Milling and grinding machines are commonly used in the asphalt and pavement industries. In many cases, maintaining paved surfaces with grinding and milling machines may significantly increase the life of the roadway. For example, a road surface that has developed high points is at greater risk for failure because vehicles and heavy trucks that hit the high point may bounce on the road. Over time, the impact forces may damage to the road surface.
Additionally, portions of the road surface may occasionally need to be ground down to remove road markings, such as centerlines or crosswalk markings. For instance, when roads are expanded or otherwise changed, the road markings also may need to be changed. In any event, at least a portion of material forming a road surface may be removed for any number of reasons.
Typically, removal of material forming the road surface wears the tools and equipment used therefor. Moreover, tool and equipment wear may reduce useful life thereof. Therefore, manufacturers and users continue to seek improved road-removal systems and apparatuses to extend the useful life of such system and apparatuses.
Embodiments of the invention relate to road-removal devices, systems, and methods. In particular, embodiments include road-removal devices and systems that incorporate superhard material, such as polycrystalline diamond compact (“PDC”). For instance, the PDCs may include one or more cutting edges that may be sized and configured to engage the road surface during road-removal operations. Moreover, engaging the road material with the cutting edge(s) may cut, shear, grind, or otherwise fail the road material and may facilitate removal thereof. In some embodiments, failing the road material may produce a relatively smoother road surface, which may increase the useful life of the road.
At least one embodiment includes a system for removing a road material. The system includes a milling drum that is rotatable about a rotation axis. Moreover, the milling drum is an operably coupled motor configured to rotate the milling drum about the rotation axis. The system also includes a plurality of picks mounted on the milling drum. Each of the plurality of picks includes a pick body and a PDC attached to the pick body. Each PDC has a substantially planar working surface and forms at least a portion of a cutting edge.
Embodiments are also directed to a method of removing road material. The method includes advancing a plurality of picks toward road material. Each of the plurality of picks includes a PDC that forms a substantially planar working surface and at least a portion of a cutting edge of the pick. The method further includes advancing the cutting edges and the substantially planar working surfaces of the picks into the road material, thereby failing at least some of the road material while having the working surfaces oriented at one or more of a positive rake angle or negative rake angle.
Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.
The drawings illustrate several embodiments, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.
Embodiments of the invention relate to road-removal devices, systems, and methods. In particular, embodiments include road-removal devices and systems that incorporate a superhard material, such as PDC. For instance, the PDCs may include one or more cutting edges that may be sized and configured to engage the road material during road-removal operations. Moreover, engaging the road material with the cutting edge(s) may cut, shear, grind, or otherwise fail the road material and may facilitate removal thereof. In some embodiments, failing the road material may produce a relatively smooth or flat road surface, which may increase the useful life of the road.
Generally, any number of picks 120 may be attached to the milling drum 110. Moreover, particular sizes, shapes, and configurations of picks may vary from one embodiment to the next. In some instances, a pick configuration that may be used for removing an entire thickness or all of the road material 10 may be different from another pick configuration that may be used to smooth the road surface and/or remove imperfections therefrom.
In some instances, bumpy and uneven road surfaces may lead to excessive wear and shorten the life of the road surface. In one or more embodiments, the picks 120 may be configured to remove at least a portion of the road material 10 and recreate or renew the road surface. In particular, in an embodiment, the picks 120 may grind, cut, or otherwise fail the road material 10 as the milling drum 110 rotates, and the failed road material may be subsequently removed (e.g., by the road-removal system 100). In some embodiments, the picks 120 do not remove all of the road material but only remove some road material, such as a limited or predetermined thicknesses thereof (e.g., measured from the road surface), which may remove abnormalities, bulges, etc., from the road surface.
The road-removal system 100 may also be used for adding and removing road markings, such as epoxy or paint lines. Road markings may include highly visible and wear-resistant material. In some cases, the road marking material may be difficult to remove from the road surface without damaging or destroying the road surface. Furthermore, some instances may require removal of existing road markings and placement of new road markings (e.g., a construction project may temporarily or permanently reroute traffic and may require new lane markings).
Insufficient or incomplete removal of road markings, however, may lead to dangerous road conditions. For example, a driver may be unable to distinguish between the former lanes and the new lanes. In some cases, removing road markings may involve removing at least some of the road material 10 together with the markings that are affixed thereto. In any event, in an embodiment, the picks 120 may be configured to remove paint and/or epoxy from the road material 10. In some instances, a relatively narrow milling drum with a relatively narrow or tight pick distribution may be used to remove road markings, such as paint and epoxy, which may localize the removal of the road material 10 to the area that approximates the size and shape of the removed road markings. In other words, in an embodiment, the picks 120 may be set to remove the road marking and a thin layer of road material 10 below the road marking such that no trace of the marking remains.
