Roadway cable barrier system

Information

  • Patent Grant
  • 10202730
  • Patent Number
    10,202,730
  • Date Filed
    Monday, January 4, 2016
    9 years ago
  • Date Issued
    Tuesday, February 12, 2019
    5 years ago
Abstract
A roadway cable barrier includes a post located adjacent to a roadway and extending vertically from a ground level to a top end, a connector having a first leg and a second leg spaced apart and extending in the same downward direction from a top section, the top section is positioned on the top end of the post such that the first leg and the second leg are positioned on opposite sides of the post from one another, a retaining loop is formed by one of the first leg and the second leg and a longitudinally extending roadway barrier cable is disposed within the retaining loop.
Description
BACKGROUND

The present disclosure relates in general to barriers and safety systems and more particularly to cable safety systems. Cable barrier systems are often employed to redirect errant objects (e.g., motor vehicles, falling rocks) toward a less hazardous path. Often, cable barrier systems are utilized along roadways and in the medians between roadways. For example, cable barrier systems may be utilized to redirect an errant motor vehicle headed toward oncoming traffic back into the intended direction of travel.


SUMMARY

A roadway cable barrier includes a post located adjacent to a roadway and extending vertically from a ground level to a top end, a connector having a first leg and a second leg spaced apart and extending in the same downward direction from a top section, the top section is positioned on the top end of the post such that the first leg and the second leg are positioned on opposite sides of the post from one another, a retaining loop is formed by one of the first leg and the second leg and a longitudinally extending roadway barrier cable is disposed within the retaining loop. In accordance to one or more embodiments a roadway cable barrier system includes a post extending vertically from a ground level to a top end, a top section of a connector mounted on the top end of the post with first and second legs of the connector positioned on opposite sides of the post and extending in the same downward direction, the connector including a first retaining loop and a second retaining loop; a first longitudinally extending roadway barrier cable is disposed through the first retaining loop and a second longitudinally extending roadway barrier cable is disposed through the second retaining loop.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 is a schematic of a section of a cable barrier system according to one or more embodiments of the invention.



FIG. 2 is a top view of the cable-release anchor and the first terminal post of FIG. 1 in isolation.



FIG. 3 is a top view of a portion of an embodiment of a cable barrier system according to one or more aspects of the invention.



FIG. 4 is a top view of a portion of an embodiment of the cable-release anchor according to one or more aspects of the invention.



FIG. 5 is a side view of a portion of an embodiment of the cable-release anchor according to one or more aspects of the invention.



FIG. 6 is a top view of an embodiment of a cable-release anchor leveraging member according to one or more aspects of the invention.



FIG. 7 is a side view of the cable-release anchor leveraging member along section line I-I of FIG. 6.



FIG. 8 is a top view of an embodiment of a cable-release anchor according to one or more aspects of the invention.



FIG. 9 is a side view of the cable-release anchor along the section line II-II of FIG. 8.



FIG. 10 is an illustration of an embodiment of a terminal end fitting according to one or more aspects of the invention.



FIG. 11 is a side view of an embodiment of a weak terminal post according to one or more aspects of the invention.



FIG. 12 is a side view of an embodiment of a standard terminal post according to one or more aspects of the invention.



FIG. 13 is a top view of an embodiment of a line post according to one or more aspects of the invention.



FIG. 14 is a side view of an embodiment of a line post and a hairpin cable connector according to one or more aspects of the invention.



FIG. 15 is a view of an embodiment according to one or more aspects of the invention of a face of the line post to which cables are removably connected illustrating a lock plate.



FIG. 16 is a schematic illustration of an embodiment of a cable-release anchor for a barrier system according to one or more aspects of the invention.



FIG. 17 is a top view of the embodiment of the cable-release anchor depicted in FIG. 16.



FIG. 18 is a view of a cable splice fitting according to one or more aspects of the invention.





DETAILED DESCRIPTION

It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.



