The application relates to a road marker or light based warning device. More specifically, the application relates to a road marker or device with at least one light-emitting diode that is used to warn motorists of temperature-related dangerous road conditions such as the formation of ice.
Reflective road markers, commonly known as cat's eyes, are used worldwide to manage traffic and maintain road safety. These markers generally include reflective material, visible both during the day and at night on exposure to light from street lamps or vehicle headlights. Road markers are widely used as they are inexpensive to produce, simple to install and need little or no maintenance yet still perform a very helpful function for motorists. While reflective road markers may be effective in managing traffic, they do not assist motorists in assessing ambient temperature and the effect of ambient temperature on driving conditions.
Driving conditions can be hazardous in the presence of ice and, in particular, black ice. Black ice is generally known as a thin coating of glazed ice on a road or sidewalk that is transparent and, thus, may not be seen. Black ice lacks noticeable ice pellets, snow or sleet to indicate that road conditions are dangerous and that driving speed should be reduced. Bridges and overpasses may be especially hazardous, as black ice forms first on these structures due to a cooling flow of air both above and beneath the structures.
It should be appreciated that it may be useful to have a cat's eye device that serves the dual purpose of being a reflective road marker and which alerts drivers to potential safety hazards associated with ambient temperature such as ice formation.
One existing technology relating to illuminating road markers powered by solar cells may be referred to as a solar road stud as described in US2011135386A1. These markers or studs flash constantly to alert drivers to dangerous sections of road or hazardous conditions. One drawback of these existing solar road studs is that the flashing lights do not automatically switch on and off depending on changes in the conditions. They must also be activated remotely. Thus, they are useful solely on sections of road that are always hazardous to drive and which are able to be monitored, rather than on sections of road that are intermittently hazardous and/or sections that are remote from monitoring sites.
Other existing technology overcomes the problem of controlling the illumination of road markers or signs by linking them to road condition sensors and to a network or data transmission system. The network may automatically control warning signals to drivers or require remote control. A drawback of those systems is that they are expensive and complex to install, operate, maintain and repair and, hence, may be prohibitively costly to implement. They also lack flexibility in location as they must be installed proximate an external data collection point.
One patent publication JP2002-256520 proposes an alternative solution describing a road marker that continuously illuminates alternating between colours depending on the temperature. Continuous illumination in this manner is not ideal as it means parts wear out and energy use is higher than may be needed. In addition, the device described does not recognise issues surrounding rapid on-off cycling that can occur thereby resulting in problems with longevity of the circuitry and device as a whole.
Described herein is a road marker or device with a thermal sensor that triggers the illumination of at least one light-emitting diode at temperatures approximate to the formation of ice thereby providing a warning to motorists of hazardous driving conditions associated with cold temperatures.
In some embodiments, there is provided a road marker comprising a housing enclosing:
In some embodiments, there is provided a road marker comprising a housing enclosing:
In some embodiments, there is provided a road marker comprising a housing enclosing:
Embodiments of the road marker and device described herein may provide a simple and cost-effective hazard indicator for mitigating accidents due to unseen road dangers such as ice. The design is such that, once installed, the road marker or device requires little maintenance. Due to the fact that the design is self-contained, it does not require expensive data transmission systems or networks in order to operate reliably. The markers or devices can also be used in remote locations as no monitoring is required. Further, the marker or device is simple in construction and comparatively inexpensive.
Further aspects and advantages of the road marker or light based warning device will become apparent from the ensuing description that is given by way of example only.
Further aspects of the road marker or light based warning device will become apparent from the following description that is given by way of example only and with reference to the accompanying drawings in which:
As noted above, the application broadly relates to a road marker or device with a thermal sensor that triggers the illumination of at least one light-emitting diode at temperatures approximate to the formation of ice.
For the purposes of this specification, the term ‘PV module’ refers to a photovoltaic module including a plurality of solar cells, also known as a solar cell array. Photovoltaic modules generate electrical power by converting solar radiation to direct current (DC) electricity.
