The present application is a National Phase entry of PCT Application No. PCT/EP2019/056673, filed Mar. 18, 2019, which claims priority from EP Patent Application No. 18164564.9, filed Mar. 28, 2018, each of which is hereby fully incorporated herein by reference.
This disclosure relates to managing the paths by which communications are routed in a network. It may, for example, be used to manage the paths used by a roaming IPX interconnect system for delivering traffic from a VoLTE (Voice over LTE) device when the device is roaming at a visited network.
VoLTE is a mechanism for supporting voice communications over LTE networks. VoLTE communications take place between items of User Equipment (UE). Each UE is associated with a home network. The home network is operated by an entity which, for that UE, is considered to be a Home Mobile Network Operator (H-MNO).
The UE may find itself located within an area where coverage is provided by a different operator from its H-MNO. This is known as roaming. If the UE initiates a VoLTE call in that area it will first communicate with that different operator. In that scenario that different operator is considered to be a Visited Mobile Network Operator (V-MNO). The V-MNO may allow the visiting UE to obtain services from its H-MNO.
If the UE that is visiting the V-MNO wants to make a call to another UE, that other UE may be located in the network of the V-MNO, or in the network of the H-MNO or in some other network. A problem arises of how best to route this call from the originating UE to the terminating UE.
The H-MNO and the V-MNO may be connected by a direct interconnect or by a more generally accessible network. Typically, such a network is the IPX network. Communications over the IPX network are supported by carriers who might be different from the H-MNO and the V-MNO.
Currently, there are two principal models proposed for providing a VoLTE roaming service: S8HR and LBO.
In S8HR (S8 interface home routing) the V-MNO only provides radio access network service (in the case of LTE) and partial EPC (Evolved Packet Core) network service (in the case of MME/SGW) to the roaming UE. The LTE data bearer carrying VoLTE packets is terminated at the packet gateway (PGW) of the roaming UE's H-MNO. In this model all the IMS-aware (IP Multimedia Subsystem) infrastructure is provided by the H-MNO, which will route all MOC (Mobile Originating Calls) as if they were originated in the home environment (except for some exceptions like emergency services). This is illustrated in
In LBO (Local Break Out) the V-MNO provides a local break out of the data bearer. The data bearer terminates at the visited PGW, and the first IMS component in the VoLTE call flow is the V-MNO's P-CSCF (proxy call server control function). This is illustrated in
In both cases, to provide a standard VoLTE roaming call flow, any MOC (Mobile Originating Call) must first reach the H-MNO S-CSCF (Serving Call Control Function) in the home IMS via a so-called “roaming leg” before it can be routed to the final destination. The way the roaming leg of the call is routed from the V-MNO to the H-MNO can be unpredictable. Typically, it will rely on a hop-by-hop routing decision made by intermediate nodes to find the H-MNO domain.
When the call reaches the H-MNO, it has two options to complete the call setup towards the operator where the destination number is hosted. In one option the H-MNO can route the call itself via a network interconnect. This is the only possibility in S8HR, and is also available in LBO when it is known as LBO-HR (LBO Home Routing). See
The routing mechanism of LBO-VR uses a function called TRF (Transit and Roaming Function) hosted in the V-MNO. Once call signaling has been established via the H-MNO and the TRF elements in the LBO-VR architecture, the call media flow might be optimized to avoid the same tromboning path if specific features (e.g. OMR) are supported by all the proxy elements. Network interconnects to destination networks used by either the H-MNO or V-MNO can also be provided via third party carriers, and can be part of their IPX offering. This is designated “Interconnect IPX” in the figures, in distinction to “Roam IPX” whose main purpose is to interconnect the V-MNO and H-MNO roaming leg as described above.
The overall VoLTE roaming MOC routing mechanism previously described may have limitations. For example:
1. There is no end-to-end control over the path through nodes of the IPX network to reach the H-MNO from the V-MNO in the first roaming leg. This may result in routing inconsistency or unpredictability, suboptimal paths or use of intermediate domains not accepted by one of the MNOs for commercial, regulatory or other reasons.