FIG. 1 is a schematic of a section of an embodiment of a cable barrier system according to one or more aspects of the invention, generally identified by the numeral 10. Cable barrier system 10 includes cables 12 held in tension from a terminal end 14 through a length of need 16. Cable barrier system 10 may include additional terminal ends 14 and intermediate terminal ends (not shown). System 10 is illustrated and described herein for exemplary purposes as a three-cable, highway median safety barrier, or cable guardrail. However, it should be realized that the various systems, assemblies, members and concepts described herein may be utilized in various installations and configurations for varying purposes. It should further be understood that various components of the invention may be utilized with various types and designs of barrier systems including, but not limited to, cable barrier systems, W-beam guardrail systems, crash cushions and attenuators.


Terminal end 14 includes a cable-release anchor 17 having a leveraging member 18, one or more weak terminal posts 20, and one or more standard terminal posts 22. The terminal ends 26 of cables 12 are removably mounted to cable-release anchor 17 substantially at ground level 28 and removably connected to terminal posts 20, 22 and line posts 24 of length of need (LON) section 16. Cables 12 are angled upward relative to ground level 28 through a portion of terminal end section 14 until the desired distance above ground level 26 is obtained. Terminal end 14 is a gated terminal wherein substantially no resistance is provided upon impact by an errant vehicle.


Length of need section 16 includes a plurality of spaced line posts 24. Cables 12 are removably connected to line posts 24 in tension. Length of need 16 may be any desired length. System 10 may include cable splice fittings 30 (FIG. 18) for extending and repairing cables 12. Additionally, cable splice fittings 30 may be utilized to maintain tension in cables 12.


Refer now to FIG. 18, wherein an embodiment of a cable splice fitting 30 according to one or more aspects of the invention is depicted. Cable splice fitting 30 may include a pair of elongated rods 70a and 70b connected by a turnbuckle 72. A first connector 74 is connected to elongated rod 70a and adapted to connecting to an end 11 of a cable 12. A second connector 76 is connected to elongated rod 70b and adapted to connecting to an end 13 of another cable 12. Cable splice fitting 30 facilitates forming and maintaining a spliced, elongated cable 12 in tension.


Referring back to FIG. 1, as is well known in the art, cables 12 are releasably connected to terminal posts 20, 22 and line posts 24 in a manner such that when an individual post fails and is moved toward the ground level 28, cables 12 are released from that individual post. For example, if a vehicle 38 (FIG. 3) impacts cable barrier system 10 in length of need section 16 and collapses one line post 24 toward the ground level 28, cables 12 are released from that line post 24 so that cables 12 remain supported above ground level 28 and in contact with the vehicle and do not go under the vehicle. The cables remain supported above ground level by the remaining portion of the cable barrier system thereby urging the vehicle back to its designated and desired path (i.e., roadway).



FIG. 2 is a top view of cable-release anchor 17 and a first terminal post 20 of terminal end 14 according to one or more aspects of the invention, shown in isolation. Terminal ends 26 of cables 12 are removably connected at cable-release anchor 17. As described in further detail below, cable-release anchor 17 may take various designs such that cables 12 are released from tension when cable-release leveraging member 18 is struck by an errant vehicle thereby preventing the vehicle from riding up cables 12. Various embodiments of cable-release anchor 17 include, but are not limited to, an assembly as shown in FIGS. 4 through 9 and/or frangible pins.


As shown in FIG. 2, cables 12 are removably connected to a cable mounting plate 34. Desirably top cable 12a, relative to ground level 28, is removably connected in a center position on mounting plate 34. Cable mounting plate 34 is fixedly secured to the pad 36 of cable-release anchor 17. As described further below, pad 36 may take various forms including, but not limited to, being a metal support member. Leveraging member 18 is mounted atop mounting plate 34 with a portion positioned under terminal ends 26 of cables 12. Leveraging member 18 is not secured to mounting plate 34; as such it is dislodged upon being impacted by a vehicle 38 (FIG. 3). In accordance with one or more embodiment, when leveraging member 18 (e.g., vertical post) is struck with by a vehicle and dislodged, it leverages, or releases, cables 12 from cable-release anchor 17. In the illustrated embodiment, leveraging member 18 is an elongated member such as, but not limited to, a post. Leveraging member 18 is referred to herein broadly, and without limitation, as a post or anchor element, capable of leveraging cable(s) 12 out of connection with anchor plate 34.



