This application claims foreign priority benefits under 35 U.S.C. ยง 119(a)-(d) to European patent application number EP 20177342.1, filed May 29, 2020, which is incorporated by reference in its entirety.
The present disclosure refers to a road paver for paving a road surface.
Before starting paving operation, a number of preparatory activities must be carried out to make a road paver ready for operation. For example, a lowered roof of a main operator control stand must be moved upwards, the paving screed must be lowered, a main drive must be started and a control system must be set to an operating mode. Complementary activities are carried out accordingly after the end of operation, in particular to protect the road paver from effects of the weather and vandalism, to move it or to load it for transport.
From EP 3 214 223 B1 it is known to set a road paver into a loading state, after operating a single switch of an operating unit arranged on the side of the chassis of the road paver, by automatically starting a process in which a roof is lowered, a paving screed and an auger are lifted, and the paving screed, if formed as an extending screed, is retracted.
An object of the present disclosure is to provide a road paver with improved operating capabilities.
The object is solved by a road paver according to the disclosure as well as a method for operating a road paver according to the disclosure.
A road paver according to the disclosure comprises a control system, a main operator control stand, a height-adjustable roof, a main drive, at least one lighting element and a paving screed. Furthermore, the road paver comprises an operating unit, which is arranged outside the main operator control stand and comprises a plurality of operating elements, of which an operating element is operable to switch the control system on and/or off, an operating element is operable to lift and/or lower the roof, an operating element is operable to start and/or stop the main drive, an operating element is operable to switch at least one lighting element on and/or off, and an operating element is operable to lift and/or lower the paving screed.
The operating elements can be configured differently and, depending on their function, for example as a switch, button, control knob, lever, touch-sensitive touchscreen, in the form of an ignition lock that can be operated with an insertable key, or similar. The function, and thus the operation, can be adapted to match the physical design of the respective operating element. One, two or a plurality of operating elements may be provided for the respective functions. For example, the same button can switch on a function of the road paver when pressed for the first time and switch the function off again when pressed again. Likewise, a button can give the opposite control command depending on the current status of the function, i.e., switch on a motor when it is off and vice versa. Likewise, a function of the road paver can be changed depending on a frequency and/or length of operation of an operating element. For example, pressing and holding a button can dim a light so that its brightness increases. On the other hand, if the button is pressed twice in quick succession and held down during the second pressing operation, the brightness is dimmed down. Likewise, separate buttons can be provided for complementary functions or for states of a function, for example a button for lifting the roof and a button for lowering it. A button can also be adapted in such a way that it is possible not only to switch between two discrete states, for example on/off, position up/down, but also to set intermediate states continuously, for example the roof is lowered or lifted continuously or in steps depending on how long the operating element is actuated. Likewise, three or more buttons can also be provided for different states of a function. For example, one button can move the paving screed to an uppermost position, a second button can move the paving screed to a middle position, and a third button can move the paving screed to a lowermost position.
It is expedient that the buttons are adapted in such a way that there are no openings into the interior of the operating unit, but instead, for example, an elastic cover merely transmits the pressure to an electronic component underneath.
With an operating unit according to the disclosure, it is now possible to carry out preparatory or final work on the road paver from outside the main operator control stand, in particular the operating unit is mounted at a position on the road paver which can be reached by an operator standing on the ground. Since all relevant adjustment options can be addressed separately by their own operating elements, the operator can actuate the relevant functions at any given time. This reduces the time required and also increases safety for the persons present.
Switching the control system on and off can have similar functions to switching the ignition on and off in a passenger car. It allows the machine control system to start up even before the operator climbs onto the machine. Thus, functions based on the electrical supply, such as lighting, can be turned on without the need to run a main drive, such as a diesel engine. This main drive can in turn be started and stopped, for example, by pressing a start/stop button. Likewise, the ignition and main drive could be actuated depending on a turn of the key in an ignition lock. Ideally, the ignition lock is equivalent to that of the main operator control stand. The fact that this is now already possible from outside the main operator control stand of the road paver means that the roof can be lifted and lowered using a hydraulic system operated by the main drive, in particular the main hydraulic system. Likewise, the lifting and lowering of the paving screed can now be done from outside the main operator control stand using a hydraulic system powered by the diesel engine. This means that there is no need for an additional electric hydraulic power unit. The functions of the machine are available much sooner, resulting in time savings.