2. It assumes that only the visited network implements the TRF function to allow LBO-VR and it is the only alternative to home routing in order to route to the destination network.
3. If any other routing domain (e.g. IPX provider) in the path from the V-MNO to the H-MNO wanted to offer its own TRF to propose an alternative route, it would have to replace the previous TRF inserted by the V-MNO.
4. The information sent to the H-MNO through the LBO-VR signaling implementation does not provide information about the real domain hosting the TRF (e.g. V-MNOA, IPX1 or IPX2 as in the example of
5. The H-MNO may have to perform a blind routing decision: whether to route directly to the final destination (home routing) or via the signaled TRF, as it will not receive through signaling any indication about routing metrics that differentiate one against the other (except for the theoretical knowledge of the destination operator, which can vary depending on portability, call-diversion or roaming circumstances of the destination number).
6. Media path optimization to avoid tromboning in LBO-VR is difficult to achieve, as it requires active support from all the elements in the call flow.
7. Different routing modes may be used simultaneously by an IPX node for different PLMN traffic, but once a network operator has decided upon a particular mode and that decision has propagated to the IPX nodes, the same mode will be used for all subsequent examples of that PLMN traffic until the operator propagates a different decision. This is inflexible because there is no easy way to influence the path taken by individual traffic.
According to one example there is provided a method of managing traffic flow through a multi-node network, the multi-node network interlinking a first mobile network and a second mobile network, the method comprising, when a subscriber user equipment entity that has as a home network the first mobile network and that is operating in the second mobile network attempts to establish a connection to a correspondent user equipment entity: communicating (optionally, by means of the multi-node network) a connection request message from the second network to the first network over a first route via a set of nodes of the multi-node network; at least one of the nodes of the set: identifying a candidate alternative route between nodes of the multi-node network for at least part of a connection between the subscriber user equipment entity and the correspondent user equipment entity; and transmitting (optionally, by means of the multi-node network) an indication of the candidate alternative route to a controller; and the controller selecting, in accordance with predetermined criteria, one of the first route and the at least one candidate alternative route and causing the connection to be established between the subscriber user equipment entity and the correspondent user equipment entity at least partially over the selected route.
The aforementioned method may be performed by: a node of the multi-node network; the first mobile network; the second mobile network; and/or the set of nodes.
Optionally, the controller is arranged within: a node of the multi-node network; the first mobile network; the second mobile network; the subscriber user equipment; the correspondent user equipment; and/or the set of nodes.
The controller may be a single physical and/or logical network element or its functions may be split over multiple physical and/or logical network elements. Optionally, the controller is incorporated as part of a Route Decision Function and/or as part of an alternative route selection module.
Identifying the candidate alternative route may comprise determining a metric of the candidate alternative route. The method may comprise transmitting an indication of the metric to the controller. Selecting one of the first route and the candidate alternative route is performed in dependence on the indicated metric. Optionally, the metric is an indicator of performance of a network connection.
The metric may be or may be dependent on any one or more of (i) estimated data loss, (ii) estimated delay, and (iii) number of hops in the route.
Selecting one of the first route and the at least one candidate alternative route may be performed in dependence on the identity of an operator of at least one node of the first route or the candidate alternative route.
The candidate alternative route may extend between the second mobile network and a network in which the correspondent user equipment entity is operating.
The candidate alternative route may extend between the second mobile network and a network in which the correspondent user equipment entity is operating without passing via the first mobile network.
The at least one node may detect a request to establish a connection. Identifying the candidate alternative route may be performed in response to that detection.
The request may be a SIP session request.
The at least one node may forward the request to a subsequent node on the first route. Transmitting an indication of the candidate alternative route to the first mobile network may comprise the at least one node adding an indication of the candidate alternative route to the request.
Transmitting an indication of the candidate alternative route to the first mobile network may comprise transmitting the indication by a route other than the first route.