FIG. 3 is a top view of a portion of an embodiment of cable barrier system 10 according to one or more aspects of the invention. System 10 illustrates one manner of mounting barrier system 10 for absorbing the impact from errant vehicles and redirecting the errant vehicles from two directions, such as for highway medians. Arrows 38 illustrate the direction of travel of vehicles impacting system 10. Posts 20, 22, and 24 each have a face 20a, 22a, and 24a respectively, adapted for removably mounting cables 12. Post faces 20a, 22a, and 24a are desirably oriented to face oncoming vehicles such that cables 12 are positioned between posts 20, 22, and 24 and the direction of vehicle travel 38. For applications wherein it is probable that vehicles may impact from either direction, posts 20, 22, and 24 may be installed such that at least a portion of post faces 20a, 22a, and 24a are oriented toward oncoming traffic. In the illustrated embodiment, posts 20, 22, and 24 are installed with each post face oriented opposite the orientation of the adjacent post faces.



FIG. 4 is a top view of a portion of an embodiment of cable-release anchor 17 according to one or more aspects of the invention. Cable-release anchor 17 is shown in FIGS. 4 and 5 with leveraging member 18 (FIGS. 1, and 6 through 9) removed.


Cable-release anchor 17 includes a mounting plate 34. Mounting plate 34 includes a bracket 40 having a plurality of slots 42 each adapted to dispose a cable 12. In the illustrated embodiment slots 42 have an open top. It should be recognized that in other embodiments that the tops of slots 42 may not be open. Cables 12 are mounted in slots 42 with a terminal end fitting 50, illustrated in this embodiment as a nut 52 connected to threaded terminal end 26 of cable 12.


A rib 44 may be positioned between adjacent slots 42. An optional pin 46 is shown extending through bracket 40. Pin 46 is positioned above cables 12 and substantially perpendicular to the longitudinal axis of cables 12. Pin 46 provides stability: aiding in maintaining cables 12 in slots when tensioning cables 12; maintaining cables 12 in cable-release anchor 17 when cables 12 are impacted further down the length of system 10; maintaining cables 12 in connection with cable-release anchor 17 during weather related changes in cables 12; and reducing vibrations in cables 12.


A post stop 48 extends from the same side of mounting plate 34 as bracket 40. Post stop 48 is spaced from bracket 40 to define a leveraging member landing 54 (post landing). Anchor post landing 54 extends under terminal ends 26 of cables 12.



FIG. 5 is a side view of a portion of an embodiment of cable-release anchor 17 according to one or more aspects of the invention. Mounting plate 34 is fixedly connected atop pad 36. With reference to FIGS. 1 and 2, pad 36 may be a metal post and connected by welding. Pad 36 may be constructed in various manners as desired and pad 36 and mounting plate 34 connected in a sufficient and appropriate manner. For example, pad 36 may be a concrete pad wherein mounting plate or anchor plate 34 is connected via concrete bolts.



FIG. 5 depicts rib 44 having a rib face 56 oriented toward post landing 54. Desirably, rib face 56 is non-perpendicular and has an inclined slope away from landing 54. Rib face 56 is sloped to mate with leveraging member 18 as described in relation to FIGS. 6 through 9.



FIG. 6 is a top view of an embodiment of a cable-release leveraging member 18 according to one or more aspects of the invention. Leveraging member 18 of the depicted embodiment is a high strength steel member having a pair of legs 58 mounted atop feet 61 of a substantially C-shaped base 60. Base 60 includes a toe 62 formed between feet 58. Toe 62 is sloped to correspond with rib face 56 (FIG. 5). FIG. 7 is a side view of cable-release leveraging member 18 along section line I-I of FIG. 6 revealing toe 62.