The term ‘LED’ refers to a light-emitting diode, a semiconductor light source. LED's operate over a long lifetime with low energy consumption. LED's are available in a variety of colours, any of which may be used for the current application.
The terms ‘road marker’, ‘cat's eye’, ‘road stud’, ‘visual signalling unit’ and grammatical variations thereof may be used interchangeably to describe a reflective device on a substrate such as the surface of a road used to alert drivers to changes in road conditions associated with cold temperatures.
The term ‘black ice’ refers to a thin coating of glazed ice on a road or sidewalk that is transparent.
The term ‘self-contained’ refers to the marker not having any external linkages or protruding items.
The term ‘ambient temperature’ refers to the temperature immediately around the marker housing.
The term ‘illumination’ refers to the light emitting diodes being lighted either continuously or on an off/on cycle so as to give the effect of flashing or pulsing of light from the light emitting diode or diodes.
The term ‘about’ or ‘approximately’ and grammatical variations thereof mean a quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1% to a reference quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length.
The term ‘substantially’ or grammatical variations thereof refers to at least about 50%, for example 75%, 85%, 95% or 98%.
For the purpose of this specification the term ‘comprise’ and grammatical variations thereof shall have an inclusive meaning—i.e. that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components or elements.
In some embodiments, there is provided a road marker comprising a housing enclosing:
Applicants have found that existing road marker devices exhibit rapid on/off cycling of the lights in the event of a temperature on or around the pre-set measurement at which the light or lights are activated. Art methods to avoid this include manual switching on or off or use of a micro-controller. Manual adjustment is not ideal as it requires labour and time and the markers cannot simply be installed and left to operate. Micro-controllers lack the resilience of passive componentry as will be described in more detail below plus micro-controllers carry a higher cost making the devices less desirable for mass use and production. Avoiding the need for manual switching, micro-controllers and yet addressing the issue of rapid cycling via introduction of a moderate to high degree of hysteresis in the switch is ideal from a cost and reliability point of view.
The thermal sensor may be a bimetallic switch wherein the switch shape and metal selection are designed to confer the desired degree of hysteresis. Alternatively, the thermal sensor may be a thermocouple or a thermistor again designed to have the desired level of hysteresis.
Hysteresis is often avoided in switches where an accurate off/on tolerance is usually favoured. In the case of the marker and devices described herein, the opposite is true where a degree of hysteresis is very important to avoid the circuit turning off and on rapidly in a cycle. Instead the circuit should only turn off once a sufficiently warm temperature is reached where no ice is likely in road warning applications and only turning on and staying on when ice is a likelihood. Rapid on/off cycling may be confusing to the motorist and may result in more rapid deterioration of the componentry. The switch ideally turns the circuit on when ice is a risk and off when ice formation is no longer a risk. The exact temperature may vary from location to location.
The thermal sensor may have at least approximately 0.75° C., or 1.0° C., or 1.5° C., or 2.0° C., or 2.5° C., or 3.0° C., or 3.5° C., or 4.0° C. of hysteresis to prevent rapid on/off cycling of the at least one light-emitting diode.
In some embodiments, the degree of hysteresis is biased towards the light-emitting diode or diodes remaining illuminated until at least 0.5° C. or higher than the set temperature so as to ensure that temperature conditions are suitably warmer than the temperature considered hazardous.
In some embodiments, there is provided a road marker comprising a housing enclosing:
A spring or springs may produce the bias action. Other bias mechanisms may be used such as a piston or pneumatic pusher.
The housing may be depressed into the surface when struck by a snowplough or heavy vehicle.