Similarly, in an embodiment, the road-removal system 100 may be used to inlay paint or epoxy within the road material 10. Inlaying paint or epoxy within the road surface can provide protection to the paint of epoxy. Thus, similar to the one or more embodiments described above, the road-removal system 100 may be used to create narrow strips or recesses within the road material 10 (e.g., at a predetermined depth from the road surface). In particular, for instance, created recesses may be sized and shaped to approximately the desired size and shape of the road markings (e.g., epoxy, paint, etc.). In an embodiment, the picks 120 may be operated dry, such as without or with limited amount of fluid or coolant provided to the picks 120 during the removal of the road material 10. Absence of fluid on the road material 10 may facilitate application of paint, epoxy, or other road marking material to the road surface (e.g., reducing time between removal of road material 10 and application of road markings).
Further, in an embodiment, the road-removal system 100 may be used to create water flow channels. Improper or ineffective water drainage on road surfaces 10 may create safety problems and may lead to road damage. For instance, if standing water is left on the road surface, hydroplaning and/or ice may result, which may cause accidents. Additionally, the expansion of freezing water on the road material 10 may cause the road material 10 to buckle and/or crack. Accordingly, in at least one embodiment, the road-removal system 100 may be used to form water flow channels in the road material 10.
The particular type of pick as well as mounting position and/or orientation thereof on the milling drum 110 may affect removal of road material 10.
In some instances, the mounting bases 150 may be larger than pick bodies of the picks 120, which may limit the density of picks 120 in a single row as well as the number of rows on the milling drum and/or combined length of cutting edges (i.e., the sum of lengths of all cutting edges), by limiting minimum distance between adjacent picks 120. Hence, in an embodiment, the milling drum may produce a reconditioned surface 20 that includes multiple grooves or striations formed by the picks 120. Alternatively, however, the milling drum may produce a substantially uniform or flat surface, without grooves or with minimal grooves. For example, the picks 120 may be offset one from another in a manner that provides overlap of cutting edges along a width of the milling drum in a manner that produces a flat surface.
In an embodiment, the pick 120 includes a PDC 140 affixed to an end region or portion of the pick body, as described below in more detail. Moreover, in an embodiment, the PDC 140 includes a cutting edge (described below in more detail), which extends between a substantially planar working surface 141 and at least one side surface. For example, the cutting edge may be adapted to cut, grind, scrape, or otherwise fail the road material 10. Additionally or alternatively, in some embodiments, the cutting edge or face of the pick 120 may have a conical or rounded peripheral shape, which may create a grooved or uneven surface (e.g., as compared to a flat and smooth reconditioned road surface 20, which may be formed by the picks 120 with planar working surfaces).
In some instances, the pick 120 may remove an upper layer or portion of the road material 10. Specifically, in an embodiment, in contrast to using an impact and crushing force to break apart the road surface, the cutting edge of the pick 120 may scrape, shear, cut, or otherwise fail the road material 10 (e.g., to a predetermined depth). In some instances, cutting through the road material 10 (e.g., through upper portion of the road material 10) may provide substantially more control over the amount of road material 10 that is removed from the road surface than removing road material 10 by crushing and impacting the road material 10.
In some embodiments, at least a portion of the cutting edge of the pick 120 may be substantially straight or linear. Accordingly, in an embodiment, the road-removal system 100 that includes multiple picks 120 may produce a substantially flat or planar reconditioned road surface 20. Also, in some embodiments, the unfinished road surface 30 that is in front of the pick 120 may be rough and uneven. In an embodiment, as the milling drum 110 rotates and causes the pick 120 to engage the unfinished road surface 30, the cutting edge of the pick 120 grinds and/or scrapes the unfinished road surface 30 and road material 10, thereby removing imperfections and undesirable artifacts from the unfinished road surface 30 and producing the reconditioned road surface 20.
Additionally, the substantially planar working surface 141 of the PDC 140 may form a suitable or an effective back rake angle α, as described in further detail below. In particular, the back rake angle α may be formed between the working surface 141 and a vertical reference axis (e.g., an axis perpendicular to a tangent line at the lowermost point of contact between the pick 120 and the road material 10). In AN embodiment, the vertical reference axis may be approximately perpendicular to the reconditioned road surface 20. Accordingly, in some embodiments, the working surface 141 of the PDC 140 may be oriented at a non-perpendicular angle relative to the reconditioned road surface 20, when the cutting edge of the PDC 140 is at the lowermost position relative to the surface of the road material 10. In other words, the working surface may be oriented at a non-perpendicular angle relative to an imaginary line tangent to the rotational path of the cutting edge of the pick.