FIG. 8 is a top view of an embodiment of a cable-release anchor 17 according to one or more aspects of the invention. Leveraging member 18 is disposed atop mounting plate 34 on post landing 54. Base 60 is disposed between post stop 48 and bracket 40 with feet 61 bracketing cable bracket 40. Cables 12 are disposed in slots 42, and terminal end fitting 50 is operated, tensioning cables 12 against bracket 40.



FIG. 9 is a side view of cable-release anchor 17 along the section line II-II of FIG. 8. Base 60 of leveraging member 18 is shown disposed between post stop 48 and bracket 34. Toe 62 is abutting rib face 56. Terminal end 26 of cable 12, or terminal end fitting 50, extends above base 60 of leveraging member 18. In operation, when a vehicle impacts leveraging member 18, base 60 is dislodged from its position between post stop 48 and bracket 40. As leveraging member 18 is dislodged, base 60 leverages cables 12 from slots 42 and bracket 40 thus releasing the tension in cables 12.



FIG. 10 depicts an embodiment of a terminal end fitting 50 according to one or more aspects of the invention. Terminal end fitting 50 includes an elongated shaft 64 connected to cable 12 via a turnbuckle 66. The distal end of elongated shaft 64 becoming terminal end 26 of cable 12. Turnbuckle 66 provides a mechanism for tensioning cable 12. Portions 68 may be provided for positioning, for example, a wrench to rotate shaft 64 relative to turnbuckle 66.



FIG. 11 is a side view of an embodiment of a weak terminal post 20 according to one or more aspects of the invention. Weak terminal post 20 depicted in FIG. 11 includes a hole 78 (e.g., side 20b) formed through one or more of its sides proximate ground level 28. FIG. 12 is a side view of an embodiment of a standard terminal post 22 according to one or more aspects of the invention. Terminal posts 20, 22 may be driven in the ground, socketed or supported in any desired manner.


As previously described, cables 12 are removably mounted to terminal posts 20, 22 and line posts 24 in the depicted embodiment. In the prior art systems, the cables are often connected to the posts (both terminal and line posts) by hook bolts, of various configurations, that substantially enclose the cable. Desirably, these hook bolts expand when needed to release the cable. However, in practice these hook bolts often fail, compromising the barrier system.


With reference to FIGS. 11 and 12, cables 12 are connected to terminal posts 20, 22 by terminal post cable connectors 80. According to one or more aspects of the invention, terminal post cable connectors 80 may be “J-bolts” having a substantially elongated longitudinal rod 82 and a riser 84. Riser 84 extends substantially at a right angle to longitudinal rod 82. With reference to FIG. 11, terminal post cable connector 80 is described for both terminal posts 20 and 22. Terminal post cable connector 80 is connected to terminal post 20 such that riser 84 extends outward from a terminal post face 20a and vertically relative to ground level 28 such that a trough 86 is formed for disposing cable 12. Although cables 12 are shown connected to a single side or face of terminal posts 20, 22, and line posts 24 throughout the various Figures, it should be realized that for each individual post, cables 12 may be mounted on opposing sides of the post.


Terminal post cable connector 80 may be connected to terminal post 20, 22 by threading a nut 52 to rod 82 or by other suitable means of connection including, but not limited to, welding. A benefit of the system may be that terminal post cable connectors 80 can be connected to their respective terminal post 20, 22 easier and quicker than in the typical prior art systems. A further benefit may be that cables 12 may be released from terminal post cable connectors 80 without deforming the terminal post cable connectors 80. Thus, one terminal post cable connector 80 does not interfere with the clean release of the other cables 12 as may occur in the prior art systems.