In some embodiments, that marker may include a hemispherical shaped housing made of a clear rubber material. This housing may enclose the componentry of the marker and the marker may be set into an aperture in the surface such as a road. A casing that mates with the housing may be used along with a bias mechanism such as a spring or springs or piston or pistons. The bias action of the bias mechanism forces the marker upwards. The casing may have a lip around the casing circumference that abuts and retains the housing within the surface aperture during normal operation. When a force is applied to the top of the housing, the housing may be depressed into the surface aperture against the bias action thereby dropping the marker within the surface. By varying the aperture depth and bias travel, the marker may be set to fully depress into the surface. When the force is removed, the bias action then forces the marker back up to a normal operation or non-depressed position. This mechanism allows the marker to depress when a downward force is applied thereby avoiding the marker being removed by a snowplough or heavy vehicle.
Alternative biased embodiments may include use of a housing in the shape of a ball, the ball shape being retained within a casing inside an aperture in a surface. The ball housing may be manufactured from a transparent and resilient material such as rubber. The marker components such as LEDs and battery may be retained within the ball. The ball housing also may include a counter weight that weights the bottom of the ball so that the marker tends to remain in position with the LED lights and a portion of the ball sitting proud of the surface. The ball may be biased up relative to the surface by a sprung bearing and the bias action forces the ball against a casing annulus. When a downward force is applied such as that experienced from a heavy vehicle or a snowplough, the ball is forced downwards against the sprung bearing. The force may also be transferred into rotational motion on the ball that is free to spin within the casing. The ball may also include a magnet or magnets (not shown) that are attracted to a magnet or magnets on the casing. The magnets may be used to slow or self-correct rotational movement of the ball in addition to a counter balance weight.
In some embodiments, there is provided a road marker including a housing enclosing:
Prevention of battery leakage avoids the battery losing charge when the PV module receives no or minimal light energy. A further advantage of the above circuit layout is that it avoids the need for voltage controllers or microcontrollers to control electrical flows thereby avoiding the need for more expensive and lower reliability components.
The road marker components may all be located within the housing and there are no external parts outside the housing. Art methods often utilise external parts such as external temperature sensors or wiring linking multiple devices to one controller. The road marker described herein is a stand-alone item with no external parts meaning that installation is a simple process and maintenance is minimised.
The housing may include a sloped profile relative to the direction of on-coming or departing traffic. This slope or the slopes may aid or encourage a depressing force on the marker into the surface against the bias direction.
The surface noted in the above aspects may be a road surface but may also be a post such as a lamppost; a rail such as a handrail; a crash prevention barrier; or a median barrier.
The electrical components used in the marker described above may be passive components. The components as a whole may be selected to minimise the voltage requirement to less than 4 volts. The voltage may be minimised to a voltage requirement of less than 3.5 volts, 3 volts, 2.5 volts, 2 volts, 1.5 volts, 1 volt, 0.75 volt, 0.5 volt. An aim of minimising the voltage requirement is that the marker can be made from simple components requiring little maintenance. Low voltage requirements also serve to extend the battery life of the device when used in low light situations.
The road marker described above may be temperature resilient sufficient to withstand the temperature of tar seal during road formation. Road markers are generally fitted while tar seal is still molten or before settling hence the marker is subjected to extreme temperatures for at least a short period of time. Temperature resilience was achieved by use of a metal enclosure containing all of the marker contents along with use of passive components and not using a micro-controller. Micro-controllers in particular were found by the inventors to be particularly sensitive to temperatures experienced during road sealing plus they were also less resilient in general and compromised performance over the long term. A high level of reliability was identified by the inventors as being critical given that the marker is likely to be placed in remote locations. Having to regularly service the markers particularly when in remote locations would dramatically compromise the market proposition of the device due to greater servicing costs. The ideal device is one that is installed and largely forgotten except when needed in hazardous road conditions. The temperature resilience referred to above may be greater than 100° C. The temperature may be greater than 150° C. The temperature may be 180° C. to 200° C.
The light emitting diode or diodes may flash when the predetermined temperature is reached and light energy is received by the PV module independent of the energy level in the energy storage device. By use of a parallel circuit arrangement, the energy storage device becomes optional allowing the energy storage device to be removed or recharged independent of light illumination.