The back rake angle α may aid in evacuating or clearing cuttings or failed road material during the material removal process. In some embodiments, as shown in
Additionally, under some operating conditions, the road-removal system 100 may remove road material to a specific or predetermined depth. In some cases, such as with especially thick or multiple layers of the road material 10, the system may remove the road material 10 over multiple passes or in a single pass having a sufficiently deep cut. In contrast, a thin layer of road material 10 may be removed with a shallow cut. In any event, a variety of cutting depths can be set without interfering with the shearing configuration of the PDCs.
The depth of placement or positioning of the milling drum 110, which may at least partially determine the depth to which the pick 120 engages the road material 10, may be controlled by any number of suitable methods and apparatuses. Also, in some embodiments, the picks 120 and the road-removal system may be configured to remove less than approximately 60 cm of road surface during the grinding operation. Furthermore, in an embodiment, the picks 120 and the road-removal system may be configured to remove less than approximately 30 cm of road surface, less than approximately 20 cm of road surface, less than approximately 10 cm of road surface, less than approximately 1 cm, or approximately 4 mm to approximately 6 mm of road surface.
In some applications, removing an excessive amount of road material may lead to a significant reduction in the life of the road. Hence, it should be appreciated that the picks may have any number of suitable sizes, shapes, or configurations (e.g., PDCs and pick bodies may have various configurations), which may vary from one embodiment to the next and may affect removal of the road material 10. In any case, however, a pick may include polycrystalline diamond that includes a cutting edge configured to grind, mill, or otherwise fail a layer or portion of the road material 10 that may be subsequently removed.
In an embodiment, at least one peripheral edge of the working surface 141a may form or define a cutting edge 160a. In some instances, at least a portion of the cutting edge 160a may be approximately straight or linear. For example, the linear portion of the cutting edge 160a may form or define a lowermost edge of the pick 120a during operation or engagement thereof with the road material. In other words, the bottom or the lowermost portion of the cut in the road material produced by the pick 120a may be formed or defined by the cutting edge 160a.
Moreover, in at least one embodiment, the cutting edge 160a may be formed between the working surface 141a and a top surface 142a of the PDC 140a. In other words, a sharp corner between the working surface 141a and the top surface 142a may define the cutting edge 160a. Alternatively, the PDC 140a may include a chamfer that extends between the working surface 141 a and the top surface 142a. Hence, in an embodiment, the cutting edge may be formed by a sharp corner between the working surface 141a and the chamfer and/or by the sharp corner between the top surface 142a and the chamfer. Also, in some embodiments, the cutting edge may be formed by the chamfer (e.g., the cutting edge may be defined by the surface of the chamfer).
In an embodiment, the PDC 140a may be formed by cutting or splitting a generally round or cylindrical PDC into two halves, thereby producing two PDCs, such as the PDC 140a. Also, in some embodiments, the cutting edge 160a of the PDC 140a may include one or more rounded portions 148a. For instance, otherwise sharp corners formed between the straight portion of the cutting edge 160a and the semicircular peripheral portion of the PDC 140a may be rounded to form the rounded portions 148a. Moreover, in some instances, the rounded portions 148a may be exposed or may otherwise protrude out of the pick body 210a in a manner that facilitates engagement thereof with the road material. That is, the rounded portions 148a may engage and cut or otherwise fail the road material during operation of a road-removal system that includes the pick 120a.
It should be appreciated that, in some embodiments, the cutting edge of the PDC may include chamfers in lieu of or in addition to the rounded portions. In some instances, rounded portions and/or chamfers may provide better force distribution on the PDC and on the cutting edge thereof. In contrast, in some operating conditions, sharp edges and/or sharp corners may chip and/or break from the PDC.
In an embodiment, the PDC 140a may be received into and/or secured within a partial cylindrical pocket or recess on the pick body 210a. As described in more detail below, in an embodiment, the recess in the pick body 210a may create a better force distribution between the PDC 140a and the pick body 210a. In at least one additional or alternative embodiment, the PDC may have a square or rectangular shape. Accordingly, the pick body may include a complementary square or rectangular shaped recess that may accommodate the corresponding shape of the PDC.
In an embodiment, the PDC 140a may form a back rake angle θ relative to the pick body 210a. For example, the back rake angle θ may be in one or more of the following ranges: between approximately 0 and approximately 45 degrees; between approximately 0 and approximately 30 degrees; between approximately 0 and approximately 25 degrees, between approximately 0 and approximately 20 degrees; between approximately 0 and approximately 15 degrees; between approximately 0 and approximately 10 degrees; or between approximately 0 and approximately 5 degrees. Additionally, the back rake angle θ may be an angle of approximately 6 to approximately 14 degrees, approximately 8 to approximately 12 degrees, or approximately 10 degrees. In some embodiments, the back rake angle θ may be greater than 45 degrees. Also, in at least one embodiment, the back rake may be a positive back rake forming an angle in one or more of the above recited ranges. In an embodiment, the back rake angle θ may aid in evacuating or clearing cuttings during removal of the road material.