With reference to FIG. 13, line post 24 is depicted as a C-section post. Line post 24 is rectangular, and may be a square, having opposing side walls 24b and 24d defining the depth D, and a post face wall 24a and opposing back wall 24c defining the width W of line post 24. Post face 24a forms a longitudinal slot 90 extending at least a portion of the length of line post 24. A cavity 92, having an open top 94, is defined by walls 24a, 24b, 24c, 24d. Line post 24 of the invention may take other shapes including without limitation circular.


Line post 24 is substantially the same strength of typical line posts that do not have a slotted section and are stronger than prior art posts split through opposing side walls. For example, line post 24 is a galvanized steel post having a width W of 2.5 inches, a depth D of 3.75 inches and a 0.5 inch slot. Line post 24 weighs 5.4 pounds per foot and has a 75,600 pound bend moment.



FIG. 14 illustrates an example of cables 12 connected to a line post 24 by a post-cable connector 88 in accordance to one or more aspects of the invention. Post-cable connector 88 is a hairpin shaped connector adapted for removably connecting cables 12 to line post 24. Hairpin connector 88 includes an elongated section 96 forming loops 98, each loop adapted to slidingly hold a cable 12. A top section 100 extends between longitudinal section 96 and a hook end section 102. Top section 100 may be angled such as to depart from perpendicular to longitudinal section 96. The angle between top section 100 and longitudinal section 96 may be determined by the distance it is desired to position the top cable 12a from the top end 25 of line post 24 and/or ground level 28. For example, in accordance with an embodiment, hairpin connector 88 may be formed of a twenty-four inch long round galvanized steel rod, loops 98a, 98b, 98c are spaced approximately five inches apart, and top loop 98a is positioned approximately three inches from top end 25 of line post 24.


Hook end section 102 is angled downward from top end 100 toward ground level 28 when hairpin connector 88 is hung from the top end 25 of line post 24. Hook end section 102 may extend substantially parallel to longitudinal section 96. Hook end section 102 is adapted for positioning on an opposite side of line post 24 from longitudinal section 96 for mounting hairpin connector 88 on the top end 25 of line post 24.


In operation, cables 12 may be easily inserted into loops 98 through ports 104. Hairpin connector 88 may be grasped at top section 100 and hung on the top end of line-post thereby removably connecting hairpin connector 88 and cables 12 to line post 24. Hairpin connector 88 is positioned with longitudinal section 96 disposed within cavity 92 and loops 98 extending through slot 90. Cables 12 are disposed proximate face wall 24a exterior of cavity 92. Top section 100 extends through open top 94 and is mounted on the top end 25 of line post 24 with hook end section 102 extending toward ground level 28 on the opposite side of back wall 24c from longitudinal section 96. When line post 24 is bent toward ground level 28, top section 100 disengages from top 25 as hairpin connector 88 exits cavity 92 releasing cables 12 from connection with line post 24.



FIG. 15 is another view of an embodiment of a line post 24 according to one or more aspects of the invention. An optional connection lock plate 106 is depicted adjacent to line post 24. Lock plate 106 is shown in connection with hairpin connector 88 and line post 24 by hidden lines in FIG. 15. Lock plate 106 is configured to connect with hairpin connector 88 and be positioned in cavity 92 abutting the interior of face wall 24a. Lock plate 106 facilitates the release of one cable 12 at a time from line post 24. For example, when line post 24 is deformed toward ground level 28, hairpin connector 88 begins to exit open top 94 and top cable 12a is released from connection with line post 24. If deformation of line post 24 ceases, cables 12b and 12c may remain in connection with line post 24 maintaining the integrity of the cable barrier system. If deformation of line post 24 continues, cables 12b and 12c will be subsequently released from connection with that particular deformed line post 24 but the cables will remain connected to the other line posts 24 and remain supported above ground level 28.


Lock plate 106 illustrated in FIG. 15 is an embodiment for a three-cable barrier system according to one or more aspects of the invention. Depicted lock plate 106 is a substantially flat member having spaced keyways 108 and 110. First keyway 108 is adapted for disposing the middle loop 98b and second keyway 110 is adapted to dispose the bottom loop 98c.