The circuit board may include an LCR circuit sufficient to generate a pulse of at least 2 volts to drive a flash from the light emitting diode or diodes. The pulse may be at least 2.5 volts, at least 3 volts, at least 3.5 volts, at least 4 volts.
The PV module may be activated by energy received from a car light or lights.
While a cat's eye road marker embodiment is generally described, it should be appreciated that other road marker devices may also utilise a similar design. The road marker device may be a beacon, road marker, flash light or other device utilising the light emitting components described. The device may be placed or fixed to a surface or fixed to an intermediate structure such as a road cone.
The PV module used in the marker or device may be located on the top surface of the housing when mounted to a surface so that it is exposed to light e.g. sunlight. The PV module may be a solar panel of greater than 0.1, or 0.2, or 0.5, or 0.75, or 1.0, or 1.25, or 1.5, or 1.75, or 2.0 volts. The PV module may be a 2-volt solar panel.
When illuminated, the road marker or device described above may produce a flashing or pulsing output. The term ‘flashing output’ may refer to pauses between illuminations ranging from 0.015 to 5 seconds although pauses may be more or less as desired. The term ‘pulsing’ may refer to the amount of light emitted from the light emitting diodes varying in brightness in a pulsed manner ranging in cycle length from 0.015 to 5 seconds although pulses may be more or less as desired. The marker may produce a flashing output at a frequency of 1-5 Hz when illuminated.
Illumination may be as a single point of light from one LED or multiple lights from one or more LED's. Where multiple LED's are used, they may be arranged so as to form a shape or word. In one embodiment, the LED's may be arranged to form the word “ICE”.
The flashing output from the marker or device may be produced by the circuit board that includes a flasher circuit. The output of this circuit may be an open drain. Alternatively, the flashing output may be produced by at least one light-emitting diode containing an integrated multivibrator circuit. In a further embodiment, the at least one light-emitting diode may produce constant illumination without flashing or pulsing. Alternatively, the circuit board may be a low voltage, resistor programmable thermostatic switch wherein the thermostatic switch may include at least a temperature-specific resistor, a thermal sensor, a power supply resistor, a ground terminal and an output terminal.
The housing of the marker or device when mounted to a surface may define at least one top surface and perimeter sides wherein the top surface and perimeter sides enclose a cavity accessible at the bottom of the marker. The housing may be formed as a single piece. Alternatively, the housing may be formed from a plurality of individual pieces.
The housing may be formed from an abrasion-resistant material.
The housing may include at least one reflective surface of light-transmitting material.
At least one surface of the housing may be transparent such that the at least one light-emitting diode is visible through the housing.
A removable bottom closure on the marker or device may attach to the housing to enclose components within the housing via screws, adhesive or other attachment methods. A gasket may be placed between the housing and the removable bottom closure to prevent ingress of water or particulates. The gasket may be made of silicone or a similar deformable material.
The removable bottom closure may be manufactured from cast aluminium. Alternatively, the removable bottom enclosure may be constructed from one or more moulded components. This bottom closure may house the spring or springs providing a bias force on the marker. The bias force may instead be from a piston or spring situated between the housing and surface.
The bottom closure may be fastened mechanically (e.g. a fastener) or chemically (e.g. an adhesive) to a surface. This bottom closure may be adhesively bonded to a surface such as a road surface. Alternatively, the bottom closure may be attached mechanically or chemically to an item or items proximate to a road such as a handrail or lamppost.
The thermal sensor used in the marker or device may be contained within the removable bottom closure. Alternatively, the thermal sensor may be contained within the housing.
Placement of the thermal sensor may be to enable measurement of the ambient air temperature adjacent the road and/or marker. Alternatively, placement of the thermal sensor may be to enable measurement of the substrate, e.g. asphalt temperature.
The energy storage element used in the marker or device may be a battery. The energy storage element may be a rechargeable battery that may be trickle charged from a PV module without deterioration. The battery may be a nickel cadmium battery or another type of battery suitable for use with PV modules.
