or(b) SEQ ID NO:442 and SEQ ID NO:443.
  • 5. The pathogen-resistant plant of claim 1, wherein the polynucleotide encodes an antisense nucleic acid that is complementary to the sRNA.
  • 6. The pathogen-resistant plant of claim 1, wherein the promoter is an inducible promoter.
  • 7. The pathogen-resistant plant of claim 6, wherein the promoter is a pathogen inducible promoter.
  • 8. The pathogen-resistant plant of claim 7, wherein the promoter is induced upon infection by Botrytis.
  • 9. The pathogen-resistant plant of claim 1, wherein the promoter is a tissue-specific promoter.
  • 10. A method of making the pathogen-resistant plant of claim 1, the method comprising: introducing a nucleic acid comprising the expression cassette into a plurality of plants; andselecting a plant comprising the expression cassette.
  • 11. An isolated nucleic acid comprising an expression cassette comprising a promoter operably linked to a polynucleotide that is complementary to a plant immunity suppressing small RNA (sRNA) of a Botrytis pathogen or a polynucleotide that encodes a short tandem target mimic (STTM) of the sRNA, wherein the sRNA comprises the sequence set forth in SEQ ID NO:52 or SEQ ID NO:73.
  • 12. The isolated nucleic acid of claim 11, wherein the polynucleotide encodes a STTM of the sRNA.
  • 13. The isolated nucleic acid of claim 12, wherein the STTM is generated using the primer pair: (a) SEQ ID NO:440 and SEQ ID NO:441; or(b) SEQ ID NO:442 and SEQ ID NO:443.
  • 14. The isolated nucleic acid of claim 11, wherein the polynucleotide encodes an antisense nucleic acid that is complementary to the sRNA.
  • 15. The isolated nucleic acid of claim 11, wherein the promoter is an inducible promoter.
  • 16. The isolated nucleic acid of claim 15, wherein the promoter is a pathogen inducible promoter.
  • 17. The isolated nucleic acid of claim 16, wherein the promoter is induced upon infection by Botrytis.
  • 18. The isolated nucleic acid of claim 11, wherein the promoter is a tissue-specific promoter.
  • 19. A host cell comprising the nucleic acid of claim 11.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. application Ser. No. 14/505,378, filed Oct. 2, 2014, which claims priority to U.S. Provisional Application No. 61/886,004, filed Oct. 2, 2013, the entire content of each of which is incorporated by reference herein for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with Government support under Grant No. MCB-0642843, IOS-1257576 awarded by the National Science Foundation, a NIH grant (R01 GM093008). The government has certain rights in this invention.

Provisional Applications (1)
Number Date Country
61886004 Oct 2013 US
Divisions (1)
Number Date Country
Parent 14505378 Oct 2014 US
Child 16140179 US