FIG. 16 is a schematic of an embodiment of a cable-release anchor 17 according to one or more aspects of the cable barrier system. Cable-release anchor 17 is illustrated releasably holding a single cable 12 in this embodiment. Barrier system 112 of the invention may be a cable barrier system such as described with reference to FIGS. 1 and 2. Other examples of barrier system 112 include, but are not limited to, guardrails, guardrail end treatments, and guardrail end terminals.



FIG. 17 is a top view of the cable-release anchor 17 depicted in FIG. 16. FIG. 17 depicts a single cable 12 releasably connected to cable mounting plate 34. With reference to FIGS. 16 and 17, leveraging member 18 of FIGS. 1 and 2 has been replaced by a leveraging element 118. Leveraging element 118 is defined broadly as a member for releasing cable 12 from anchor plate 34. Leveraging element 118 may include, but is not limited to, elongated post members and terminal heads. The depicted leveraging element 118 has a base member 60 positioned below terminal end 26 of cable 12 in a manner to leverage cable 12 from anchor plate 34 when impacted.


Although specific embodiments of the invention have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.

Claims
  • 1. A roadway cable barrier system, the system comprising: a post extending vertically from a ground level to a top end;a connector comprising a unitary length of metal forming first and second legs extending in the same direction away from a top section, a first retainer loop formed by a bend in the first leg, wherein the top section is mounted on the top end of the post with the first and second legs positioned on opposite sides of the post and extending in the same downward direction; anda first longitudinally extending roadway barrier cable disposed through the first retainer loop, wherein the first retainer loop at least partially encircles the first longitudinally extending cable; andthe first retainer loop comprising a port formed by the unitary length of metal, wherein the port is open toward the second leg.
  • 2. The system of claim 1, wherein the connector is not fastened to the post whereby the connector is able to at least partially disengage from and move relative to a vertical axis of the post in response to impact of a vehicle such that contact is maintained between the vehicle and the longitudinally extending roadway barrier cables.
  • 3. The system of claim 1, further comprising a second retainer loop formed by a bend in the first leg, the second retainer loop comprising a port formed by the unitary length of metal, wherein the port is open toward the second leg; and a second longitudinally extending roadway barrier cable disposed through the second retainer loop, wherein the second retainer loop at least partially encircles the second longitudinally extending cable.
  • 4. The system of claim 1, wherein the connector is not fastened to the post such that the connector is free to move relative to a vertical axis of the post.
  • 5. The system of claim 4, further comprising a second retainer loop formed by a bend in the first leg, the second retainer loop comprising a port formed by the unitary length of metal, wherein the port is open toward the second leg; and a second longitudinally extending roadway barrier cable disposed through the second retainer loop, wherein the second retainer loop at least partially encircles the second longitudinally extending cable.
