The present application claims priority from Japanese application JP 2013-223819 filed on Oct. 29, 2013, the content of which is hereby incorporated by reference into this application.
The present invention relates to a road information sharing method, system, device, and program.
In the conventional technologies, as one of the methods for sharing between users the road information such as byroad, road closed to traffic for construction, and dangerous spot, there exists a method for automatically generating the road information, and sharing this information with another vehicle. For example, in JP-A-2009-181472, it is disclosed that, if, by a dangerous-state judgment unit, a vehicle is judged to be placed in a dangerous state that is included within a plurality of dangerous-state classifications determined in advance, predetermined danger information is transmitted to the outside within a transmission range corresponding to this dangerous state in which the vehicle is judged to be placed.
Namely, JP-A-2009-181472 discloses the method for automatically judging the dangerous state of a vehicle, and sharing with another vehicle the road information indicating that the vehicle is placed in the dangerous state. It is certain, however, that a noise (i.e., judgment failure) will be included in such a method. As a result, the certainty of the information becomes lowered. For example, there exist the following possibilities: The vehicle is judged to be in the dangerous state instead that it is not in the dangerous state actually; or conversely, the vehicle is judged not to be in the dangerous state instead that it is in the dangerous state actually. In view of this problem, the object of the present invention is to eliminate the noise caused by the judgment failure, and to enhance the certainty of the road information by prompting users to confirm the road information judged.
A road information sharing method according to the present invention is a road information sharing method in a road information sharing system for sharing road information, the road information sharing method including the steps of storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, detecting road information from the sensor information on the basis of detection rules for detecting the road information, notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of the registration about the detected road information, and if the detected road information is judged to be registration-necessary by the user, storing or outputting to the outside the detected road information. Also, the road information sharing system according to the present invention is the road information sharing system for sharing road information in a center server via a terminal device, wherein the terminal device includes a sensor information storage unit for storing sensor information acquired from the terminal device or a vehicle, the vehicle moving in accompaniment with the terminal device, a road information detection-rules managing unit for managing detection rules for detecting the road information, a road information detecting unit for detecting the road information from the sensor information on the basis of the detection rules, a user notification unit for notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of registration about the detected road information, and a road information transmitting unit for transmitting the detected road information to the center server, if the detected road information is judged to be registration-necessary by the user notification unit, the center server including a road information storage unit for storing the road information received from the terminal device.
Moreover, a road information sharing device according to the present invention is a road information sharing device for sharing road information, the road information sharing device including a sensor information storage unit for storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, a road information detection-rules managing unit for managing detection rules for detecting the road information, a road information detecting unit for detecting the road information from the sensor information on the basis of the detection rules, a user notification unit for notifying a user about the detected road information via the terminal device in order to prompt the user to make a judgment of necessity/unnecessity of registration about the detected road information, and a road information storage unit for storing the road information, if the detected road information is judged to be registration-necessary as a result of having notified the user about the detected road information.
Also, a road information sharing program according to the present invention is a road information sharing program for sharing road information, wherein the road information sharing program causes a computer to execute the steps of storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, detecting the road information from the sensor information on the basis of detection rules for detecting the road information, notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of registration about the detected road information, and if the detected road information is judged to be registration-necessary by the user, storing or outputting the detected road information to the outside.
According to the present invention, it becomes possible to share between users the higher reliability road information.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
A road information sharing method according to an embodiment of the present invention is a road information sharing method in a road information sharing system for sharing road information, the road information sharing method including the steps of storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, detecting the road information from the sensor information on the basis of detection rules for detecting the road information, notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of registration about the detected road information, and if the detected road information is judged to be registration-necessary by the user, storing the detected road information or outputting to the outside. Here, the outside means an external device for storing the road information to be shared between the users. Such configuration makes it possible to enhance the reliability of the road information shared between the users via the terminal device. Also, the driving state of the vehicle is estimated from the sensor information on the basis of estimation rules for estimating the driving state of the vehicle moving in accompaniment with the terminal device. Next, based on the driving state estimated, it is judged whether or not the driving state is a state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration about the detected road information. Moreover, if the driving state is the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user is prompted to make the judgment of necessity/unnecessity of registration. Otherwise, if the driving state is not the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the driving state is waited for to become the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, and then the user is prompted to make the judgment of necessity/unnecessity of registration. In this case, it becomes possible to enhance the reliability of the road information without imposing an excessive load onto the user who is driving the vehicle.