The circuit board used in the marker or device may be configured to cause the at least one light-emitting diode to illuminate when the temperature sensor measures a temperature (ambient and/or substrate) approximate when ice may form (the predetermined temperature). The illumination temperature may be less than or equal to 5° C. Alternatively, the illumination temperature may be less than or equal to 4° C., or 3.0° C., or 2.5° C., or 2.0° C., or 1.5° C., or 1.0° C., or 0.5° C., or 0.0° C., or −0.5° C., or −1.0° C., or −1.5° C., or −2.0° C.
In the above aspects, the road marker or device may be self-contained. That is, there may be no parts or components outside the housing meaning that the marker or device is easy to manufacture, sell, ship and install.
As may be appreciated from the above, the road marker or device may provide a simple and cost-effective hazard indicator for mitigating accidents due to unseen road dangers such as ice. The design is such that, once installed, the road marker or device requires little maintenance. Maintenance frequency depends primarily on the life of the energy storage element, or battery. Due to the fact that the design is self-contained, it does not require expensive data transmission systems or networks in order to operate reliably.
The embodiments described above may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the embodiments relates, such known equivalents are deemed to be incorporated herein as of individually set forth.
Where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
The marker and device are now described with reference to a detailed description of various embodiments of the road marker and device.
The bottom of the marker is shown in
As shown in
Choice of a bimetal switch 105 has been identified as advantageous since the switch 105 inherently has a degree of hysteresis. Hysteresis is often avoided in switch where an accurate off/on tolerance is usually favoured. In the case of the marker 1 and devices 50 described herein, the opposite is true where a degree of hysteresis is very important to avoid the circuit 100 turning off and on rapidly in a cycle. Instead the circuit should only turn off once a sufficiently warm temperature is reached where no ice is likely in road warning applications and only turning on and staying on when ice is a likelihood. Rapid on/off cycling may be confusing to the motorist and may result in more rapid deterioration of the componentry. The switch 105 ideally turns the circuit 100 on when ice is a risk and off when ice formation is longer a risk. The exact temperature may vary from location to location but illumination occurs at around 1-2° C.
In operation, the solar panel 101 generates a 2.2-volt charge to the circuit board 103. In the event of no light energy, the battery 102 provides power to the circuit board 103. The battery 102 may have a power output of approximately 1.2 volts. The circuit board 103 shown includes a flasher circuit so that, when the switch 105 is on, the flasher circuit is operational and generates a pulse of light from the LED light 106 or lights 106. The pulse or flash occurs on a 1-5 Hz frequency, this frequency varying depending on the level of power received by the circuit board 103. The flasher circuit includes an LCR circuit so as to store and build charge that is then released in each pulse or flash. The result is that a 4-volt flash can be generated using either the 1.2-volt battery 102 power source or the 2.2-volt solar panel 101 power source. The frequency of flash varies however depending on energy input with a slower frequency from a lower voltage input versus a higher rate from a higher voltage input.
Notably, all of the above components are passive electrical components. This is important to reduce the energy requirements of the circuit 100 and therefore reduce costs and maintenance requirements. Also unexpectedly, the components are remarkably heat stable. Use of a microcontroller for example is not possible for at least a road marker 1 application as the temperature at which tar is used during road manufacture (and the temperature that the marker 1 is thus subjected to when paid on a road) melts or damages the microcontroller. In contrast the passive components used are remarkably tolerant of the high heat experienced during road sealing—up to 190° C. The passive components minimise voltage to less than 4 volts, more typically less than 2.5 volts.
When the ambient light level exceeds a predetermined level, the PV module 5, 101 charges the rechargeable battery 21, 102. When the ambient light level falls below a predetermined level, the rechargeable battery 21, 102 supplies power to the circuit.
Car light may also be used to generate power from the PV module although a more continuous energy source such as the sun is preferable.