  • 6. A roadway cable barrier system, the system comprising: a post extending vertically from a ground level to a top end;a connector consisting of a length of metal forming a top section and first and second legs extending in the same direction away from the top section, wherein the top section is hung on the top end of the post with the first and second legs positioned on opposite sides of the post and extending in the same downward direction;a first retainer loop formed by a bend in the first leg;a first cable extending longitudinally above the ground level and slidingly disposed through the first retainer loop, wherein the first retainer loop at least partially encircles the first longitudinally extending cable; andthe first retainer loop comprising a port formed by the length of metal, wherein the port is open toward the second leg.
  • 7. The system of claim 6, wherein the connector is not fastened to the post whereby the connector is able to at least partially disengage from and move relative a vertical axis of the post in response to impact of a vehicle such that contact is maintained between the vehicle and the longitudinally extending roadway barrier cables.
  • 8. The system of claim 6, wherein the connector is not fastened to the post such that the connector is free to move relative to a vertical axis of the post.
  • 9. The system of claim 8, further comprising a second retainer loop formed by a bend in the first leg, the second retainer loop comprising a port formed by the unitary length of metal, wherein the port is open toward the second leg; and a second longitudinally extending roadway barrier cable disposed through the second retainer loop, wherein the second retainer loop at least partially encircles the second longitudinally extending cable.
  • 10. The system of claim 6, further comprising further comprising a second retainer loop formed by a bend in the first leg, the second retainer loop comprising a port formed by the unitary length of metal, wherein the port is open toward the second leg; and a second longitudinally extending roadway barrier cable disposed through the second retainer loop, wherein the second retainer loop at least partially encircles the second longitudinally extending cable.
  • 11. A post-cable connector for mounting a cable to a vertically extending post in a roadway cable barrier system, comprising: a unitary length of metal forming first and second legs extending in the same direction from a top section, wherein the first and second legs are spaced apart to form a gap to dispose a wall of a metal post therebetween with the top section positioned on a top end of metal post; anda first retainer loop formed by a bend in the first leg to slidingly dispose a first longitudinally extending cable, wherein the first retainer loop comprises a port formed by the unitary length of metal, the port open toward the gap.
  • 12. The post-cable connector of claim 11, further comprising a second retainer loop formed by a bend in the first leg to slidingly dispose a second longitudinally extending cable, wherein the second retainer loop comprises a port formed by the unitary length of metal, the port open toward the gap.
US Referenced Citations (119)
Number Name Date Kind
429038 Kerr May 1890 A
533959 Leffler Feb 1895 A
632585 Parker Sep 1899 A
812141 Kidd Feb 1906 A
826984 Youngs Jul 1906 A
830108 Smith Sep 1906 A
863118 Trimble Aug 1907 A
883901 McInnis Apr 1908 A
1076328 Swim Oct 1913 A
1107858 Smith Aug 1914 A
1117214 McFarland et al. Nov 1914 A
1136746 White Apr 1915 A
1160709 Gerken Nov 1915 A
1207021 Gossett Dec 1916 A
1249186 Perry Dec 1917 A
1250617 Montel Dec 1917 A
1267568 McAllister May 1918 A
1360375 Dammann Nov 1920 A
1643100 Thomas Sep 1927 A
1754712 Gartner Apr 1930 A
1828349 Williams Oct 1931 A
1857435 Cole May 1932 A
1860615 Kahn May 1932 A
1892222 Russell Dec 1932 A
2026259 Tarbox Dec 1935 A