Also, if the road information is detected by a road information detecting unit, the user is notified about the detected road information. Simultaneously, if the driving state is judged to be the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user is prompted to make the judgment of necessity/unnecessity of registration. Otherwise, if the driving state is judged not to be the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user is notified that the user will be prompted to make the judgment of necessity/unnecessity of registration later. In this case, it becomes possible to smoothly proceed with the judgment of necessity/unnecessity of registration by notifying in advance that the road information has been detected. Furthermore, preferably, it is judged based on map information and the stored sensor information whether or not it should be performed to prompt the user to make the judgment of necessity/unnecessity of registration. Also, the following configuration is also allowable: The road information sharing method is so implemented as to execute the notification to the user in plural times, its first notification notifying the user about the detection of the road information by using a sound, its second notification notifying the user about information by using pop-up or image information, the information for prompting the user to make the judgment of necessity/unnecessity of registration about the detected road information. In this way, it becomes possible to reduce the load onto the user by displaying the image when prompting the user to make the judgment of necessity/unnecessity of registration, and by notifying by the voice in the other cases.
Also, the following configuration is also allowable. If the driving state changes from the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration to the state in which it should not prompt the user to do so, an image is controlled so as not to display for prompting the user to make the judgment of necessity/unnecessity of registration. Also, the following configuration is also allowable. If the plural pieces of road information are detected, the user is notified about the detected plural pieces of road information in accordance with priority degrees being assigned to the plural pieces of road information on the basis of respective detection points-in-time or respective distances between the detection locations and the present positions.
Next, a road information sharing system according to an embodiment of the present invention is a road information sharing system for sharing road information in a center server via a terminal device, wherein the terminal device includes a sensor information storage unit for storing sensor information acquired from the terminal device or a vehicle moving in accompaniment with the terminal device, a road information detection-rules managing unit for managing detection rules for detecting the road information, a road information detecting unit for detecting the road information from the sensor information on the basis of the detection rules, a user notification unit for notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of registration about the detected road information, and a road information transmitting unit for transmitting the detected road information to the center server, if the detected road information is judged to be registration-necessary by the user notification unit, the center server including a road information storage unit for storing the road information received from the terminal device. Such configuration makes it possible to enhance the reliability of the road information shared between the users.
Also, the terminal device further includes a driving state estimation-rules managing unit for managing estimation rules for estimating the driving state of the vehicle moving in accompaniment with the terminal device, and a driving state estimating unit for estimating the driving state of the vehicle from the sensor information on the basis of the estimation rules, the user notification unit judging, based on the driving state estimated, whether or not the driving state is a state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration about the detected road information. Moreover, if the driving state is the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user notification unit prompts the user to make the judgment of necessity/unnecessity of registration. Otherwise, if the driving state is not the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user notification unit waits for the driving state to become the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, and then prompts the user to make the judgment of necessity/unnecessity of registration. In this case, it becomes possible to enhance the reliability of the road information without imposing an excessive load on the user who is driving the vehicle.
Also, if the road information is detected by the road information detecting unit, the user notification unit notifies the user about the detected road information. Simultaneously, if the driving state is judged to be the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration by the driving state estimating unit, the user notification unit prompts the user to make the judgment of necessity/unnecessity of registration. Otherwise, if the driving state is judged not to be the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration by the driving state estimating unit, the user notification unit notifies the user that the user will be prompted to make the judgment of necessity/unnecessity of registration later. In this case, it becomes possible to smoothly implement the judgment of necessity/unnecessity of registration by notifying in advance that the road information has been detected.
Next, a road information sharing device according to an embodiment of the present invention is a road information sharing device for sharing road information, the road information sharing device including a sensor information storage unit for storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, a road information detection-rules managing unit for managing detection rules for detecting the road information, a road information detecting unit for detecting the road information from the sensor information on the basis of the detection rules, a user notification unit for notifying a user about the detected road information via the terminal device in order to prompt the user to make a judgment of necessity/unnecessity of registration about the detected road information, and a road information storage unit for storing the road information, if the detected road information is judged to be registration-necessary as a result of having notified the user about the detected road information. Such configuration makes it possible to enhance the reliability of the road information shared between the users. Also, the road information sharing device further includes a driving state estimation-rules managing unit for managing estimation rules for estimating the driving state of the vehicle moving in accompaniment with the terminal device, and a driving state estimating unit for estimating the driving state of the vehicle from the sensor information on the basis of the estimation rules, the user notification unit judging, based on the driving state estimated, whether or not the driving state is a state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration about the detected road information.