It should be appreciated that one or more faces of the pick body 210a may orient the pick 120a and the PDC 140a relative to the milling drum. Accordingly, the PDC 140a may be oriented at a predetermined angle relative to the milling drum (e.g., relative to an imaginary radius line extending from rotation axis). In another embodiment, the back rake angle θ may be defined between the working surface 141a and an imaginary longitudinal line 25 that extends from the cutting edge 160a and which may be perpendicular to a tangent line of the rotational path of the pick 120a when the pick 120a rotates about the rotation axis of the milling drum.
In at least one embodiment, the pick body 210a may include at least one planar face. For instance, the front face 211a of the pick body 210a may be approximately flat or planar. Hence, in an embodiment, at least one planar face of the pick body 210a may orient the pick 120a relative to the milling drum (i.e., may provide positional and rotational orientation of the pick 120a relative to the surface of the milling drum).
In an embodiment, the longitudinal line 25 (extending along a longitudinal dimension of the pick body 210a) may be approximately parallel to one or more faces of the pick body 210a. For example, when the pick body 210a is secured to the milling drum, the front face 211 a of the pick body 210a may be substantially parallel to the longitudinal line 25. In other words, the longitudinal line 25 may be substantially perpendicular to a line tangent to the path of the cutting edge 160a as the pick 120a rotates together with the milling drum. Hence, in an embodiment, the front face 211 a and/or one or more other faces of the pick body 210a (e.g., faces oriented at known or predetermined angles relative to the front face 211a) may orient the pick 120a and the working surface 141a relative to the milling drum and the rotation axis thereof
Generally, it should be appreciated that the pick body 210a may have any number of suitable shapes and sizes, which may vary from one embodiment to the next. Moreover, the pick body 210a may be shaped in a manner that facilitates securing the pick 120a to the milling drum in a manner that positions and orients the working surface 141a as described above. Also, in some embodiments, a portion of the pick body 210a may have an approximately the same or similar angle as the working surface 141a (e.g., relative to the front face 211a). For instance, the pick body may include an angled face 212a, which may be approximately parallel to the working surface 141a (i.e., the angled face 212a may approximately match the back rake angle of the working surface 141a).
Under some operating conditions, cuttings or failed road material may move over the working surface 141a and toward the angled face 212a. As noted above, in some instances, the working face 141a may deflect or otherwise move the cuttings away from the cutting edge 160a, thereby reducing or eliminating contact of the cutting edge with the cuttings (i.e., promoting contact of the cutting edge 160a with road material targeted for removal). Furthermore, the angled face 212a may also facilitate deflection or movement of the cuttings away from the cutting edge 160a and away from the working surface 141a during operation of the pick 120a.
The PDC 140a may be mounted or attached to the pick body 210a in any number of suitable ways and with any number of suitable attachment mechanisms, which may vary from one embodiment to another. For example, the pick body 210a may include a pocket or recess 213a that may accommodate the PDC 140a and the PDC 140a may be brazed or press-fit in the pocket or recess. More specifically, in an embodiment, the recess 213a may have shape and size that may be complementary to the shape and size of the PDC 140a. Hence, for instance, the recess 213a may locate (e.g., orient, position, etc.) the PDC 140a relative to the pick body 210a and, consequently, relative to the milling drum when the pick 120a is mounted thereon.
In some embodiments, the PDC 140a may have an approximately the same or similar width as the pick body 210a. For example, the PDC 140a may have a width that is approximately the same as or less than a width 214a of the pick body (e.g., the PDC 140a may not protrude past the faces of the pick body 210a that define the width 214a). Moreover, in an embodiment, as shown in
Alternatively, at least a portion or the entire working surface of the PDC may form at least one side rake angle relative to the pick body. For example, as shown in
In some embodiments, the working surface 141b may form an acute or obtuse angle with one or more sides of the pick body 210b. For instance, the working surface 141b may be oriented at an acute angle θ relative to a front face 211b of the pick body 210b, which may be the same as the side rake angle of the working surface 141b. Moreover, as described above, the working face 141b may have a back rake angle (e.g., the working face 141b may be at a non-parallel angle relative to the front face 211b along a longitudinal direction thereof or relative to a longitudinal line that is parallel to the front face 211b). Accordingly, in an embodiment, the working surface 141b may be oriented at a compound non-parallel angle relative to the front face 211b. In other words, the working surface 141b may be oriented at acute and/or obtuse angles relative to the front face 211b along multiple imaginary planes (e.g., in a three-dimensional coordinate system).
