This application is a U.S. National Stage Application wider 35 U.S.C. § 371 of PCT Application No. PCT/KR2013/012009, filed Dec. 23, 2013, whose entire disclosures are hereby incorporated by reference.
1. Field of the Disclosure
The present disclosure relates to a robot cleaner including light emitting units for emitting light.
2. Background of the Disclosure
In general, robots have been developed for industrial use and taken charge of a part of factory automation. In recent years robot application fields have been further expanded, and medical robots, aerospace robots, and the like have been developed, and household robots that can be used at homes have been also made.
A representative example of the household robot is a robot cleaner, which is a type of electronic device for sucking and cleaning surrounding dust and foreign substances while traveling a predetermined region by itself. The robot cleaner may typically include a rechargeable battery, and include an obstacle sensor capable of avoiding obstacles while traveling to travel and clean by itself.
On the other hand, for a method of controlling the robot cleaner, there are a method of using a remote control that is a user interface, a method of using a button provided in a robot cleaner body, and the like.
In recent years, application technologies using the robot cleaner have been developed. For example, the development of a robot cleaner having a networking function have been carried out to implement a function capable of sending a cleaning command from a remote place or monitoring house conditions. Furthermore, robot cleaners having a self position recognition and mapping function using a camera or various sensors have been developed.
However, as various functions of a robot cleaner are implemented, there is a drawback causing difficulty to know the status of the robot cleaner while traveling and moving without a user's control command.
Accordingly, the task of the present disclosure is to provide a robot cleaner having a light emitting unit for notifying its driving conditions.
In order to accomplish the task of the present disclosure, a robot cleaner according to an embodiment of the present disclosure may include a main body configured to form an outer appearance, a driving unit configured to move the main body, a cleaning unit provided at a lower portion of the main body to suck filth or dust on a floor surface or in the air, a plurality of light emitting units provided at a lower portion of the main body, and formed to emit light to an outside according to a driving condition of the driving unit, and a controller configured to control the plurality of light emitting units to emit light in a different form according to a first driving condition in which the main body stops, a second driving condition in which the main body moves, and a third driving condition in which the main body rotates, respectively.
According to an example associated with the present disclosure, each of the light emitting units may include a light emitting portion formed to emit at least one color light by the controller, a support portion formed to surround the light emitting portion, and formed of a transparent material to transmit the light therethrough, and a reflector formed in a partial region of an inner surface of the support portion to have an opening portion to reflect light toward a lower portion thereof.
According to an example associated with the present disclosure, an angle between both ends of the opening portion around the light emitting portion may be formed to be less than 90 degrees.
According to an example associated with the present disclosure, an angle between a first line connecting from the light emitting portion to one end of the opening portion and the ground that supports the main body may be formed to be greater than 90 degrees.
According, to an example associated with the present disclosure, an angle between a second line connecting from the light emitting portion to the other end of the opening portion and the ground that supports the main body may be formed to make a preset angle.
According to an example associated with the present disclosure, the controller may move the reflector along an inner surface of the support portion to change a region on which the light is reflected.
According to an example associated with the present disclosure, the reflector may include a plurality of reflective members formed along an outer circumferential surface of the main body, and the controller may control the plurality of reflective members to move to different positions based on the driving condition.
According to an example associated with the present disclosure, the light emitting portion may include a plurality of light emitting members formed along the reflector, and the controller may activate the plurality of light emitting members in different manners based on the driving condition.
According to an example associated with the present disclosure, the plurality of light emitting portions may be formed along an outer circumference of the main body, and the controller may define a direction in which the main body moves in the second driving condition as a front portion and a region separated from the front portion as a rear portion, and the controller may activate a light emitting portion formed, in at least one region of the front portion and the rear portion.
According to an example associated with the present disclosure, the plurality of light emitting portions may be formed along an outer circumference of the main body, and the controller may define one of the plurality of light emitting portions as a reference light emitting unit in the second condition, and sequentially activate the light emitting portions along the one direction from the reference light emitting portion.
According to an example associated with the present disclosure, the controller may control the light emitting unit to change a brightness of light emitted from the light emitting unit according to the flow of time.
According to an example associated with the present disclosure, the controller may control the plurality of light emitting units to emit light formed in a predetermined pattern in any one of the first through the third driving condition.
According to an example associated with the present disclosure, the predetermined pattern may be formed in a wave shape moving in a direction away from or closer to an outer circumference of the main body.
According to an example associated with the present disclosure, the robot cleaner may further include a sensing unit configured to sense an obstacle applied to the main body, wherein when an obstacle according to the movement of the main body is sensed, light emitting units disposed at the front portion are activated.