2204559 Ahles Jun 1940 A
2265698 Opgenorth Dec 1941 A
RE22060 Hayden et al. Apr 1942 E
2854101 Carper Sep 1958 A
2861122 Flower Nov 1958 A
3161263 Stokes Dec 1964 A
3266778 Wogerbauer Aug 1966 A
3353795 Muller Nov 1967 A
3499630 Dashio Mar 1970 A
3671017 Sachs Jun 1972 A
3758062 Caldwell et al. Sep 1973 A
3972511 Balestrini Aug 1976 A
4119302 Moroco et al. Oct 1978 A
4143859 Tews Mar 1979 A
4266757 Kirkwood May 1981 A
4270737 Binns et al. Jun 1981 A
4462572 Hanneken Jul 1984 A
4501411 Otaki Feb 1985 A
4536989 Caywood et al. Aug 1985 A
4595176 Crabtree Jun 1986 A
4708323 Noakes Nov 1987 A
4784515 Krage et al. Nov 1988 A
4803819 Kelsey Feb 1989 A
4838523 Humble et al. Jun 1989 A
4867421 Vernon Sep 1989 A
4881721 Manley Nov 1989 A
4928928 Buth et al. May 1990 A
5022782 Gertz et al. Jun 1991 A
5039066 Stacey Aug 1991 A
5044609 Cicinnati et al. Sep 1991 A
5078366 Sicking et al. Jan 1992 A
5085409 Teixeira Feb 1992 A
5110094 Kruse May 1992 A
5203543 Fleury Apr 1993 A
5245787 Swenson et al. Sep 1993 A
5350155 Burk Sep 1994 A
5474408 Dinitz et al. Dec 1995 A
5484217 Carroll et al. Jan 1996 A
5490661 Stevens et al. Feb 1996 A
5501035 Downer et al. Mar 1996 A
5503495 Mak et al. Apr 1996 A
5630292 Heinz et al. May 1997 A
5855443 Faller et al. Jan 1999 A
5916028 Downer et al. Jun 1999 A
5924680 Sicking et al. Jul 1999 A
5957435 Bronstad Sep 1999 A
5967497 Denman et al. Oct 1999 A
6065738 Pearce et al. May 2000 A
6173943 Welch et al. Jan 2001 B1
6220575 Lindsay et al. Apr 2001 B1
6254063 Rohde et al. Jul 2001 B1
6299141 Lindsay et al. Oct 2001 B1
6330998 Roy Dec 2001 B1
6382583 Hill, III et al. May 2002 B1
6398192 Albritton Jun 2002 B1
6434883 Martin Aug 2002 B1
6488268 Albritton Dec 2002 B1
6533881 Wall Mar 2003 B1
6563055 Burdick May 2003 B1
6695293 Kamarad et al. Feb 2004 B1
6729607 Alberson et al. May 2004 B2
6783116 Albritton Aug 2004 B2
6793204 Albritton Sep 2004 B2
6857621 Kamarad et al. Feb 2005 B1
6863264 Johansson et al. Mar 2005 B2
6902151 Nilsson Jun 2005 B1
6932327 Alberson et al. Aug 2005 B2
6948703 Alberson et al. Sep 2005 B2
6962328 Bergendahl Nov 2005 B2
6971638 Burdick Dec 2005 B2
7207516 Sheelar Apr 2007 B2
7249439 Pierce, Jr. Jul 2007 B2
7364137 Neusch Apr 2008 B2
7367549 Titmus May 2008 B2
7398960 Neusch Jul 2008 B2
7401996 Neusch Jul 2008 B2
7556242 Alberson et al. Jul 2009 B2
7568679 Neusch Aug 2009 B2
7798741 Neusch Sep 2010 B2
8266803 Neusch Sep 2012 B2
8286950 Neusch Oct 2012 B2
8549725 Neusch Oct 2013 B2
8857796 Neusch Oct 2014 B2
9228306 Neusch Jan 2016 B2
20020014620 Nilsson Feb 2002 A1
20030213946 Alberson et al. Nov 2003 A1
20030215305 Alberson et al. Nov 2003 A1
20030222254 Bergendahl Dec 2003 A1
20050017231 Sheelar Jan 2005 A1
20060043353 Titmus Mar 2006 A1
20060102884 Rohde et al. May 2006 A1
20060145131 Purvis Jul 2006 A1
20060147261 Wong Jul 2006 A1
20070102689 Alberson et al. May 2007 A1
Foreign Referenced Citations (6)
Number Date Country
2417509 Mar 2006 GB
H08134861 May 1996 JP
2000-045233 Feb 2000 JP
200228230 Jun 2001 KR
200305609 Feb 2003 KR
200318128 Jun 2003 KR
Non-Patent Literature Citations (3)
Entry
International Preliminary Report on Patentability for PCT/US2006/008569, dated Nov. 29, 2007.
International Preliminary Report on Patentability for PCT/US2006/025115, dated Apr. 30, 2007.
International Preliminary Report on Patentability for PCT/US2006/025256, dated Jul. 2, 2007.
Related Publications (1)
Number Date Country
20160115662 A1 Apr 2016 US
Divisions (1)
Number Date Country
Parent 11175939 Jul 2005 US
Child 12040322 US
Continuations (3)
Number Date Country
Parent 14513207 Oct 2014 US
Child 14987617 US
Parent 13619613 Sep 2012 US
Child 14513207 US
Parent 12040322 Feb 2008 US
Child 13619613 US