The operator no longer has to climb onto the main operator control stand to operate the functions mentioned, which saves time on the one hand, but also makes work easier and increases safety, as this has so far been very difficult with the paving screed lifted and/or the roof lowered. Before starting work, the paving screed can now be lowered to ground level, making it much easier to climb onto the machine. After work is completed, the paving screed can be lifted, making it more difficult to climb on and thus also making vandalism more difficult.
In addition, the full working lights can be switched on as soon as the motor is running. On the one hand, this means that necessary setting-up work can be started directly at night, and on the other hand, this leads to increased safety in the entire area around the road paver.
The operating unit may be detachably arranged on the road paver. The operating unit can be screwed to the road paver, snapped into place, plugged in, or fixed to the road paver by means of a magnet or the like. In this way, the operating unit can be removed from the road paver at the end of operation and stored safely elsewhere so that no unauthorized operation is possible. This also eliminates the need for a key or similar identification system, which may otherwise be provided. In addition, for example, the operating unit may normally be located on the paving screed, but may be relocated to a support on the rear wall of the road paver when the paving screed is removed from the road paver.
In an advantageous variant, the operating unit is connected to the control system by means of a cable, in particular by means of a detachable plug connection. The data for controlling the functions of the operating unit can be transmitted via a cable connection. In addition, a power supply can be provided via the cable connection, which is necessary for operating the operating unit, whereby the operating unit can also have power store units, in particular rechargeable batteries, which can be charged via the cable connection.
The operating unit is expediently connected to the control system by means of a radio connection. In this way, the operating unit can also be used when it is removed from the road paver. This allows an operator to operate the functions at a distance from the road paver and thus with an improved overview. If the operating unit is attached to the road paver, data can also be exchanged via a radio connection or a cable connection. To eliminate the need for cable connections in general, charging of current or voltage storage units can also take place inductively in the operating unit. This completely eliminates the need for plug-in connections that can be impaired by weather conditions.
The operating unit may be arranged on the paving screed. In this case, the operating unit can be positioned on existing components of the paving screed so that it is easily accessible. In particular, when loading the road paver onto a low-loader, only the area behind the paving screed is accessible, so that mounting on the side of the paver chassis would be disadvantageous.
In another advantageous variant, the operating unit is arranged on a paving screed climb. The paving screed climb is the access to the main operator control stand, which usually leads over the paving screed at the rear of the road paver and is characterized, for example, by planar treads and a handrail or railing. Here, the operating unit is easily accessible to the driver, especially if the operating unit is located at the lower section on the paving screed. Since the driver climbs up to the main operator control stand anyway afterwards, there are no paths around the road paver, in contrast to a lateral arrangement of the operating unit on the road paver. This results in further time savings.
In one variant, the road paver has a lockable cover which prevents access to the operating unit when locked. This can be a hinged flap, for example, which can be opened and closed. In this way, the operating unit is protected from dirt and the effects of the weather. The cover can comprise a locking mechanism which allows locking and unlocking, for example by means of a suitable key. For this purpose, the operating unit can be arranged in a recess which is locked by the cover in the manner of a box. The cover is made of stable sheet metal. The cover can be arranged on the paving screed so that the operating unit is easily accessible for use at the corresponding position and only the cover has to be opened for this purpose. Likewise, the cover can also be arranged, for example, at a position on the chassis of the road paver, where the operating unit is merely moved for storage when not needed, for example, at the end of work.
In a further practical variant, the operating unit has one or a plurality of display elements, each of which displays information about one of the components that can be adjusted by means of the operating elements. For example, light spots in the colors red, green, yellow can be provided to indicate an operating status of the main drive or the control system, or a locking status of the paving screed or the roof. Likewise, numbers or a writing can also be displayed on one or a plurality of suitable displays. This provides the operator with information on the status of the respective functional element and the settings that can be made.