The network may be an IPX network.
The controller may be located in the first mobile network.
The controller may define an operational characteristic (or, optionally, an operational constraint) of the candidate alternative route, and may cause a connection to be established between the subscriber user equipment entity and the correspondent user equipment entity at least partially over the candidate alternative route implementing that operational characteristic (or, optionally, the operational constraint).
The operational characteristic (or, optionally, operational, constraint) may be MediaBypass enforcement.
According to a second aspect there is provided a network routing node for routing traffic in a multi-node network, the multi-node network interlinking a first mobile network and a second mobile network, the network node being configured to: detect a request to establish a connection between a subscriber user equipment entity (2) that has as a home network the first mobile network (4) and that is operating in the second mobile network (5) and a correspondent user equipment entity (3), the request traversing a first route via set of nodes of the multi-node network; identify a candidate alternative route between nodes of the multi-node network for at least part of a connection between the subscriber user equipment entity and the correspondent user equipment entity; and transmit an indication of the candidate alternative route to a route selection controller.
The node may be configured to determine a metric of the candidate alternative route and transmit an indication of the metric to the route selection controller.
The node may be configured to forward the request to a subsequent node on the first route and to transmit the indication of the candidate alternative route to the route selection controller by adding an indication of the candidate alternative route to the request.
The predetermined criteria may vary with prevailing network conditions.
The present disclosure will now be described by way of example with reference to the accompanying drawings. In the drawings:
In the present application abbreviations generally used in LTE (Long Term Evolution) signaling should be understood as having their meaning as normally used in that field. The present invention should not be understood as being limited to use with LTE systems as they currently exist or are proposed. The present invention may be used with systems that are future developments of current LTE systems, even if different terminology is used to describe such future systems.
In the system to be described below, session routing from a device on an originating network to a device in a destination network can be altered on a case-by-case basis, for instance to optimize the end-to-end path. In one example the system provides an arrangement in which entities in the routing chain have different roles in the decision making process. Information provided by those entities can be used to inform a routing decision.
In this embodiment, the system 1 also comprises three main functions. Each of these, and their sub-modules, may be provided by a dedicated network device or by software running on a multipurpose network element.
Nodes 8 in the IPX networks 7 are typically software elements that can be hosted in dedicated hardware appliances or virtualized in a common shared infrastructure. Each of the RPF 10, RDF 11 and RIF 12 functions may be provided at an IPX node 8. They may be provided at the same or different IPX nodes 8.
In
In this call-flow, the RPF 10 could conveniently be implemented by any node between P1 and P4. In this example it is at node P3. The modules of the RPF 10 behave as follows:
If an in-band approach is used, the alternative route details could be sent from the RPF 10 in P3 to the RDF 11 in P4 formatted as a new SIP header within the regular INVITE message that would follow its standard VoLTE roaming-leg routing towards the H-MNO 4. The format of the new header could include the following information:
The details of the message can vary to suit an implementation. The message may incorporate partly the format of standard headers and procedures of the current TRF mechanism, e.g. “feature-caps”.
Any of multiple nodes on the path to the RDF 11 can implement the functions of an RPF 10, by adding their own independent Alternative Route Proposal Function (ARPF headers) in the message as they intercept it and relay it to the RDF 11. Thus, when the message reaches the RDF 11 it may contain multiple routing proposals. Routing proposals can also be sent to the RDF 11 by separate messages.
In this RPF in-band mechanism, the ARPF message that is intercepted and modified by the RPF 10 needs to pass the RDF 10 on the default route to its final destination. If the RDF 11 is at the H-MNO 4 then that can occur because in VoLTE roaming the roaming-leg targets the H-MNO 4. Thus, it is convenient for the RDF 11 to be located at the H-MNO 4. This can also help to maintain the principle of IMS architecture whereby home services have to be granted also to roaming users. If the RDF 11 is not in the default path of the call flow to destination, the RPF 10 can modify the routing of the message so that it will reach the RDF 11 on the path to the destination. It may do this by adding a new SIP route header (with loose-route indicator) containing the address of the RDF 10.