Furthermore, if the driving state is the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user notification unit prompts the user to make the judgment of necessity/unnecessity of registration. Otherwise, if the driving state is not the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, the user notification unit waits for the driving state to become the state in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration, and then notifies the user that the user will be prompted to make the judgment of necessity/unnecessity of registration. In this case, it becomes possible to enhance the reliability of the road information without imposing an excessive load to the user who is driving the vehicle.
Also, a road information sharing program according to an embodiment of the present invention is a road information sharing program for sharing road information, wherein the road information sharing program causes a computer to execute the steps of storing sensor information acquired from a terminal device or a vehicle moving in accompaniment with the terminal device, detecting the road information from the sensor information on the basis of detection rules for detecting the road information, notifying a user about the road information detected, and prompting the user to make a judgment of necessity/unnecessity of registration about the detected road information, and storing the detected road information, or outputting the detected road information to the outside, if the detected road information is judged to be registration-necessary by the user. Here, the outside means an external device for storing the road information to be shared between the users. Such configuration makes it possible to enhance the reliability of the road information shared between the users via the terminal device.
Hereinafter, referring to the drawings, the detailed explanation will be given below concerning embodiments of the present invention.
The terminal device 101 includes a CPU (Central Processing Unit) 120, an input unit 121, an output unit 122, a communication unit 123, and a storage unit 124. The storage unit 124, which is a device such as semiconductor memories or HDD (Hard Disk Drive), stores programs and data therein. The CPU 120 executes the processing of the terminal device 101 on the basis of the programs and data stored in the storage unit 124. The input unit 121 detects operations performed by the user. The output unit 122 displays an image, or makes a sound in accordance with the instruction from the CPU 120. The communication unit 123 performs the communication with the center server 201.
Here, an explanation will be given regarding the storage unit 124. The storage unit 124 stores a program and/or data for implementing each of the following configuration components: a sensor information accumulating unit 102, a road information detecting unit 103, a road information detection-rules managing unit 104, a driving state estimating unit 105, a driving state estimation-rules managing unit 106, a map information managing unit 107, a user notification unit 108, and a road information transmitting unit 109. The respective processing that will be explained hereinafter is implemented in such a manner that the CPU 120 executes the respective program stored in the storage unit 124. Incidentally, these programs may be stored into a computer-readable memory medium, and may be installed into the terminal device 101 from this memory medium.
The sensor information accumulating unit 102 accumulates sensor information by collecting this sensor information periodically. Here, this sensor information is acquired from a (not-illustrated) built-in sensor that is built in the terminal device 101. The sensor information accumulating unit 102 manages the history of the sensor information in the number determined in advance, such as, e.g., the amount of one hour or one day. The acquisition time-period of the sensor information to be accumulated may be determined using the time or data amount. Also, the upper-limit value of the sensor information to be accumulated may be fixedly set in advance, or the upper-limit value may be configured so as to be changed by the center server 201. The type of the built-in sensor built in the terminal device 101 is GPS (Global Positioning System) sensor, acceleration sensor, gyro sensor, temperature sensor, luminance sensor, or the like. Also, not only the sensor information acquired from the built-in sensor built in the terminal device 101 but also sensor information acquired from the outside via communications may be accumulated. For example, the communication connection with the vehicle may be established, and the control information (i.e., vehicle's speed, engine's rotation number, and the like) may be acquired and accumulated. Also, for example, a sensor may be affixed to the user, and the user's heart rate and the like may be collected and accumulated.