As shown in at least
The road marker 1 or device 50 may be used to warn motorists of temperature related hazards by installing at least one road marker 1 or device 50 to a surface e.g. the road, a handrail or a lamppost. Typically, multiple markers or devices would be installed in a target area. At least one light-emitting diode 7, 106 is illuminated in a flashing pattern by the circuit 100 when the thermal sensor 20, 105 detects a predetermined temperature. In this way, motorists may be alerted to the presence of ice such as black ice and potentially other temperature related road hazards.
Aspects of the road marker and device have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the scope of the claims herein.
Number | Date | Country | Kind |
---|---|---|---|
595342 | Sep 2011 | NZ | national |
595950 | Oct 2011 | NZ | national |
596762 | Nov 2011 | NZ | national |
This application is a continuation of U.S. application Ser. No. 14/329,696, filed Jul. 11, 2014, which is a continuation of U.S. application Ser. No. 14/238,152, filed Feb. 10, 2014, now U.S. Pat. No. 8,840,335, which is a 35 U.S.C. 371 National Stage Application of PCT/NZ2012/000118, filed Jul. 5, 2012, which claims priority to New Zealand patent application numbers 595342, 595950 and 596762, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4668120 | Roberts | May 1987 | A |
4926163 | Beebe | May 1990 | A |
5047406 | Caprathe | Sep 1991 | A |
5412381 | Dicks | May 1995 | A |
5897271 | Widmer | Apr 1999 | A |
5984570 | Parashar | Nov 1999 | A |
6456200 | Bostrom et al. | Sep 2002 | B1 |
6551014 | Khieu et al. | Apr 2003 | B2 |
6602021 | Kim | Aug 2003 | B1 |
6685334 | Kenny | Feb 2004 | B2 |
6900740 | Bloomquist et al. | May 2005 | B2 |
7018131 | Jordan | Mar 2006 | B2 |
7273328 | Hunter et al. | Sep 2007 | B2 |
7347643 | Jeong | Mar 2008 | B2 |
D565447 | Horng | Apr 2008 | S |
7421894 | Keep et al. | Sep 2008 | B2 |
7688222 | Peddie | Mar 2010 | B2 |
7690861 | Johnson | Apr 2010 | B1 |
8231240 | Rubio | Jul 2012 | B1 |
8425076 | Lockwood et al. | Apr 2013 | B2 |
20020003697 | Chien | Jan 2002 | A1 |
20050270175 | Peddie | Dec 2005 | A1 |
20060257204 | Matiosian | Nov 2006 | A1 |
20060257205 | Jordan | Nov 2006 | A1 |
20070070618 | Talamo et al. | Mar 2007 | A1 |
20070181175 | Landis | Aug 2007 | A1 |
20090261733 | Schwarz | Oct 2009 | A1 |
20110035140 | Candy | Feb 2011 | A1 |
20110135386 | Sahota | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2006202749 | Jan 2007 | AU |
2008201394 | Nov 2008 | AU |
2010224309 | Mar 2011 | AU |
2011200971 | Sep 2011 | AU |
0210503 | Feb 1993 | EP |
1123354 | Aug 1968 | GB |
2121460 | Dec 1983 | GB |
2217363 | Oct 1989 | GB |
2299358 | Oct 1996 | GB |
2430787 | Apr 2007 | GB |
2449979 | Dec 2008 | GB |
2002256520 | Sep 2002 | JP |
WO 03072880 | Sep 2003 | WO |
WO 2005052262 | Jun 2005 | WO |
WO 2006106789 | Oct 2006 | WO |
WO 2011009189 | Jan 2011 | WO |
Entry |
---|
International Search Report of the International Searching Authority for PCT/NZ2012/000118, mailed Nov. 16, 2012. 5 pages. |
International Preliminary Report on Patentability for PCT/NZ2012/000118, completed Mar. 20, 2013. 16 pages. |
Number | Date | Country | |
---|---|---|---|
20150161889 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14329696 | Jul 2014 | US |
Child | 14626999 | US | |
Parent | 14238152 | US | |
Child | 14329696 | US |