According to an example associated with the present disclosure may further include a plurality of detection units mounted on the main body to sense filth or dust at the outside, wherein the controller knows the driving condition of the plurality of detection units, and when an error occurs in the driving condition of the detection unit, the controller activates a light emitting unit disposed adjacent to the detection unit.
According to the present disclosure, a light emitting unit may provide light configured with a different form and color based on a driving condition of the main body, thereby allowing a user to know a driving condition of the robot cleaner using light. Furthermore, the light emitting unit may provide light to a surrounding region of the main body, thereby allowing a user to sense the surrounding condition of the robot cleaner.
Furthermore, the present disclosure may provide an aesthetic sense that seems to have a life for a robot cleaner that automatically moves without a user's control command by light with various patterns transmitted to an outside of the main body.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings, which are given by illustration only, and thus are not limitative of the present invention, and wherein:
Description will now be given in detail according to the exemplary embodiments disclosed herein, with reference to the accompanying drawings. For the sake of brief description with reference to the drawings, the same or equivalent components will be provided with the same reference numbers, and description thereof will not be repeated. A suffix “module” and “unit” used for constituent elements disclosed in the following description is merely intended for easy description of the specification, and the suffix itself does not give any special meaning or function. In describing the present disclosure, if a detailed explanation for a related known function or construction is considered to unnecessarily divert the gist of the present disclosure, such explanation has been omitted but would be understood by those skilled in the art. Furthermore, the accompanying drawings are used to help easily understand the technical idea of the present disclosure and it should be understood that the idea of the present disclosure is not limited by the accompanying drawings.
Referring to
A user or the like directly enters a control command to the robot cleaner through the input unit 300. Furthermore, the user or the like may enter a command for outputting one or more information of the information stored in a storage unit which will be described later through the input unit. The input unit 300 may be formed with one or more buttons. For example, the input unit 300 may include an OK button and a set button. The OK button enters a command for confirming sensing information, obstacle information, location information, a cleaning region or cleaning map. The set button enters a command for setting the information. The input unit may include a reset button for entering a command of resetting the information a delete button, a cleaning start button, a stop button, and the like. For another example, the input unit 300 may include a button for setting or deleting preset information. Furthermore, the input unit 300 may further include a button for setting or changing a cleaning mode. Furthermore, the input unit 300 may further include a button for receiving a command of returning to a charging stand.
The input unit 300, as illustrated in
The output unit 400 is provided at an upper portion of the robot cleaner as illustrated in
The output unit 400 may further include a sound output device for outputting an execution result of the self diagnostic mode with a sound. For example, the output unit 400 may output a beep sound to the outside according to a warning signal. The sound output device may include a device of outputting a sound such as a beeper, a speaker, or the like. The output unit 400 may output a diagnostic result to the outside using audio information stored in a storage unit which will be described later.
Referring to
The storage unit 500 stores a control program and the resultant data for controlling (driving) the robot cleaner. The storage unit 500 may further store image information, obstacle information, location information, a cleaning region a cleaning, map and the like in addition to audio information. Furthermore, the storage unit 500 may store a cleaning method, a traveling method. Furthermore, the storage unit 500 mostly uses a non-volatile memory. Here, the non-volatile memory (NVM, NVRAM) is a storage device for continuously maintaining stored information without supplying power. The non-volatile memory may include ROM, flash memory, magnetic computer storage device (for example, hard disk, diskette drive, magnetic tape), optical disk drive, magnetic RAM, PRAM, and the like.
The detection unit 100 may include are object detection unit 110 for detecting an external object as illustrated in
The object detection unit 110 may include one or more sensors of an external signal sensor, a front sensor, an obstacle sensor, a cliff sensor, a lower camera sensor, and an upper camera sensor.
The robot cleaner may include an external signal sensor for sensing an external signal. The external signal sensor may be an infrared ray sensor an ultrasonic sensor, a radio frequency (RF) sensor or the like. The robot cleaner receives a guide signal generated by a charging stand using the external signal sensor to check the location and direction of the charging stand. The charging stand transmits a guide signal for directing the direction and distance thereof to allow the robot cleaner to return. The robot cleaner receives a signal transmitted from the charging stand to determine a current location, and sets a moving direction to return to the charging stand. Furthermore, the robot cleaner senses a signal generated by a remote control device such as a remote control, a terminal, or the like using the external signal sensor. The external signal sensor is provided at one side of an inside or an outside of the robot cleaner. According to the embodiments of the present disclosure, an infrared ray sensor will be described as an example for the external signal sensor. The infrared ray sensor 111 may be provided at an inside of the robot cleaner, for example, adjacent to a lower or upper camera sensor of the output unit.