Alternatively, the RPF 10 can use an out-of-band mechanism to communicate the alternative route details to the RDF 11 in another message independent to the incoming message flow. Preferably, the RDF 11 is configured to collate multiple alternative route proposals before making a routing decision.
The RDF 11 may comprise an alternative route reception (ARR) module 41 which receives proposed paths from RPFs, an alternative route selection (ARS) module 42, which computes metrics for proposed paths according to a first predetermined algorithm and compares them according to a second predetermined algorithm to decide on a preferred path; and a final route communication (FRC) module 43 that sends an indication of the preferred path determined by the ARS 42 to an RIF 12.
In the RDF 11, assuming an in-band signaling approach in which all proposals are collected in a single message, the ARR module 41 will receive the message and identify it as a target for the alternative route selection process. This may be indicated by the ARPF header. The RDF 11 separates the multiple alternative route proposals present in the message. The alternative route selection module 42 decides which of all the alternative route proposals is to be used for routing to the final destination of the message. To the proposals received from the ARR 41, the ARS 42 may also add other options depending on the system or scenario. For example in VoLTE roaming, besides the alternative routes received from the proxies in the roaming leg (V-MNO 5 and IPX domains), it could add the option to route from within the H-MNO 4 itself (this equates to LBO-HR).
The selection of the final route will depend on local algorithms that may be based on predetermined metrics taking as input information present in the ARPF message. Definitions of those metrics may be stored in a non-transient form in an alternative route selection database 44. The FRC module 43 is responsible for sending the routing decision to the routing implementation function 12. If the ARS 42 selects one of the alternative route proposals received from a RPF 10, the FRC 43 will send an alternative route selection function message (ARSF message) that will specify that route, for example by providing the details of the route as received in the ARPF message. The routing message may be a SIP message having a header that designates its purpose. It may be directed to the address of the proposed route implementation function (RIF) 12 specified in the proposed RIF-URI header field discussed above. In the case of VoLTE Roaming, this could be a route header.
By sending the ARSF message header to the RIF 12 with the same fields received in the corresponding ARPF, the RDF 11 can in effect acknowledge all the features of the proposed route including the options. It can be expected that in many cases if there is an element of a route proposed by an RPF 10 that the RDF 11 would not like to implement (e.g. PRIF-URI, destination or path), the RDF 11 would not use that RPF 10 but select another one instead.
The RDF 11 may change or delete an option as proposed to it in the message sent to the RIF 12. In that way it can alter the behavior of the route. For example, in the case of VoLTE roaming the RPF 10 might modify the proposal by proposing MediaBypass enforcement whereby the media can be directly sent from the RIF 4 to a terminating node through a more optimal path without being tromboned, even without special support from the nodes in the intermediate roaming leg. Thus, with MediaBypass enforcement active, any SDP media port parameters received from prior nodes (between the RDF 11 and the RIF 12) can be overridden. The protocol may permit the RDF 3 to reject that option and remain anchored in the media path, e.g. for regulatory or other service reasons.
In the case of VoLTE roaming, the RDF 11 is located at the H-MNO 4 so it is in effect upstream of the RPFs 10, which may be at V-MNO 5 and IPX nodes 8 in the roaming-leg. For other use cases, more flexibility in the location of the RDF 11 could be provided using an out-of-band signaling mechanism as described above.
The RIF 12 may comprise a final route reception (FRR) module 51 which receives an indication of a preferred route decision from an RDF 11 and a final route enforcement (FRE) module 52 which implements the new route using the appropriate signaling protocols.