At least one lighting element may be configured to go out after a predetermined period of time has elapsed following operation of the operating element to switch at least one lighting element on or off. This allows the operator to safely move away from the road paver. Any amount of time may be provided, such as 10, 30, or 60 seconds. The operating element may be configured such that when operated, a lighting element that is already on is turned off after the predetermined time period. Likewise, the lighting element may be initially switched on, only to be switched off again after the predetermined time period. A plurality of lighting elements can also be switched accordingly via the same operating element. In addition, different switching times can be provided depending on an operation of the operating element. For example, pressing the operating element twice in quick succession can trigger a lighting period twice as long as pressing it once. It would also be conceivable to control an illumination intensity, i.e., brightness, as a function of a duration of pressing the operating element, for example. It is also possible to provide for one or a plurality of lighting elements to go out with a time delay when the ignition is switched off, whether at the main operator control stand or the operating unit.
In a further practical variant, a lifting mechanism is provided for lifting and lowering the roof, which comprises an automatically releasable and automatically lockable end position lock. This means that it is no longer necessary to climb onto the main operator control stand in order to manually fix the roof in its end position, for example the lifted operating position, by means of bolts or the like. This makes the work much easier and saves time. Automatic roof locking can be performed in several ways. For example, bolting is possible with the aid of an additional actuator, such as a hydraulic cylinder or electric servomotor. Force-locking is also possible with the aid of an appropriate clamping element. It is also conceivable to hermetically seal off the chambers of the roof lifting cylinder with the aid of suitable valves. The latter two solutions offer the additional advantage that the roof can be locked in any position. Appropriate hydraulic cylinders can be used for the variants mentioned.
In another advantageous embodiment, the control system is configured to allow the main drive to be started even before the control system itself is fully placed in an operating mode after power-up. The control system may have a programming such that initially after power-up, for example by turning an ignition key, the control system enters a start mode. This mode can be characterized by the fact that only software parts of small volume are loaded into a working memory or are already present in it, so that relatively quickly, almost without noticeable time delay, their functions are available. In this start mode, the functions for starting the main drive are available, whereby the start can be made, for example, by pressing a start button or by continuing to turn an ignition key. Following the start mode, further software parts can then be reloaded or activated, so that the control system changes over to the operating mode, in which all machine functions are available. Changing to operating mode may also involve the control system querying interfaces to identify which configuration the road paver is set up in, such as which paving screed is installed on the tractor. This allows the control system to be fully started in parallel with climbing onto the machine and preparatory measures for operation, as well as with the main drive already started, which represents a significant time saving.
In a further practical variant, the operating unit has operating elements which are provided for controlling functions of the road paver in the paving mode. In this way, corresponding controls, for example changing the paving screed settings, can also be carried out from the same operating unit. This reduces the amount of cabling and maintenance required.
A method according to the disclosure for operating a road paver comprising a control system, a main operator control stand, a height-adjustable roof, a main drive, at least one lighting element, a paving screed, and an operating unit having a plurality of operating elements, comprises the method steps:
The main drive may be started before the control system is fully placed in an operating mode after power-up. As explained above, the control system can first enter a start mode with limited functionality and thus low computational load for a processor and a working memory, and then load or activate the full operating software to enter an operation mode. In the start mode, it is already possible to start the main drive, which means that secondary systems such as lighting or a hydraulic system can also be available at an early stage as soon as their operation is permitted by the control system, which may also already be the case in the start mode.
In the following, embodiments of the disclosure are described in more detail with reference to the Figures.
Corresponding components are marked with the same reference numerals in the Figures.
Based on the embodiments of a road paver 1 shown above, many variations of the same are possible. For example, the operating unit 21 can be mounted at any convenient location on the road paver 1, for example also on the side. The operating elements 25 may have other expedient functions in addition to those shown, and may have a corresponding form for this purpose, such as, for example, as touch pads or rotary switches. The delayed automatic switch-off of the lighting elements 11 may relate to any lighting element 11 for which this is expedient, for example lighting of the main operator control stand 5 or external lighting of the road paver 1.
Number | Date | Country | Kind |
---|---|---|---|
20177342.1 | May 2020 | EP | regional |