As described more fully below, the PDC 140b may include a PCD table 142b bonded to a substrate 143b at an interface 144b. In some embodiments, the interface 144b may be substantially planar. Furthermore, in an embodiment, the interface 144b may be approximately parallel to the front face 211b of the pick body 210b. Hence, in an embodiment, the substrate 143b may be oriented at a non-parallel angle relative to the working surface 141b. Alternatively, the substrate 143b may be oriented at a non-parallel angle relative to the front face 211b of the pick body 210b.
Generally, the side rake angle may be in one or more ranges described above in connection with the back rake angle. Also, as noted above, the pick may include a working surface with multiple side rakes or multiple portions that have different side rake angles.
The picks and/or PDC including side and/or back rake angles may be manufactured in any number of suitable ways. For example, the side rake angle and/or the back rake angle may be angling the working surface of the PDC (e.g., to form an angle relative to a mounting side of the PDC, such as the mounting side 145c). Alternatively or additionally, the rake angle(s) may be produced by mounting the PDC on the pick body in a manner that produces the desired or suitable rake angle(s). Consequently, in an embodiment, the working surface of the PDC may be approximately parallel to the mounting side of the PDC. Furthermore, in some embodiments, the side rake angle and/or back rake angle may be adjusted.
As described above, in some embodiments, the PDC attached or mounted on the pick body may have the same or similar width as the width of the pick body. Alternatively, the width of the PDC may be less than the width of the pick body. Moreover, as shown in
In an embodiment, the PDC 140d may be wider than a width 214d of the pick body 210d. Accordingly, in an embodiment, the PDC 140d may include side portions that extend beyond or past the width 214d of the pick body 210d. In other words, at least a portion of the PDC 140d may be unsupported by the pick body 210d. For instance, the PDC 140d may include rounded portions 148d, which may be at least partially located outside of the pick body 210d.
In some embodiments, as described above, the PDC 140d may include a chamfer 146d. For instance, the edge between the chamfer 146d and the working surface 141d may form or define a cutting edge 160d. As noted above, however, it should be appreciated that the chamfer 146d also may cut, shear, grind, or otherwise fail the target road material.
Furthermore, as described above, in some examples, the milling drum may include one or more mounting bases. In particular, in some instances, the mounting bases may be larger than pick bodies, such as the pick body 120d. In some embodiments, however, width of the PDC 140d may be the same as or similar to the mounting base. In other words, the portions of the PDC 140d that extend past the pick body 210d may extend over or cover at least some portions of the mounting bases. Hence, the milling drum that includes picks 120d may have a greater combined length of cutting edges than a milling drum that includes picks without PDC portions that protrude past the pick bodies.
The PDC 140d may also be received into a partial cylindrical pocket or recess 213d of the pick body 210d. Similar to the recess 213a (
In an embodiment, however, the pick body 210d may also include extensions (not shown) at the recess 213d that extend outward with the PDC 140d. The extensions may provide additional support to the portions of the PDC 140d that protrude past the width 214d of the pick body 210d. For example, the extensions may be sized and configured to complement and support the side portions of the PDC 140d.
Furthermore, the PDC 140f may include a working surface 141f. As noted above, in an embodiment, the working surface 141f may have a zero degree rake angle (or no rake angle) when mounted on the milling drum. For example, the working surface 141f may be approximately parallel to a front face 211f of the pick body 210f. Additionally or alternatively, the working surface 141f may be offset from the front face 211f of the pick body 210f. In other words, the PDC 140f may protrude outward from the pick body 210f and the front face 211f thereof.
In some embodiments, the pick 120f may include a shield 230f that may be positioned near the PDC 140f. In one embodiment, a front face 231f of the shield 230f may be approximately coplanar with the front face 211f of the pick body. Hence, in an embodiment, the front face 231f of the shield may be recessed from the working surface 141f of the PDC 140f (e.g., in a manner that may reduce or minimize contact of the shield 230f with the road material during operation of the pick 120f.
Generally, the shield 230f may include any suitable material. In an embodiment, the shield 230f may include material(s) that may be harder and/or more wear resistant than the material(s) of the pick body 210f. For example, the shield 230f may include carbide, polycrystalline diamond, or other suitable material that may protect the portion of the pick body 210f located behind the shield 230f.
Additionally, in an embodiment, as shown in
Furthermore, in some embodiments, the pick 120g may include a shield 230g, which may be similar to the shield 230f (
As mentioned above, the pick may have a working surface that has a positive back rake angle.
In an embodiment, the first PDC 140j′ may include a cutting edge 160j. Furthermore, the first and second PDCs 140j′, 140j″ may include respective working faces 141j′, 141j″. More specifically, in an embodiment, the working faces 141j′, 141j″ may fail road material and/or deflect failed road material away from the pick 120j. Additionally or alternatively, the second PDC 140j″ may protect at least a portion of the pick body 120j. For example, the second PDC 140j″ may protect a portion of the pick body 210j near the first PDC 140j′.