The final route reception (FRR) module 51, is responsible for receiving and identifying the message from the RDF 3 specifying a new route for certain traffic. The FRE module 52 is signaled by the FRR module 51 when the FRR 51 module receives a message specifying a new route. The FRR module 51 signals the details of that route, for example expected subsequent routing as indicated in the ARSF message header. The FRE 52 may use additional routing databases 53 to find the next hop specified as the first node in the path specified in the ARSF message. Preferably the FRE 52 does not modify the path list itself, but instead copies it in the relayed message. In the case of VoLTE roaming, this may be done using SIP route headers.
The RDF 11 may change some of the options originally proposed by the RPF 10. If the RIF 12 cannot apply one of such changed options, or another requirement of the new route, the RIF 12 can respond to the RDF 11 with a message rejecting the routing request. Optionally it may indicate the reason for rejecting the request.
Interaction between the three functions described above can follow different models. These may vary depending, for instance, on whether only one alternative route can be proposed or multiple alternative routes can be proposed, or on whether the communication between the functions is in-band or out-of-band to the normal call signaling routing protocol. These options will now be outlined.
In this implementation the route proposal function 10 at P4 provides a proposed alternative path X of P1-P3 as a response to the initial session establishment request (e.g. a SIP INVITE in this example). The alternative path request is evaluated by the route decision function 11, which will evaluate the proposed alternative path. For example, it may evaluate whether the provider of the alternative path (P4 in the example) is trustworthy and/or whether the proposed alternative path is compatible with appropriate routing policies, e.g. defined by one or more network operators. If the evaluation indicates that the process can proceed the RPF 11 passes the proposed alternative path to the RIF 12 (in this scenario at node P1) so that a new INVITE message can be issued with the new route part in it. In this example the invite message will be sent from P1 to P3 and not via P2. If required, the newly issued INVITE message will include a new parameter indicating the desired route for the session.
A multiple alternative route proposals, in-band, option is illustrated in
A multiple alternative route proposals, out-of-band, option is illustrated in
Embodiments of the arrangements described above can provide a number of advantages. For example, limitations. For example, they may provide end-to-end control over the path through nodes of the IPX network 7 to reach the H-MNO 4 from the V-MNO 5 in a roaming leg. The routing decision can be made with knowledge of the intermediate steps on the route, so it can accommodate any requirements to avoid certain nodes and/or operators. Tromboning can be avoided, as discussed above.
Whilst the present system has been described in the context of an IPX network implementing VoLTE connections, it may be implemented in other networks and for other types of traffic. The system may provide better routing in scenarios where application traffic is routed based on pre-defined paths or sections of the end-to-end path. It may allow independent application-layer routing nodes to provide benefits even without having without end-to-end visibility.