The road information detecting unit 103 detects the road information from the history of the sensor information accumulated into the sensor information accumulating unit 102. Moreover, the user notification unit 108 presents the detected road information to the user, thereby prompting the user to confirm the road information. If the road information is instructed explicitly so as to be registered by the user, the road information is transmitted to the center server 201 by the road information transmitting unit 109, then being accumulated into the center server 201. Incidentally, when the user notification unit 108 presents the traffic information to the user, the driving state estimating unit 105 confirms the driving state of the user, thereby judging whether or not the driving state is a state in which it is allowable to present the road information to the user. Then, if the driving state is not the state in which it is allowable to present the road information to the user, the user notification unit 108 waits for the driving state to become the state in which it is allowable to present the road information, and then presents the road information to the user. The map information managing unit 107 manages the following map information: road link information indicating road's position and shape, intersection related information (coordinate, lane information (such as presence or absence of right-turn exclusive lane), direction sign, and the like), information about address, facilities, telephone number, and the like, and map information becoming necessary for car navigation. Also, the map information managing unit 107 manages information set by the user, such as user's home position and vehicle's driving-schedule route. These pieces of map information are utilized for the detection of the road information in the road information detecting unit 103, and the estimation of the driving state in the driving state estimating unit 105.
Next,
The storage unit 224 stores a program and/or data for implementing each of the following configuration components: a road information receiving unit 202, a road information accumulating unit 203, a road information detection-rules updating unit 204, and a driving state estimation-rules updating unit 205. The respective processing that will be explained hereinafter is implemented in such a manner that the CPU 220 executes the respective program stored in the storage unit 224. Incidentally, these programs may be stored into a computer-readable storage medium, and may be installed into the center server 201 from this memory medium.
The road information receiving unit 202 accumulates information into the road information accumulating unit 203. Here, this information is constituted from the road information, the occurrence position, and the occurrence point-in-time in a manner of being caused to correspond to each other. Also, the road information is transmitted from the road information transmitting unit 109 of the terminal device 101. Based on this information accumulated into the road information accumulating unit 203, the traffic information to be delivered to another vehicle is delivered thereto, and is shared therebetween. The delivery of the traffic information to another vehicle may be performed as follows: The entire information registered into the road information accumulating unit 203 may be delivered; or the plural pieces of road information that have occurred at proximate locations may be delivered after being merged with each other; or only the traffic information whose type has been determined in advance may be delivered; or the traffic information to be delivered may be changed depending on the time-zone or the like.
The road information detection-rules updating unit 204 updates, from the center server, the road information detection rules managed in the road information detection-rules managing unit 104 of the terminal device 101. The detection rules are detection rules utilized in the road information detecting unit 103 in order to detect the road information. Also, the driving state estimation-rules updating unit 205 updates, from the center server, the driving state estimation rules managed in the driving state estimation-rules managing unit 106 of the terminal device 101. The estimation rules are estimation rules utilized in the driving state estimating unit 105 in order to judge whether or not the driving state is the state in which it is allowable to prompt the user to confirm the road information. As regards the road information detection rules and the driving state estimation rules, the delivery may be performed as follows: One and the same estimation rule may be delivered from the center server to all of the terminal devices 101; or an estimation rule corresponding to each local area may be delivered on each local-area basis from the center server; or the estimation rules may be optimized in harmony with the ways in which the users drive the vehicles, and estimation rules different from each other on each user basis may be delivered from the center server. Also, the update timings for the estimation rules of the road information detection-rules managing unit 104 and the driving state estimation-rules managing unit 106 may be implemented as follows: An inquiry may be automatically made about the update from the terminal device 101 to the center server 201 periodically; or the inquiry may be made to the center server 201 with a timing that is explicitly instructed by the user using a button pushing or the like.
Here, “the road link” described in the detection rule 304 is map information, and can be acquired from the map information managing unit 107. Also, in order to detect “closed to traffic”, it is advisable just to detect that the position information on the terminal device 101 moves along the road link in the opposite direction in a short time. Moreover, in order to detect “U-turn available”, similarly to the case where “closed to traffic” is detected, it is advisable just to detect that the position information on the terminal device 101 moves along the road link in the opposite direction in a short time. Here, by taking into consideration the information acquired from a plurality of terminal devices 101, it becomes possible to make a distinction between “closed to traffic” and “U-turn available”. For example, the following method is conceivable for the distinction: If the above-described detection rule holds in all of the terminal devices that will pass through this road link during a certain constant time-period (time), the road information is judged to be the “closed to traffic”. Meanwhile, if the above-described detection rule holds only in some of the terminal devices, the road information is judged to be the “U-turn available”.