When a self diagnostic mode is carried out, the control unit 200 compares an output value of the infrared ray sensor with a preset reference value, and diagnoses the infrared ray sensor using the comparison result. During the self diagnostic mode, the control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and when the infrared ray sensor is unable to receive a signal from an external device such as the charging stand or the like within a predetermined distance, it is diagnosed as an infrared ray sensor error. Here, the reference value may be a predetermined number of times including zero. When there is an error on the infrared ray sensor, the output unit 400 may output a voice message such as “Charging is not attempted due to a problem of the infrared ray sensor”, “Please turn of and on main power switch below the main body and then execute a diagnostic mode one more time”. “Please contact a service center when problems occur repeatedly” and the like or display the message on the screen. When there is an error on the infrared ray sensor, the charging stand cannot be found, and thus the control unit 200 stops the robot cleaner at a current location, and then allows the output unit to notify the user or the like of its current status.
The front sensors are provided at predetermined intervals at a front side of the robot cleaner, for example, on an outer circumferential surface thereof as illustrated in
Typically, the ultrasonic sensor is mostly used to sense a remote obstacle. The ultrasonic sensor may include a transmitter and a receiver. The control unit 200 determines the existence or non-existence of an obstacle based on whether or not ultrasonic waves transmitted through the transmitter are reflected by an obstacle or the like and received at the receiver, and calculates a distance to the obstacle using a received time. Referring to
The ultrasonic sensor transfers a different output value to the control unit according to the existence or non-existence of an obstacle, a distance to the obstacle. A range of the output value may be set to vary according to a sensing range of the ultrasonic sensor. When a self diagnostic mode is carried out, the control unit 200 compares an output value of the ultrasonic sensor with a preset reference value, and diagnoses the ultrasonic sensor using the comparison result. During the self diagnostic mode, since there does not exist another object other than the charging stand around the robot cleaner, it should be sensed that there is no obstacle. The control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and diagnoses it as an ultrasonic sensor error when the ultrasonic sensor outputs an output value above a reference value like a case there exists an obstacle. For example, the control unit 200 may diagnose an error of the ultrasonic sensor using an output value in a state that the robot cleaner makes a predetermined distance to the charging stand, an output value subsequent to the rotation of 180 degrees, an output value subsequent to moving a predetermined distance in a linear manner, and the like. When there is an error on the ultrasonic sensor, the output unit 400 may output a voice message such as “Charging is not attempted due to a problem of the ultrasonic sensor”, “Please turn off and on main power switch below the main body and then execute a diagnostic mode one more time”, “Please contact a service center when problems occur repeatedly”, and the like or display the message on the screen. When there is an error on the ultrasonic sensor, the robot cleaner is unable to sense the charging stand that might be located in the front, and there is a worry of collision with the charging stand. Accordingly, the control unit 200 stops the robot cleaner at a current location without moving the robot cleaner to the charging stand, and then allows the output unit to notify the user or the like of its current status.
An obstacle sensor 113 is provided on an outer circumferential surface of the robot cleaner along with the front sensor as illustrated in
The PSD sensor detects a short/long distance location of incident light with one p-n junction using a semiconductor surface resistance. The PSD sensor may include a one-dimensional PSD sensor for detecting light only in one axial direction and a two-dimensional PSD sensor for detecting light location on a plane, and both have a pin photo diode structure. As a type of infrared ray sensor, the PSD sensor emits, infrared rays on an obstacle to sense the obstacle, and measures a distance using a reflection and return time. In other words, the PSD sensor may include a light transmitter for emitting infrared rays to an obstacle and a light receiver for receiving infrared rays reflected and returned from the obstacle, and typically configured in a modular form. The PSD sensor obtains a stable measurement value regardless of color difference, and uses a triangulation method.
The PSD sensor transfers a different output value to the control unit according to the existence or non-existence of an obstacle, and a distance to the obstacle similarly to the ultrasonic sensor. A range of the output value may be set to vary according to a sensing range of the PSD sensor. When a self diagnostic mode is carried out, the control unit 200 compares an output value of the PSD sensor with a preset reference value, and diagnoses the PSD sensor using the comparison result. During the self diagnostic mode, since there does not exist another object other than the charging stand, it should be sensed that there is no obstacle. The control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and diagnoses it as a PSD sensor error when the PSD sensor outputs an output value above a reference value. For example, the control unit 200 may allow the robot cleaner to move a predetermined distance in an opposite direction to the charging stand in a linear manner, and compares an output value and a reference value to diagnose an error of the PSD sensor. The output unit 400 may output a voice message such as “Please wash obstacle sensor windows on the left and right” and the like or display the message on the screen.