The applicant hereby discloses in isolation each individual feature described herein and any combination of two or more such features, to the extent that such features or combinations are capable of being carried out based on the present specification as a whole in the light of the common general knowledge of a person skilled in the art, irrespective of whether such features or combinations of features solve any problems disclosed herein, and without limitation to the scope of the claims. The applicant indicates that aspects of the present invention may consist of any such individual feature or combination of features. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
18164564 | Mar 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/056673 | 3/18/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/185385 | 10/3/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8086238 | Kosar | Dec 2011 | B1 |
8358624 | Ghaus et al. | Jan 2013 | B1 |
8489101 | Bestermann | Jul 2013 | B1 |
9210691 | Ponukumati et al. | Dec 2015 | B2 |
9883436 | Brown et al. | Jan 2018 | B2 |
9924344 | Datar | Mar 2018 | B1 |
10021738 | Mehta | Jul 2018 | B1 |
10123241 | Brown et al. | Nov 2018 | B2 |
10182004 | Ramirez | Jan 2019 | B2 |
10243844 | Ramirez | Mar 2019 | B2 |
20020006797 | Virtanen et al. | Jan 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20040090913 | Scudder et al. | May 2004 | A1 |
20040185854 | Artola et al. | Sep 2004 | A1 |
20050048972 | Dorenbosch et al. | Mar 2005 | A1 |
20050281205 | Chandwadkar et al. | Dec 2005 | A1 |
20060268835 | Hyotylainen et al. | Nov 2006 | A1 |
20070057843 | Chang et al. | Mar 2007 | A1 |
20080039104 | Gu et al. | Feb 2008 | A1 |
20080102844 | Zhu et al. | May 2008 | A1 |
20080102866 | Fiorillo et al. | May 2008 | A1 |
20080112364 | Kwon et al. | May 2008 | A1 |
20080205452 | Chou | Aug 2008 | A1 |
20080293394 | Silver et al. | Nov 2008 | A1 |
20100015946 | Zhang | Jan 2010 | A1 |
20100157794 | Nakash | Jun 2010 | A1 |
20100235540 | Korhonen | Sep 2010 | A1 |
20100291924 | Antrim et al. | Nov 2010 | A1 |
20110069618 | Wong et al. | Mar 2011 | A1 |
20110217979 | Nas | Sep 2011 | A1 |
20110281582 | Jiang | Nov 2011 | A1 |
20120021744 | Chin et al. | Jan 2012 | A1 |
20120122515 | Han et al. | May 2012 | A1 |
20130108032 | Shaw | May 2013 | A1 |
20130121154 | Guay et al. | May 2013 | A1 |
20130148574 | Liu et al. | Jun 2013 | A1 |
20130223230 | Swaminathan et al. | Aug 2013 | A1 |
20130237245 | Tinnakornsrisuphap et al. | Sep 2013 | A1 |
20130267229 | Gopalakrishnan | Oct 2013 | A1 |
20130286936 | Sen et al. | Oct 2013 | A1 |
20130303240 | Sanka et al. | Nov 2013 | A1 |
20130315062 | Riedl et al. | Nov 2013 | A1 |
20140066069 | Salami et al. | Mar 2014 | A1 |
20140114568 | Park | Apr 2014 | A1 |
20140155112 | Molnar et al. | Jun 2014 | A1 |
20140169286 | Xu | Jun 2014 | A1 |
20140185531 | Liu | Jul 2014 | A1 |
20140187243 | Rune et al. | Jul 2014 | A1 |
20140233449 | Laroia et al. | Aug 2014 | A1 |
20140258434 | Hong et al. | Sep 2014 | A1 |
20140341184 | Dhanda et al. | Nov 2014 | A1 |
20140378129 | Jiang et al. | Dec 2014 | A1 |
20150038154 | Ponukumati et al. | Feb 2015 | A1 |
20150097731 | Russell | Apr 2015 | A1 |
20150098391 | Sridhar et al. | Apr 2015 | A1 |
20150103739 | Ni et al. | Apr 2015 | A1 |
20150126187 | Ponukumati et al. | May 2015 | A1 |
20150131526 | Noldus | May 2015 | A1 |
20150139015 | Kadous et al. | May 2015 | A1 |
20150296364 | Peruru et al. | Oct 2015 | A1 |
20150334604 | Banks et al. | Nov 2015 | A1 |
20160021660 | Krishnamurthy | Jan 2016 | A1 |
20160029281 | Zhou et al. | Jan 2016 | A1 |
20160080505 | Sahin | Mar 2016 | A1 |
20160095036 | Stojanovski et al. | Mar 2016 | A1 |
20160183281 | Yeh et al. | Jun 2016 | A1 |
20160205605 | Krishnamurthy | Jul 2016 | A1 |