Next, in order to detect “parking-lot entrance”, it is advisable just to detect that the position information on the terminal device 101 remains unchanged during a constant time-period, after the position information has deviated from the road link. Also, in order to detect “byroad”, it is advisable just to detect that the position information on the terminal device 101 shortcuts the scheduled route (i.e., road link). Namely, if it is detected that the position information moves along a road link not included in the scheduled route, and joins the scheduled route again, the road information can be estimated to be “byroad”. Also, in order to detect “dangerous spot”, it is advisable just to utilize the information acquired from the acceleration sensor or gyro sensor of the terminal device 101. For example, if it is detected that a negative acceleration of 0.2 G or more has occurred, it is judged that a sudden braking has been applied. Accordingly, the road information can be judged to be the “dangerous spot”. In this case, the necessary sensor type 302 turns out to be “acceleration sensor” or “gyro sensor”.
Also, in order to estimate “stop at parking lot”, it is advisable just to detect that the position information on the terminal device 101 remains unchanged during a constant time-period, after the position information has deviated from the road link. Accordingly, in this case, the driving state is the state of “stop at parking lot” in which the position information remains unchanged, either. Consequently, this driving state is also judged to be the state in which it is allowable to present the road information to the user. Furthermore, in order to estimate “slow driving/traffic congestion”, it is advisable just to detect that, for example, the acceleration is less than a predetermine value. Accordingly, in this case, the driving state is the state of “slow driving/traffic congestion” in which the change in the position information is less than the predetermine value. Consequently, the driving state is judged to be the state in which it is allowable to present the road information to the user. In this way, the driving states to be memorized into the above-described table are the driving states (such as the “waiting for signal change” and the “stop at parking lot”) in which it is allowable to attract the user's attention. Namely, these driving states are the states in which it is allowable to prompt the user to confirm the road information (i.e., the states in which it is allowable to prompt the user to make the judgment of necessity/unnecessity of registration about the road information).
Next, at a step 603, the unit 103 judges whether or not the sensor information acquired at the step 602 satisfies the road information detection rule. If the sensor information satisfies the detection rule (Yes), the unit 103 proceeds to a step 604. Meanwhile, if the sensor information does not satisfy the detection rule (No), the unit 103 proceeds to a step 605. At the step 604, the unit 103 notifies the user notification unit 108 about the road information detected from the sensor information. When notifying the user notification unit 108, the unit 103 passes not only the detected road information but also the occurrence point-in-time and the occurrence position as additional information. The occurrence point-in-time can be identified from the GPS point-in-time information when the detection rule is satisfied, and the occurrence position can be identified from the GPS position information when the detection rule is satisfied. At the step 605, the unit 103 confirms whether or not all of the road information detection rules managed by the road information detection-rules managing unit 104 have been confirmed. If all of the road information detection rules have been confirmed, the unit 103 ends the processing. Meanwhile, if an unconfirmed road information detection rule still exists, the unit 103 returns to the step 601. Since the road information detection rules such as the “new road”, “closed to traffic”, and “U-turn available” are independent of each other, a plurality of detection rules can be satisfied in a short time.
Incidentally, if it is not allowable to prompt the user to confirm the road information immediately, it is necessary to wait for the driving state of the user to change to a state in which it is allowable to prompt the user to make this confirmation, and afterwards, it is necessary to request the user to make this confirmation. At the step 703, the user notification unit 108 presents the road information to the user, and requests the user to confirm the necessity/unnecessity of registration of the road information. This confirmation may be made to the user only by the image display, or may be made by the image and voice. Concrete examples of this image display will be explained using
The confirmation button 804 is a button for confirming the location at which the road information has occurred. The user's pushing down the confirmation button 804 causes the pop-up 801 to be temporarily non-displayed. Then, the location of the navigation image 810 moves to the location at which the road information has occurred. While the occurrence location of the road information is being displayed, instead of causing the pop-up 801 to be temporarily non-displayed, it is also allowable to make the pop-up 801 semi-transparent so that the map behind the pop-up 801 can be confirmed. Otherwise, it is also allowable to move the pop-up 801 to a not-disturbing location at an edge of the image. The timer 805 indicates a time that elapses until the pop-up 801 disappears. The timer 805 counts down gradually, and when it comes to “0”, the pop-up 801 will disappear whatever operation the user does not perform. If the timer 805 comes to “0” while the user is performing an operation, it is also allowable to extinguish the pop-up 801. Otherwise, even if the timer 805 comes to “0” during the user's operation, it is also allowable not to extinguish the pop-up 801. Otherwise, it is also allowable to prohibit the pop-up 801 from counting down during the user's operation. Otherwise, even if the timer 805 counts down halfway, it is also allowable to cause the timer 805 to return to its value before the count-down (i.e., its initial value). Otherwise, it is also allowable to extinguish the pop-up 801, detecting that the driving state becomes the state in which it is not allowable to prompt the user to confirm the road information.
