This application claims foreign priority benefits under 35 U.S.C. § 119(a)-(d) to European patent application number EP 20159708.5, filed Feb. 27, 2020, which is incorporated by reference in its entirety.
The disclosure refers to a road paver, and to a method of operating a road paver.
Generic road pavers are used in practice for producing new road surface layers. Known road pavers comprise a paving screed with lateral external control stations for a screed operator, from which various process parameters can be set and checked. At the screed's external control station, the screed operator can, for instance, adjust the pave width, pave thickness, various compaction units and/or heating elements of the paving screed in order to pave a desired new road surface layer. The process parameters set by the screed operator can be displayed by a display on the paving screed's external control station. Furthermore, the actually produced process parameters can be visualized on the display. The screed operator moving along in direct proximity at the external control station during paving operation of the road paver can thus control and monitor the paving result.
EP 3 402 928 B1 discloses a road paver with a projector adapted to project navigation guidelines onto the surface traversed by the road paver.
EP 3 124 698 B1 discloses a road paver with a projector adapted to project rolling instructions regarding the newly produced paving layer to a compactor vehicle following the road paver.
An object of the present disclosure is to provide a road paver and a method which makes it possible to control the operation of the paving screed attached to the road paver and to control the quality of the paving layer produced with it even better.
This object is solved by a road paver according to the disclosure. Furthermore, this object is solved by a method according to the disclosure.
A road paver according to the disclosure is adapted for producing a paving layer, for example a bituminous asphalt layer. The road paver comprises a chassis and a height-adjustable paving screed for compacting a paving material. The paving screed has at least one external control station for a screed operator. The external control station has a control device comprising at least one operating panel for setting process parameters at the paving screed and/or at least one display fir displaying process parameters set at the paving screed.
The road paver according to the disclosure is characterized by at least one projector adapted to project at least one of the process parameters set on the operating panel and/or shown on the display onto at least one projection area so that the projected process parameter is visible, in particular to a screed operator of the paving screed.
A process parameter set and/or displayed on the external control station is additionally made visible by means of projection on one or a plurality of projection areas. This ensures that the process parameter of the paving screed set at the external control station at the operating panel and/or displayed on the display can be checked by the screed operator even when he is not directly at the external control station. This allows the screed operator to monitor the paving process even more effectively, with the projected process parameter also being visible to other site personnel, such as a paver operator and a supervisor of the paving team. This automatically enables a multi-eye principle fir quality assurance.
The process parameter can be projected onto the projection area in the form of a numerical value, a sequence of letters and/or a symbol in the optically visible range. Optionally, the projected numerical value can be supplemented by an SI unit character, for example a length specification, a frequency unit and/or a temperature unit.
It is conceivable that the set and/or detected process parameter can be projected intermittently onto the projection area in order to better indicate a faulty condition as a warning signal. One variant provides that the projected process parameter can change its color to indicate a setpoint or non-setpoint installation value in different colors. A color adjustment of the projection can also be made depending on the weather conditions detected or the light conditions at the installation site.
The projector may be adapted to project the process parameter onto the paving layer produced by the road paver. This enables the operating personnel in the area of the paving screed to visually inspect the new paving layer to recognize which paving process parameters were used to produce it.
One embodiment of the disclosure provides that the projector is adapted to project the process parameter onto a projection area formed on the road paver. In this variant, the road paver itself, i.e., its vehicle and/or screed body, is used as a projection area for imaging the process parameter. Imaging of the process parameter directly on a surface of the road paver can be advantageous, especially under certain weather conditions.
A practical variant provides that the paving screed forms the projection area for displaying the process parameter. The paving screed provides a sufficiently large surface that can advantageously be used as a projection area. The projected process parameter is clearly visible to the screed operator, but also to other operating personnel of the road paver, the vehicle driver, in order to keep a better eye on the production parameters of the new paving layer.
The paving screed may have a base screed body and laterally extendable extending units attached to it for varying a pave width, the projection area being provided on a top cover of the base screed body. The top cover of the base screed body forms an excellent projection area for the process parameter projected thereon. Here, the projected process parameter can be kept in view even if the screed operator changes to the opposite side of his external operating stand.
It is advantageous if process parameters of the base screed body and/or the extending units attached to it, which are set and/or displayed on the external control station, can be displayed on the projection area, regardless of where the projection area is located. Thus, screed operation can be monitored better over the entire pave width by means of projection.