20160262200 | Su | Sep 2016 | A1 |
20160295439 | Yang et al. | Oct 2016 | A1 |
20170094628 | Miao et al. | Mar 2017 | A1 |
20170111828 | Tsai | Apr 2017 | A1 |
20170127217 | Miao et al. | May 2017 | A1 |
20170188223 | Gundavelli | Jun 2017 | A1 |
20170251028 | Bollapalli | Aug 2017 | A1 |
20170332301 | Horn et al. | Nov 2017 | A1 |
20170347298 | Brown et al. | Nov 2017 | A1 |
20180063724 | Zhang | Mar 2018 | A1 |
20180077053 | Cuevas Ramirez et al. | Mar 2018 | A1 |
20180077054 | Cuevas Ramirez et al. | Mar 2018 | A1 |
20180255494 | Ku | Sep 2018 | A1 |
20180262922 | Mackenzie et al. | Sep 2018 | A1 |
20190028983 | Mackenzie et al. | Jan 2019 | A1 |
20190044932 | Kumar | Feb 2019 | A1 |
20190253389 | Verma | Aug 2019 | A1 |
20200236595 | Ramirez | Jul 2020 | A1 |
20200236603 | Ramirez | Jul 2020 | A1 |
20200267542 | Pronk | Aug 2020 | A1 |
20210029616 | Faus Gregori | Jan 2021 | A1 |
20210044569 | Xu | Feb 2021 | A1 |
20210058434 | Noldus | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
102387590 | Mar 2012 | CN |
103166949 | Jun 2013 | CN |
103460756 | Dec 2013 | CN |
104106274 | Oct 2014 | CN |
105101164 | Nov 2015 | CN |
105247908 | Jan 2016 | CN |
105340331 | Feb 2016 | CN |
105706501 | Jun 2016 | CN |
106464611 | Feb 2017 | CN |
106465464 | Feb 2017 | CN |
2237506 | Oct 2010 | EP |
2312798 | Apr 2011 | EP |
2434816 | Mar 2012 | EP |
2605555 | Jun 2013 | EP |
2857798 | Apr 2015 | EP |
2750444 | May 2015 | EP |
2991242 | Mar 2016 | EP |
2559556 | Aug 2018 | GB |
2559731 | Aug 2018 | GB |
2560754 | Sep 2018 | GB |
2560899 | Oct 2018 | GB |
2993087 | Dec 1999 | JP |
2001209891 | Aug 2001 | JP |
20100131025 | Dec 2010 | KR |
WO-2009121833 | Oct 2009 | WO |
WO-2010133256 | Nov 2010 | WO |
WO-2011095687 | Aug 2011 | WO |
WO-2013174440 | Nov 2013 | WO |
WO-2014021761 | Feb 2014 | WO |
WO-2014130764 | Aug 2014 | WO |
WO-2015177601 | Nov 2015 | WO |
WO-2015180126 | Dec 2015 | WO |
WO-2016095584 | Jun 2016 | WO |
WO-2016150668 | Sep 2016 | WO |
WO-2016150669 | Sep 2016 | WO |
WO-2018145796 | Aug 2018 | WO |
WO-2018145797 | Aug 2018 | WO |
WO-2018172002 | Sep 2018 | WO |
WO-2018172003 | Sep 2018 | WO |
Entry |
---|
GSM, “Guidelines for IPX Provider Networks Previously Inter-Service Provider IP Backbone Guidelines,” Version—13.0, dated Oct. 17, 2016, 50 pages. |
International Search Report for Application No. PCT/EP2019/056673, dated Apr. 5, 2019, 3 pages. |
3GPP TS 23.122, Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. CT WG1, No. V12.9.0, Jun. 24, 2016, XP051295206, (Release 12), 1 page. |
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Radio interface protocol aspects (Release 7), Oct. 17, 2006, XP050909974, 1 page. |
Chandra K., et al., “CogCell: Cognitive Interplay between 60 GHz Picocells and 2.4/5 GHz Hotspots in the 5G Era,” IEEE Communications Magazine, May 7, 2015, 14 pages. |
Christodoulou C. G., et al., “Reconfigurable Antennas for Wireless and Space Applications,” Proceedings of the IEEE, Jul. 2012, vol. 100, No. 7, pp. 2250-2261. |
Combined Search and Examination Report under Section 17 and 18(3) for Application No. 1702030.6, dated Jul. 7, 2017, 2 pages. |
Combined Search and Examination Report under Sections 17 & 18(3) for Great Britain Application No. 1704702.8, dated Aug. 14, 2017, 2 pages. |
Corrected Search Report under Section 17 for Great Britain Application No. GB1702033.0, dated Jun. 29, 2017, 2 pages. |
Examination Report under section 18(3) for Application No. 1702030.6, dated May 3, 2019, 2 pages. |
Examination Report under Section 18(3) for Great Britain Application No. 1704702.8, dated Oct. 22, 2019, 4 pages. |
Examination Report Under Section 18(3) for Great Britain Application No. GB1704702.8, dated Jun. 17, 2019, 2 pages. |