While at least one of the above described embodiments includes a linear cutting edge, it should be appreciated that this disclosure is not so limited. For instance,
In an embodiment, the cutting edge 160k may be at least partially formed by a PDC 140k, which may be secured to a pick body 210k. Furthermore, the cutting edge 160k may at least partially define the perimeter of the PDC 140k. Hence, in at least one embodiment, the PDC 140k may have a semicircular shape that may protrude away from the pick body 210k.
In some instances, the pick 120k may include a shield 230k, which may be similar to or the same as the shield 230f (
Alternatively, the bottom side of the PDC may be non-linear and/or not straight. For instance,
In an embodiment, a bottom side 142m of the PDC 140m may be nonlinear or may include multiple linear segments. In an embodiment, the pick 120m may include a shield 230m that may be secured to the pick body 230m. Furthermore, the shield 230m may abut at least a portion of the bottom side 142m of the PDC 140m. Accordingly, in at least one embodiment, the shield 230m may have a nonlinear top side that may abut or may be positioned near the bottom side 230m of the PDC 140m. For instance, the top side of the shield 230m may have a shape and side that may be complementary to the shape and size of the bottom side 142m of the PDC 140m, such that at least a portion of the PDC 140m may fit inside the shield 230m and/or at least a portion of the shield 230m may fit into the PDC 140m. In one or more embodiments, the bottom side 142m of the PDC 140m may have a convex shape (e.g., V-shaped convex), and the top side of the shield 230m may have a corresponding concave shape, which may receive the convex shape of the bottom side 142m.
In at least one embodiment, the PDC may include multiple materials.
While in one or more embodiments the pick body may have an approximately rectangular or square cross-sectional shape, this disclosure is not so limited.
For instance, the pick body 210p may include a conical portion 211p and a first cylindrical portion 212p connected to or integrated with the conical portion 211p. In an embodiment, the first cylindrical portion 212p may extend from a major diameter of the conical portion 211p. In at least one embodiment, the pick body 210p may include a second cylindrical portion 213p. For example, the second cylindrical portion 213p may extend from a minor diameter of the conical portion 211p.
In an embodiment, the PDC 140p may include a working surface 141p, which may include polycrystalline diamond. For instance, the working surface 141p may have a semispherical or dome shape that extends or protrudes from a second cylindrical portion 213p. In one example, the second cylindrical portion 213p may include an approximately planar working surface 141p′, which may engage the target road material. Hence, in an embodiment, the working surface 141p of the PDC 140p may protrude above the working surface 141p′.
The pick body 210p may include any number of suitable materials and combinations of materials, which may vary from one embodiment to the next. In at least one embodiment, the pick body 210p includes cemented carbide material. Thus, for example, the second cylindrical portion 213p of the pick body 210p may form a substrate. Moreover, in an example, the PDC 140p may include polycrystalline diamond table that may be bonded to the second cylindrical portion 213p of the pick body 210p.
In at least one embodiment, the domed working surface 141p may facilitate rotation of the pick 120p during operation thereof (i.e., the pick 120p may rotatably fail target road material). For example, the PDC 140p may be rotatably mounted to a pick body 210p in a manner that allows the PDC 140p to rotate during operation of the pick 120p (e.g., when the working surface 141p engages the target material). In an embodiment, the second cylindrical portion 213p of the pick body 210p may rotate together with the working surface 141p relative to the remaining portions of the pick body 210p, such as relative to the conical portion 211p. Rotating the working surface 141p during operation of the pick 120 may extend the useful life of the pick 120p (e.g., by distributing the wear around the entire working surface 141p).
For instance, the PDC 140q includes a PCD table 142q (i.e., polycrystalline diamond table) bonded to a substrate 143q. In an embodiment, the substrate 143q may be a cobalt-cemented tungsten carbide substrate. Also, in at least one embodiment, the PCD table 142q includes a substantially planar working surface 141q. The substrate 143q of the PDC 140q may include a planar back surface or mounting side 145q.
As described above, in some instances, the working surface 141q may be approximately parallel to the surface of the mounting side 145q of the PDC 140q. Hence, to produce a desired or suitable back rake and/or side rake angles, the PDC 140q may be oriented relative to the pick body by the mounting thereof (e.g., by the recess orienting the PDC). Alternatively, the working surface 141q may be non-parallel to the surface of the mounting side 145q. Accordingly, in an embodiment, the recess in the pick body may be parallel to the front face of the pick body (or relative to the imaginary longitudinal line), and the back rake and/or side rake angles may be produced by the non-parallel orientation of the working surface 141q relative to the mounting side 145q.