A precipice sensor is also referred to as a cliff sensor in another word. The cliff sensor mostly uses various types of light sensors, and according to the present embodiment, it will be described as an infrared ray sensor, for example. In this case, the cliff sensor may have a form of the infrared ray sensor having a light transmitter and a light receiver similarly to the obstacle sensor. Referring to
Referring to
The cliff sensor continuously senses the ground while the robot cleaner moves. When, a self diagnostic mode is carried out, the control unit 200 compares an output value of the cliff sensor with a preset reference value, and diagnoses the cliff sensor using the comparison result. During the self diagnostic mode, the control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and when the cliff sensor outputs an output value above the reference value, the control unit 200 determines it as an error. For example, the control unit 200 moves the robot cleaner straight by a predetermined distance, and then when the output value of the cliff sensor is above a reference value, the control unit 200 determines it as an error. When there is an error on the cliff sensor, the output unit 400 may output a voice message such as “There is an error on the cliff sensor at the front, ground”, “Charging is not attempted due to a problem of the cliff sensor, “Please clean the sensor”, and the like or display the message on the screen. When there is an error on the cliff sensor, the robot cleaner is unable to sense a cliff that might be located in the front, and there is a worry of damage itself. Accordingly, the control unit 200 stops the robot cleaner at a current location without moving the robot cleaner to the charging stand, and then allows the output unit to notify the user or the like of its current status.
A lower camera sensor 115 is provided on a rear side of the robot cleaner to capture a lower side, namely, a floor surface, a cleaned surface during the movement as illustrated in
The lower camera sensor may detect a location of the robot cleaner regardless of the sliding of the robot cleaner. The control unit 200 compares and analyzes image data captured by the lower camera sensor according to the flow of time to calculate a moving distance and a moving direction thereof, and calculates a location of the robot cleaner as a result. A lower side of the robot cleaner may be viewed using, the lower camera sensor, thereby allowing the control unit to make a robust correction on the sliding with respect to a location calculated by another means.
The lower camera sensor always captures the floor surface during the movement, thereby outputting a value above a predetermined value. When a self diagnostic mode is carried out, the control unit 200 diagnoses the lower camera sensor based on whether or not the output value of the lower camera sensor is above a preset reference value (for example, any value including zero). The control unit 200 moves the robot cleaner straight by a predetermined distance in an opposite direction to the charging stand according to a diagnostic algorithm, and when the lower camera sensor outputs a value below a reference value or outputs a value out of a range, the control unit 200 diagnoses it as a lower camera sensor error. When there is an error on the lower camera sensor, the output unit 400 may display a voice message such as “Please clean the lower camera sensor window at the right bottom” and the like or display the message on the screen.
Referring to
The control unit 200 may recognize a location of the robot cleaner using image data captured by the upper camera sensor, and prepare a cleaning map for a cleaning region. The control unit 200 may precisely recognize the location using an acceleration sensor, a gyro sensor, a wheel sensor, the detection information of the lower camera sensor, and the image data of the upper camera sensor. Furthermore, the control unit 200 may precisely generate a cleaning map using obstacle information detected by the front sensor, obstacle sensor or the like and a location recognized by the upper camera sensor.
The operation detection unit 120 may include at least one of an acceleration sensor, a gyro sensor and a wheel sensor to detect the operation of the robot cleaner.
The acceleration sensor senses a speed change of the robot cleaner, for example, a change of its moving speed according to a start, a stop, a directional change, a collision with an object, and the like. The acceleration sensor may be attached to a position adjacent to main wheels or auxiliary wheels to detect the sliding or idling of the wheels. Here, the control unit 200 may calculate a speed using an acceleration detected through the acceleration sensor, and check or correct a location of the robot cleaner through comparing with an instruction speed. However, according to the embodiments, of the present disclosure, the acceleration sensor is integrated into the control unit 200 to sense a speed change in the robot cleaner itself generated in a cleaning mode, a traveling mode. In other words, the acceleration sensor detects an amount of impact according to the speed change to output a voltage value corresponding to the amount of impact. Accordingly, the acceleration sensor may perform a function of an electronic bumper.
The acceleration sensor continuously senses the ground while the robot cleaner moves. When a self diagnostic mode is carried out, the control unit 200 compares an output value of the acceleration sensor with a preset reference value, and diagnoses the acceleration sensor using the comparison result. During the self diagnostic mode, the control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and when the acceleration sensor outputs an output value above the reference value, the control unit 200 determines it as an acceleration sensor error. When there is an error on the acceleration sensor, the output unit 400 may output a voice message such as “An error has been found on the acceleration sensor”, “Please turn off and on main power switch below the main body and then execute a diagnostic mode one more time”, “Please contact a service center when problems occur repeatedly” and the like or display the message on the screen.