Extended European Search Report for Application No. 17155116.1, dated Jul. 6, 2017, 8 pages. |
Extended European Search Report for Application No. 17155118.7, dated Aug. 29, 2017, 7 pages. |
Extended European Search Report for Application No. 17162851.4, dated Sep. 5, 2017, 13 pages. |
Extended European Search Report for Application No. 17162854.8, dated Aug. 31, 2017, 18 pages. |
Extended European Search Report for Application No. EP15275086.5, dated Sep. 8, 2015, 11 pages. |
Great Britain Combined Search and Examination Report under Sections 17 & 18 (3) for Application No. GB1702033.0, dated Nov. 29, 2017, 1 page. |
Great Britain Combined Search and Examination Report Under Sections 17 & 18(3) for Application No. GB1704694.7, dated Aug. 14, 2017, 2 pages. |
Great Britain Examination Report under Section 18(3) for Application No. GB1704694.7, dated Jun. 5, 2019, 1 page. |
Great Britain Search Report Under Section 17 for Application No. GB1704694.7, dated Aug. 11, 2017, 2 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2016/054462, dated Oct. 5, 2017, 9 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2016/054457, dated Feb. 22, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2017/082585, dated Aug. 22, 2019, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2017/082586, dated Aug. 22, 2019, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2018/054134, dated Oct. 3, 2019, 20 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2018/054135, dated Oct. 3, 2019, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2016/054457, dated Apr. 18, 2016, 18 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2016/054462, dated Apr. 12, 2016, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2017/082585, dated Apr. 9, 2018, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2017/082586, dated Feb. 9, 2018, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2018/054134, dated Apr. 5, 2018, 23 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2018/054135, dated Apr. 26, 2018, 12 pages. |
Legg, P., et al., “Load Balancing and Aggregation Algorithms for LTE Dual Connectivity,” 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May 15, 2016, 5 pages. |
Lesslie R G., et al., “The Application of a Simple Spatial Multi-Criteria Analysis Shell to Natural Resource Management Decision Making,” ResearchGate, Jan. 2008, 26 pages. |
Office Action For Chinese Application No. 201880011588.7, dated Aug. 2, 2021, 21 pages. |
Office Action For Chinese Application No. 201880019173.4, dated Sep. 1, 2021, 9 pages. |
Search Report under Section 17 for Great Britain Application No. GB1702033.0, dated Jun. 29, 2017, 1 page. |
Search Report under Section 17 for Great Britain Application No. 1702030.6, dated Jul. 6, 2017, 1 page. |
Search Report Under Section 17 for Great Britain Application No. GB1704702.8, dated Aug. 10, 2017, 2 pages. |
Tunon D., et al., “Adding Dimensions to Wireless Systems with Orientation-Aware Devices and Reconfigurable Antennas,” International Conference on Computing, Networking and Communications, Invited Position Papers, 2014, pp. 298-302. |
Viprinet: Bonding LTE / 4G via LTE Routers—Better Than Load Balancing | LTE /4G, “LTE—We Combine the Latest Mobile Phone Generation!,” Jul. 1, 2019, retrieved from https://www.viprinet.com/en/technology/combinable-media/lte-4g, 4 pages. |
Yang Z., et al., “Sensor-Assisted Codebook-Based Beamforming for Mobility Management in 60 GHz WLANs,” IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, 2015, pp. 333-341. |
Number | Date | Country | |
---|---|---|---|
20210029616 A1 | Jan 2021 | US |