It is conceivable that the projector could be configured to display the process parameter both on the projection area formed by the road paver and on the projection area formed by the paving layer. In this case, the road paver and the paving layer produced with it each form at least one projection area for the projector.
A purposeful embodiment provides that the projector is configured to automatically adjust a position of the projection area depending on a detected position of the screed operator. For example, a position detection system of the road paver could track the screed operator's movement, and the projector would then automatically move the position of the projection area, so that the screed operator, no matter where he is in the area of the paving screed, could check the projected information on the projection area as it moves with respect to his detected position.
One variant provides for the road paver to have a layer thickness measuring device, for example in the form of a measuring bar attached to the side of the road paver, for determining the thickness of the paving layer produced, with the projector attached to the layer thickness measuring device. It is conceivable that the projector is configured to project onto the projection area a layer thickness of the paving layer produced, as measured by the layer thickness measuring device. This would allow the detected layer thickness to be displayed on the display of the external control station as well as in a separate location, i.e., directly on the road paver and/or on the new paving layer, for the site personnel.
The road paver may have a roof structure with an operator protecting roof to which the projector is attached. From this height, the projection area provided for the process parameters can be adjusted very easily. It would be useful if the projector were integrated in a thermal imaging camera module attached to the operator protecting roof.
One variant is to mount the projector on a rear load carrying spar of the roof structure. It is conceivable that the projector is attached to the roof structure's load carrying spar, which is positioned directly behind a driver's seat in the direction of paving. In one embodiment, the projector is integrated within the load carrying spar, so that the load carrying spar serves as a protective housing for the projector accommodated within it. It is also conceivable that a projector could be attached to each of the left and right load carrying spars of the roof structure.
An embodiment of the disclosure provides that the control device mounted on the paving screed's external control station comprises the projector. In this case, the control device of the paving screed's external control station itself serves as a carrier for the projector. In particular, the control device and the integral projector are mounted on the external control station of the paving screed of the road paver and can be attached and removed without tools.
Preferably, the projector can be controlled by the control device of the external control station, especially by a voice control module of the control device. This allows the screed operator to easily control the operation of the projector. Preferably, one of the projector's optical modules can be adjusted by means of the control device of the paving screed's external control station. This allows, for instance, the sharpness of the projected process parameter to be varied. It is conceivable that by means of the control device of the external control station a plurality of imaging effects of the projector can be controlled.
A variant provides that the external control station, in particular the control device provided thereon for controlling the paving screed, has a presence detection unit to detect a distance of the screed operator to the control device, whereby the projector projects the process parameter onto the projection area if the screed operator is not detected within the predetermined distance. Thus, the operation of the projector can be enabled and disabled depending on a measured distance between the control device and the screed operator.
A variant provides for the projector to be mounted movably on the road paver so that a position of the projection area can be changed. This allows, for example, the projection area used on the road paver and/or on the paving layer to be adjusted depending on which side of the paving screed the screed operator travels alongside the paving screed during the paving operation.
The road paver may comprise at least one detection unit for detecting actual process parameters at the paving screed, the projector being configured to display actual process data detected by the detection unit during operation of the road paver, preferably in real time, on the projection area. This is an excellent way of monitoring the actual paving result.
For example, a paving thickness, a pave width and/or a temperature of the paving layer produced can be visually displayed on the projection area. It would be conceivable that at least one compaction unit setting, for example a tamper speed and/or a tamper stroke length, could be imaged on the projection area.
The disclosure also refers to a method on a road paver for projecting at least one process parameter set and/or displayed on an external control station of a paving screed onto a projection area by means of a projector provided on the road paver. Preferably, the projector projects the process parameter on a projection area directly formed on the road paver and/or on a paving layer produced by means of the road paver. The process parameters set and/or displayed on the paving screed of the road paver arc thus more controllable for the site personnel.
In the following, advantageous embodiments of the disclosure are explained in more detail by means of drawings:
Identical components are consistently marked with identical reference numerals in the Figures.
In
The projector 7, 7′ shown in
The projection area 13, 13′ for imaging the process parameter P, P′ is shown in
The arrows A, A′ shown schematically in
The present disclosure is excellently suited to visualize the process parameters P, P′ set and/or displayed at the external control stations 8, 8′, possibly a selection thereof, for the operating personnel of the construction site in addition to the display at the control device 9, 9′ also isolated from it by means of projection on the projection area 13, 13′. This allows an improved quality control of the produced paving layer B.
Number | Date | Country | Kind |
---|---|---|---|
20159708.5 | Feb 2020 | EP | regional |