The gyro sensor senses a rotation direction when the robot cleaner moves according to an operation mode to detect a rotation angle. The gyro sensor detects an angular speed of the robot cleaner to output a voltage value in proportion to the angular speed. The control unit 200 calculates a rotation direction and a rotation angle using a voltage value outputted from the gyro sensor.
The robot cleaner may further include a wheel sensor connected to main wheels at the left and right sides to sense a rotation number of the main wheels. The wheel sensor may be a rotary encoder. The rotary encoder senses and outputs a rotation number of the main wheels at the left and right sides when the robot cleaner moves according to a traveling mode or cleaning mode. The control unit may calculate a rotation speed of the left and the right wheel using a rotation number. During a self diagnostic mode, the control unit 200 moves the robot cleaner in a predetermined pattern according to a diagnostic algorithm, and then compares a speed calculated using an output value of the wheel sensor with an instruction speed. The control unit diagnoses an error of the main wheel using the comparison result. Furthermore, the control unit may diagnose an error using a difference in the rotation numbers or rotation speeds of the left and right wheels. When there is an error on the main wheel the output unit 400 may output a voice message such as “Please check foreign substances on the left wheel”, “Please check foreign substances on the right wheel” and the like or lay the message on the screen.
The control unit 200 may calculate a rotation angle using a difference the rotation numbers of the left and right wheels. Furthermore, the control unit, compares a rotation angle calculated using an output value of the wheel sensor with an output rotation angle of the gyro sensor, and diagnoses the gyro sensor using the comparison result. During a self diagnostic mode, the control unit rotates the robot cleaner by 180 degrees in the left and right directions around the charging stand or reference position according to a diagnostic algorithm. Then, the control unit calculates or detects rotation angles through the wheel sensor or gyro sensor to compare with each other. For example, when a difference in the rotation angles is above a predetermined angle, for example, 30 degrees, the control unit diagnoses it as a gyro sensor error. When there is an error on the gyro sensor, the output unit 400 may output a voice message such as “An error has been found on the gyro sensor”, “Please turn off and on main power switch below the main body and then execute a diagnostic mode one more time”, “Please contact a service center when problems occur repeatedly”, and the like or display the message on the screen.
The status detection unit 130 may include sensors for detecting a main wheel status, a wheel drop switch status, a suction motor status, an agitator status, and the like, as sensors for detecting the status of each unit. Furthermore, the status detection unit may include sensors for detecting a dust container status, a battery status, a mop plate, and the like. The control unit 200 checks one or more execution conditions prior to the execution of the self diagnostic mode. The execution condition of the self diagnostic mode is one of a mounting state of the dust container, an attachment state of the mop plate, and a battery status or a combination of the states. Furthermore, the control unit 200 checks a current operation mode, and checks whether or not a preset cleaning has been set, and then executes a self diagnostic mode.
The robot cleaner is provided with a left and a right main wheel 710a, 710b at both lower sides thereof to move the robot cleaner as illustrated in
When a command for executing a self diagnostic mode is received, the control unit 200 diagnoses the status of the wheel motor. The control unit 200 is provided with a current detection device to detect a driving current of the wheel motor. Then, the control unit 200 compares the detected driving current with a preset reference current to diagnose the status of the wheel motor according to the comparison result. The current detection device may not only use a current transducer or the like, but also simply use a shunt resistance. When there is an error on the main wheel, the output unit 400 may output a voice message such as “Please check foreign substances on the left wheel”. “Please check foreign substances on the right wheel” and the like or display the message on the screen.
The robot cleaner may further include a wheel drop switch that is operated when lifted up by a user or obstacle, namely, when the main wheel is lifted up from the floor surface to notify it. The wheel drop switch is typically a contact type mechanical switch. When a command for executing a self diagnostic mode is received, the control unit 200 checks the status of the wheel drop switch. The wheel drop switch should be always off during a normal travel, and therefore, the control unit 200 executes, the self diagnostic mode, and then checks whether or not the wheel drop switch is off. When the wheel drop switch is on the output unit 400 may output a voice message such as “An error has been found on the left (right) wheel drop switch”, “Please turn off and on main power switch below the main body and then attempt smart diagnostics again”, “Please contact a service center when problems occur repeatedly”, and the like or display the message on the screen. The storage unit 500 may store the message in advance.
Referring to
When a command for executing a self diagnostic mode is received, the control unit 200 diagnoses the status of the suction motor 850. The control unit 200 is provided with a current detection device to detect a driving current of the suction motor 850. Then, the control unit 200 compares the detected driving current with a preset reference current to diagnose the status of the suction motor 850 according to the comparison result. The current detection device may not only use a current transducer or the like, but also simply use a shunt resistance. When there is an error on the suction motor, the output unit 400 may output a voice message such as “An error has been found on the suction motor”, “Please activate main power switch again below the main body and then attempt smart diagnostics again”, “Please contact a service center when problems occur repeatedly”, and the like or display the message on the screen.