In some instances, the PDC 140q may include a chamfer 146q. In particular, for example, the chamfer 146q may extend between the working surface 141q and one or more side surfaces of the PDC 140q. Also, in an embodiment, the chamfer 146q may surround the entire perimeter or periphery of the working surface 141q. Alternatively, however, the chamfer 146q may extend only about a portion of the perimeter of the working surface 141q.
Generally, the chamfer 146q may have any suitable size (whether an absolute size or as a percentage of one or more dimensions of the PDC 140q), which may vary from one embodiment to the next. For example, the chamfer 146q may be about 0.015 inch to about 0.050 inch. Furthermore, the chamfer 146q may form any suitable angle relative to the working surface 141q and/or relative to the side surfaces of the PDC 140q. For instance, the chamfer 146q may form an angle of about 30 to about 55 degrees relative to the working surface 146q (e.g., the chamfer 146q may be at about 45 degrees relative to the working surface 141q). However, in other embodiments, a variety of different chamfer heights and angles may be utilized. Moreover, in at least one embodiment, the PDC 140q may include a radius or a fillet that extends between the working surface 141q and one or more sides of the PDC 140q.
As noted above, the PDC 140q may have an approximately semicircular shape that may define the perimeter of the working surface 141q. For example, a PDC having a circular cross-sectional shape (i.e., an approximately cylindrical shape) may be cut into two portions or halves, one or both of which may be used to manufacture the PDC 140q. In an embodiment, an electrical discharge machining (e.g., wire EDM) may be used to cut the PDC 140q into two halves. Alternatively, the PDC 140q may be formed as with a semicircular cross-sectional shape.
In an embodiment, the PCD table includes a plurality of bonded diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst may occupy the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively may exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Additionally, in at least one embodiment, the PCD table may include a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst may occupy the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively may exhibit a specific magnetic saturation of about 15 G·cm3/g or less. The plurality of diamond grains and the metal-solvent catalyst may define a volume of at least about 0.050 cm3. Additional description of embodiments for the above described PCD table is provided in U.S. Pat. No. 7,866,418, which is incorporated herein, in its entirety, by this reference.
In at least one embodiment, the PDC 140q may include a preformed PCD volume or PCD table, as described in more detail in U.S. Pat. No. 8,236,074, which is incorporated herein in its entirety by this reference. For example, the PCD table that may be bonded to the substrate 143q by a method that includes providing the substrate, the preformed PCD volume, and a braze material and at least partially surrounding the substrate, the preformed PCD volume or PCD table, and a braze material within an enclosure. Also, the enclosure may be sealed in an inert environment. Furthermore, the enclosure may be exposed to a pressure of at least about 6 GPa and, optionally, the braze material may be at least partially melted.
In yet another embodiment, a PDC 140q may include a substrate 143q and a preformed PCD table that may include bonded diamond grains defining a plurality of interstitial regions, and which may be bonded to the substrate, as described in further detail in U.S. Patent Application No. 13/070,636, which is incorporated herein, in its entirety, by this reference. For instance, the preformed PCD table may further include an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending between the upper surface and the back surface. A region may extend inwardly from the upper surface and the at least one lateral surface. The region may include at least a residual amount of at least one interstitial constituent disposed in at least a portion of the interstitial regions thereof. The at least one interstitial constituent may include at least one metal carbonate and/or at least one metal oxide. Additionally, a bonding region may be placed adjacent to the substrate and extending inwardly from the back surface. The bonding region may include a metallic infiltrant and a residual amount of the at least one interstitial constituent disposed in at least a portion of the interstitial regions thereof.
In another embodiment, the PCD table of the PCD 140q may include a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions as described in more detail in U.S. patent application Ser. No. 13/027,954, which is incorporated herein, in its entirety, by this reference. For instance, the PCD table may include at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material may exhibit a melting temperature of about 100° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.
In an additional or alternative embodiment, the PCD table of the PCD 140q may include a plurality of bonded-together diamond grains defining a plurality of interstitial regions as described in more detail in U.S. patent application Ser. No. 13/100,388, which is incorporated herein, in its entirety, by this reference. For instance, the PCD table may include aluminum carbide disposed in at least a portion of the plurality of interstitial regions. Moreover, in an embodiment, the PCD table may include a plurality of bonded diamond grains that may exhibit an average grain size of about 40 μm or less.
In at least one embodiment, the preformed PCD table may include at least a portion of the interstitial regions of the first region including an infiltrant disposed therein, as described in more detail in U.S. patent application Ser. No. 12/961,787, which is incorporated herein, in its entirety, by this reference. In some embodiments, the preformed PCD table may also include a second region adjacent to the first region and extending inwardly from the exterior working surface to a depth of at least about 700 μm. In some instances, the interstitial regions of the second region may be substantially free of the infiltrant. In one example, the preformed PCD table may have a nonplanar interface located between the first and second regions.