The navigation image 810 displays the image display's example in a case where the road information 902 of the first candidate is pushed down. In the navigation image 810, the occurrence location 904 of the new road is displayed on the map. The detection number 905 of the road information is displayed together therewith. The detection number 905 of the image display's example indicates that three pieces of road information are detected. Although only the two candidates are displayed in the image display's example, three or more candidates may be displayed. With regard to the arrangement order, the candidates may be arranged in an order ranging from the newest occurrence point-in-time to the oldest one; or in an order ranging from the oldest occurrence point-in-time to the newest one; or the candidates may be arranged in a manner of being sorted for each type of the road information; or the candidates may be arranged in an order ranging from the occurrence location closest to the present location.
Also, it is also allowable to display plural pieces of road information in a manner of being limited to the road information that have occurred within a certain time (such as, e.g., within 3 minutes). Otherwise, it is also allowable to display the plural pieces of road information in a manner of being limited to the road information of a specific type or types (such as, e.g., new road alone, or new road and byroad). In the image display's example, the first candidate is displayed in a larger font size and with larger buttons as compared with the second candidate, so that the user can confirm them easily. It is also allowable to display the navigation image 810 and the road-information confirmation image 901 in the state of being always divided to each other. Otherwise, it is also allowable to perform the division display, detecting that the driving state becomes the state in which it is allowable to prompt the user to confirm the road information. Otherwise, it is also allowable to perform the division display, detecting that the user touches the road-information detection number 905. Moreover, it is also allowable to release the division of the divided image with a lapse of a constant time, and to permit the image display to return to the navigation image 810 alone. Otherwise, it is also allowable to release the division if the user operation is absent during a constant time. Otherwise, it is also allowable to release the division, detecting that the driving state becomes the state in which it is not allowable to prompt the user to confirm the road information.
Incidentally, in the present embodiment, the road information detecting unit 103, the road information detection-rules managing unit 104, the driving state estimating unit 105, the driving state estimation-rules managing unit 106, and the map information managing unit 107 are stored into the terminal device 101. It is also allowable, however, to implement a configuration that these units are stored into the storage unit of the center server 201. The explanation of the configurations that overlap with the above-described embodiment will be omitted. In this case, the sensor information is acquired from the sensor information accumulating unit 102 where the respective types of sensor information are accumulated. Moreover, based on the sensor information acquired, the matching between the road information and the road information detection rules is executed on the side of the center server 201. As a result of the matching, if the road information coincides with any one of the road information detection rules memorized in the road information detection-rules managing unit 104, this road information is transmitted to the terminal device 101. Furthermore, in accordance with the driving state estimation rules, this road information is presented to the user by the user notification unit 108. As a result of this presentation, if the registration button is selected, this road information is accumulated into the road information accumulating unit 203 via the road information receiving unit 202 of the center server 201. By employing this configuration, it becomes possible to reduce the load imposed on the processing capability in the terminal device 101.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-223819 | Oct 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5521580 | Kaneko et al. | May 1996 | A |
7440842 | Vorona | Oct 2008 | B1 |
9031779 | Djugash | May 2015 | B2 |
20040209594 | Naboulsi | Oct 2004 | A1 |
20100001880 | Kraft, IV | Jan 2010 | A1 |
20130154854 | Chen | Jun 2013 | A1 |
20130253809 | Jones et al. | Sep 2013 | A1 |
20140160295 | Kyomitsu | Jun 2014 | A1 |
20150334077 | Feldman | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2442291 | Apr 2012 | EP |
2009-181472 | Aug 2009 | JP |
2012104392 | Aug 2012 | WO |
Entry |
---|
Extended European Search Report received in corresponding European Application No. 14190848.3 dated Mar. 4, 2015. |
Number | Date | Country | |
---|---|---|---|
20150116135 A1 | Apr 2015 | US |