The cleaning unit 800 may further include an agitator 810 rotatably mounted at a lower portion of the robot cleaner main body, and a side brush 820 configured to clean an edge or corner of the cleaning region such as a wall surface while rotating around a rotating shaft of the main body in a vertical direction. The agitator 810 floats dust on the ground or carpet in the air while rotating around a horizontal axis of the robot cleaner main body. A plurality of blades are provided in a spiral direction on an outer circumferential surface of the agitator 810. A brush may be provided between spiral blades. The rotating axes of the agitator 810 and side brush 820 are different from each other, and thus the robot cleaner should be provided with motors for driving the agitator and side brush, respectively. For another example, as illustrated in
When a command for executing a self diagnostic mode is received the control unit 200 diagnoses the status of a brush motor 890. The control unit 200 rotates the agitator 810, and detect a rotation speed of the agitator. Then, the control unit 200 compares the detected rotation speed with a preset reference speed to diagnose an error of the agitator. The reference speed may be set to 500 rpm, for example. When there is an error on the agitator, the output unit 400 may output a voice message such as “Please check whether foreign substances are inserted into the agitator” and the like or display the message on the screen.
The cleaning unit 800 referring to
The status of the dust container largely denotes a state in which a certain amount of dust or the like is contained in the dust container and a state in which the dust container is attached to or detached from the robot cleaner. In the former case, a piezoelectric sensor may be inserted into the dust container to sense it. In the latter case, the mounting status of the dust container may be sensed in various ways. For example, for a sensor for sensing whether or not the dust container is mounted thereon, a micro switch provided on a lower surface of a groove into which the dust contained is mounted to be turned on or off, a magnetic sensor using a magnetic field of a magnet, a magnetic field sensor using a magnetic field of a magnetic body, a light sensor provided with a light transmitter and a light receiver to receive light, or the like may be used. In case of a magnetic sensor or magnetic field sensor, it may further include a sealing member with a synthetic rubber material on a portion to which a magnet or magnetic body is attached.
When a command for executing a self diagnostic mode is received, the control unit 200 first checks whether or not the dust container is mounted within the robot cleaner as a precondition of the execution. When the dust container is mounted on the robot cleaner, the output unit 400 may output a voice message such as “Please check the dust container”, and the like or display the message on the screen. The storage unit 500 may store the message in advance. Of course, the control unit 200 first checks whether or not the dust container is mounted thereon even in another operation mode, cleaning or traveling mode.
Referring to
When a command for executing a self diagnostic mode is received, the control unit 200 first checks the remaining amount and status of the battery as a precondition of the execution. The output unit 400 may output a voice message such as “The remaining amount of the battery is insufficient”, “Unable to enter diagnostic mode due to insufficient battery, and the like or display the message on the screen. The storage unit 500 may store the message in advance.
Referring to
When a command for executing a self diagnostic mod is received, the control unit determines whether or not the mop plate is attached thereto using a mounting signal. When the mop plate is attached thereto, the output values of the sensors may vary, thereby detaching the mop plate and then executing a diagnostic mode. When the mop plate is attached to the robot cleaner, the output unit 400 may output a voice message such as “Unable to enter diagnostic mode since the mop plate is attached thereto”, “Please remove the mop plate to retry”, and the like or display the message on the screen. The storage unit 500 may store the message in advance. Of course, the control unit 200 first checks whether or not the mop plate is attached thereto even in another operation mode, cleaning or traveling mode.
Referring to
Referring to
The control unit 200 controls the light emitting unit 900 to emit light in different forms based on a first driving, condition in which the main body stops a second driving condition in which the main body moves, and a third driving condition in which the main, body rotates. The light emitting unit 900 is configured with a plurality of light emitting units disposed to be separated from one another. The control unit 200 may be controlled to activate at least one of the plurality of light emitting units or allow the plurality of light emitting units to emit light in different forms, respectively.
The light emitting unit 900 may be disposed at preset intervals based on an outer circumferential surface of the main body. On the drawing, it is illustrated that five light emitting units 900 are formed at a lower portion of the main body, but the present disclosure may not be necessarily limited to this. Here, the detailed structure of the light emitting unit 900 mounted on a lower portion of the body.
As illustrated in the drawing, the light emitting unit 900 is mounted on the main body to emit light toward the ground 10. Accordingly, a user may check light formed to surround part of the outer circumferential surface of the main body.