In an embodiment, the PCD table may include a plurality of bonded diamond grains defining a plurality of interstitial regions and at least a portion of the plurality of interstitial regions may include a cobalt-based alloy disposed therein as described in more detail in U.S. application Ser. Nos. 13/275,372 and 13/648,913, each of which is incorporated herein, in its entirety, by this reference. In some examples, a cobalt-based alloy may include at least one eutectic forming alloying element in an amount at or near a eutectic composition for an alloy system of cobalt and the at least one eutectic forming alloying element.
In some embodiments, the PCD table of the PDC 140q may include an interfacial surface bonded to a cemented carbide substrate and an upper surface and an infiltrant, which may be disposed in at least a portion of a plurality of interstitial regions as described in more detail in U.S. patent application Ser. No. 13/795,027, which is incorporated herein, in its entirety, by this reference. For instance, the infiltrant may include an alloy comprising at least one of nickel or cobalt, at least one of carbon, silicon, boron, phosphorus, cerium, tantalum, titanium, niobium, molybdenum, antimony, tin, or carbides thereof, and at least one of magnesium, lithium, tin, silver, copper, nickel, zinc, germanium, gallium, antimony, bismuth, or gadolinium.
As mentioned above, in some instances, at least a portion of the perimeter defining the working surface of the PDC may be un-chamfered. For example,
In an embodiment, the PDC 140r may include an un-chamfered portion 147r. For instance, the chamfer 146r may extend about the perimeter of the working surface 141r in a manner that maintains the un-chamfered portion 147r without a chamfer thereon. In one example, the chamfer 146r may extend from a first end of the un-chamfered portion 147r, surround the perimeter of the working surface 141r (except the un-chamfered portion 147r), and terminate at a second, opposing end of the un-chamfered portion 147r.
As mentioned above, in some embodiment, the PDC may have an approximately semicircular shape. Moreover, the PDC may include one or more rounded portions. For instance, the PDC 140r includes a rounded portion 148r. In at least one embodiment, the PDC 140r may include linear side portions 149r, 149r′. The each of linear side portions 149r, 149r′ may be approximately straight or linear. Furthermore, in an embodiment, the linear side portions 149r, 149r′ may truncate or limit width of the PDC 140r.
In an embodiment, the linear side portion 149r may extend approximately perpendicular to a cutting edge 160r of the PDC 140r. In one embodiment, the linear side portion 149r′ may form a bevel between the cutting edge 160r and the linear side portion 149r. For instance, the linear side portion 149r′ may extend between the linear side portion 149r and the cutting edge 160r at approximately 45 degrees relative thereto.
In some embodiments, the chamfer 146r may extend over the linear side portions 149r, 149r′. Additionally or alternatively, one or both of the linear side portions 149r, 149r′ may engage the target road material. Consequently, the linear side portions 149r and/or 149r′ may cut, grind, scrape, shear, or otherwise fail the road material.
In at least one embodiment, the PDC 140r may include a stud or post 220r, which may attached to or incorporated with the substrate 143r. The post 220r may include any number of suitable materials, such as steel, a cemented carbide material, or another suitable material. In an embodiment, the post 220r may provide additional strength to an attachment between the PDC 140r and the pick body. For instance, the post 220r may be press-fit into a corresponding opening in the pick body. Also, the post 220r may position or locate the PDC 140r relative to the pick body.
For example,
Also, in some instances, the pick body 210t may include an opening 215t, which may accept a post of PDC. In some instances, the opening 215t may locate the PDC (e.g., providing positional location) relative to one or more faces of the pick body 210t. For example, the opening 215t may be positioned at a predetermined location from a first side surface 216t of the pick body 210t. Accordingly, in an embodiment, positioning the post of the PDC within the opening 215t may position the PDC at a predetermined location relative to the first side surface 216t of the pick body 210t.
Furthermore, in an embodiment, the PDC may be attached to the pick body 210t at least in part through a connection between the post of the PDC and the opening 215t in the pick body 210t. For example, the post and/or other portions of the PDC may be brazed to the pick body 210t. Optionally, (e.g., in combination with brazing the PDC and/or the post to the pick body 210t or without such brazing), the post may be press-fit into the opening 215t in the pick body 210t. It should be appreciated that there are a variety of other methods and mechanisms for attaching a PDC to the pick body, such as to the pick body 210t.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting. Additionally, the words “including,” “having,” and variants thereof (e.g., “includes” and “has”) as used herein, including the claims, shall be open ended and have the same meaning as the word “comprising” and variants thereof (e.g., “comprise” and “comprises”).
This application claims priority to U.S. Provisional Application No. 61/824,007, filed on 16 May 2013, the entire disclosure of which is incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
61824007 | May 2013 | US |