The support portion 920 may be formed with two planes facing each other and two curved surfaces connecting, both ends of the two planes. A light emitting portion 910 for emitting light is mounted in one region on an inner surface of the support portion 920. The light emitting portion 910 may be preferably formed on one plane facing the ground 10, but the present disclosure may not be necessarily limited to this.
Here, the light emitting portion may be preferably formed with a light emitting diode (LED).
The reflector 930 is formed on part of an inner surface of the support portion 920. One region of the support portion 920 exposed by the reflector 930 may be defined as a transmissive region 921. In other words, the reflector 930 reflects light transmitted to an inside of the support portion 920 by the light emitting portion 910 toward the transmissive region 921. The reflector 930 may be mounted on the support portion 920 in the form of a reflective sheet.
Light emitted from the light emitting portion 910 is reflected by the reflector 930 and then emitted to the ground 10 through the transmissive region 921 of the support portion 920 made of the transparent material. One region of the ground 10 in which the light reaches by the transmissive region 921 formed by the reflector 930 is defined as a light emitting region 11. According to the present disclosure, the containment building 11 is formed to surround part of an outer circumference of the main body. In other words, the reflector 930 is formed to allow the light to reach an outside of the outer circumference from a lower portion of the main body.
According to an embodiment of the present disclosure, the reflector 930 is mounted in a movable manner at an inside of the support portion 920. In other words, the control unit 200 may include a motor controller 203 (refer to
The reflector 930 mounted on an inner surface of the support portion 920 moves along an inner surface of the support portion 920 to move the location of the transmissive region 921 of the support portion 920. In other words, an area of the transmissive region 921 is substantially the same even when the reflector 930 moves. However, as the transmissive region 921 moves, the light emitting region 11 of the ground 10 is changed. For example, when comparing
Specifically, a first angle (θ1) between a first and a second line (L1, L2) connecting both ends of the reflector 930 from the light emitting portion 910 is formed to be less than about 90 degrees. Furthermore, a second angle (θ2) between a third line (L3) constituting the ground and formed toward the outside from the main body and the first line (L1) is formed to be larger than 90 degrees. Furthermore, a third angle (θ3) formed by the second line (L2) and the third line (L3) is formed to make a preset angle by the movement of the reflector 930. As the third angle (θ3) decreases, the light emitting region 11 with a larger area based on the outer circumference is formed.
Part of light emitted from the ground 10 reaches an outside of the main body by a limited range of the first and the second angle (θ2, θ3). Accordingly, a user may receive light in a shape of surrounding an outer circumference of the robot cleaner.
Referring to
Accordingly, a light emitting unit of the robot cleaner according to an embodiment of the present disclosure may emit light in various forms or emit light to form a pattern.
As described above, the motor controller interlocks with the control of the light emitting portion 910 (LED) for emitting the plurality of colors while controlling the movement of the reflector 930. For example, a control circuit for controlling the light emitting portion 910 is connected to LEDs that emit red (R), green (G) and blue (B) lights, respectively, to control at least one of the LEDs to be output based on the received control signal.
For example, as illustrated in
According to an embodiment of the present disclosure, the light emitting unit may emit light in various forms based on the driving condition of the main body using the structures and driving methods thereof, and hereinafter, a light emitting form according to the driving condition will be described.
Referring to
The control unit 200 may control the light emitting unit 900 to emit light to a region adjacent to the front portion (F). In other words, the control unit 200 activates only a light emitting device mounted in a region defined as the front portion (F) of the plurality of light emitting devices. When a moving direction in which the main body moves is changed (in other words, a direction in which the front portion (F) moves forward is changed), the control unit 200 may control the light emitting unit 900 to continuously emit light from the front portion (F).
Accordingly, a user may check a region in which the robot cleaner moves while operating as well as a location of the robot cleaner, and know the status of a region into which the robot cleaner is to be moved in advance.
Referring to
The control unit 200 controls the light emitting unit 900 to activate a light emitting device located in a region adjacent to the rear portion (B). Furthermore, the control unit 200 controls the light emitting unit 900 to emit light in a wave shape to a region adjacent to the rear portion (B). For example, the control unit 200 may change the brightness of the light at preset time intervals (for example, several seconds) to implement light in the wave shape.
Accordingly, a user may check the location and status of a region in which the robot cleaner moves, and light with a wave shape may be emitted, thereby providing clean aesthetics on the cleaned region for the user.
Referring to
However, the separated light emitting devices that emit light may not be necessarily limited to this the second and the third driving condition. For example, even in the first driving condition in which the main body stops, the control unit 200 may activate a plurality of light emitting devices disposed to be separated from one another.
A driving method of the light emitting unit in the third driving condition will be described with reference to
On the other hand, referring to
For example, a light emitting device adjacent to the start time point may continuously emit light at a first intensity based on the rotation speed, and a plurality of sequentially disposed light emitting devices may emit light at an intensity gradually decreased compared to the first intensity.
Accordingly, a user may sense the rotation status and rotation direction of the main body.
A driving method of the light emitting unit 900 when an obstacle (O) is sensed will be described with reference to
For example, when an obstacle is sensed in a region adjacent to the front portion (F), the control unit 200 activates a light emitting device in a region adjacent to the front portion (F). Otherwise, the control unit 200 may activate a light emitting device in a region adjacent to the front portion (F) and an additional light emitting device for transmitting light to the obstacle (O) at the same time.
Accordingly, the user may get to know an obstacle sensed in a region in which the main body moves, and when the robot cleaner moves in a dark area, it may be possible to prevent a collision between the robot cleaner and the obstacle.
Referring to
For example, in the second driving condition, the control unit 200 controls the light emitting unit 900 in such a manner that a light emitting device adjacent to the front portion (F) emits light. When an error occurs on part of the detection unit 100 while light is provided from the front portion (F) to the tight emitting region 11, the control unit 200 activates part of the plurality of light, emitting devices. The activated light emitting device corresponds to a light emitting device mounted in the vicinity of the detection unit 100 on which the error has occurred.
However, the light emitting unit 900 may emit light to notify the error even in the first and the second driving condition as well as in the second driving condition. Furthermore, light emitted based on the driving condition may be distinguished from light emitted based on the error.
Furthermore, when at least one component in which a component requiring replacement is sensed or charging as well as a component in which an error occurs is sensed, the control unit 200 controls the light emitting unit 900 to activate a light emitting device which is the closest to each component.
Accordingly, a user may find an error that has occurred while the robot cleaner is driven in a more easy manner.
Referring to
For example, the control unit 200 may control the light emitting unit 908 to emit light along the outer circumferential surface while sensing dust or the like on a circumferential surface of the main body just prior to executing a reserved driving set by a user.
Referring to
Referring to
For example, a plurality of light emitting devices in the light emitting unit 900 may emit light having a different brightness according to a preset time interval, thereby implementing the foregoing shape. Accordingly, the present disclosure may provide an aesthetic sense in which a robot cleaner seems to take a breath or an aesthetic sense in which the robot cleaner seems to such dust or the like to a user.
Referring to
As illustrated in
Referring to
According to the present disclosure, a light emitting unit may provide light configured with a different form and color based on a driving condition of the main body, thereby allowing a user to know a driving condition of the robot cleaner using light. Furthermore, the light emitting unit may provide light to a surrounding region of the main body, thereby allowing a user to sense the surrounding condition of the robot cleaner.
Furthermore, the present disclosure may provide an aesthetic sense that seems to have a life for a robot cleaner that automatically moves without a user's control command by light with various patterns transmitted to an outside of the main body.
The configurations and methods according to the above-described embodiments will not be limited to the foregoing robot cleaner, and all or part of each embodiment may be selectively combined and configured to make various modifications thereto.
The present embodiments may control a robot cleaner capable of emitting light according to a main body being moved, and thus may be applicable to various industrial fields.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2013/012009 | 12/23/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/099205 | 7/2/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6774596 | Bisset | Aug 2004 | B1 |
20070267570 | Park et al. | Nov 2007 | A1 |
20100049364 | Landry et al. | Feb 2010 | A1 |
20130231819 | Hung et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
20 2010 006 456 | Aug 2010 | DE |
S 36-004667 | Mar 1961 | JP |
S 53-093142 | Jul 1978 | JP |
H 07-046710 | Feb 1995 | JP |
H 10-075921 | Mar 1998 | JP |
H 11-176233 | Jul 1999 | JP |
2003-501120 | Jan 2003 | JP |
2004-148088 | May 2004 | JP |
2004-159736 | Jun 2004 | JP |
2006-313455 | Nov 2006 | JP |
2007-334667 | Dec 2007 | JP |
2009-104835 | May 2009 | JP |
2009-518074 | May 2009 | JP |
2010-102891 | May 2010 | JP |
2010-272358 | Dec 2010 | JP |
2013-146312 | Aug 2013 | JP |
10-0722762 | May 2007 | KR |
10-2013-0015787 | Feb 2013 | KR |
10-1233158 | Feb 2013 | KR |
10-2013-0137536 | Dec 2013 | KR |
Entry |
---|
International Search Report dated Sep. 23, 2014 issued in Application No. PCT/KR2013/012009. |
European Search Report dated Jul. 18, 2017 issued in Application No. 13900400.6. |
Japanese Office Action dated Oct. 3, 2017 issued in Application No. 2016-542228. |
Number | Date | Country | |
---|---|---|---|
20160316982 A1 | Nov 2016 | US |