Robot confinement

Information

  • Patent Grant
  • 9582005
  • Patent Number
    9,582,005
  • Date Filed
    Wednesday, February 12, 2014
    10 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
A method of confining a robot in a work space includes providing a portable barrier signal transmitting device including a primary emitter emitting a confinement beam primarily along an axis defining a directed barrier. A mobile robot including a detector, a drive motor and a control unit controlling the drive motor is caused to avoid the directed barrier upon detection by the detector on the robot. The detector on the robot has an omnidirectional field of view parallel to the plane of movement of the robot. The detector receives confinement light beams substantially in a plane at the height of the field of view while blocking or rejecting confinement light beams substantially above or substantially below the plane at the height of the field of view.
Description
BACKGROUND OF THE INVENTION

The invention relates to a method and system for robot localization and confinement.


There have been many systems proposed in the prior art for confining a robot to specific physical space for the purpose of performing work. These systems are typically designed for any number of robotic applications such as lawn care, floor cleaning, inspection, transportation, and entertainment, where it is desired to have a robot operate in a confined area for performing work over time.


By way of example, a vacuuming robot working in one room may unintentionally wander from one room to another room before satisfactorily completing the vacuuming of the first room. One solution is to confine the robot to the first room by closing all doors and physically preventing the robot from leaving the first room. In many houses, however, open passageways often separate rooms, and doors or other physical barriers cannot easily be placed in the robot's exit path. Likewise, a user may desire to only have the robot operate in a portion of a single open space and, therefore, letting the robot work in the entire room decreases efficiency.


It is therefore advantageous to have a means for confining the area in which a robot works.


One approach in the prior art is to provide sophisticated systems for navigation and orientation for the robot such that the robot either travels along a predetermined path and/or monitors its current location against a map stored in memory. These systems require sophisticated hardware, such as precision sensors and significant computer memory and computational power, and typically do not adapt well to changes in the area in which the robot is working. Likewise the robot cannot simply be taken from one building to another building, or even from room-to-room, without significant reprogramming or training.


For example, the method disclosed in U.S. Pat. No. 4,700,427 (Knepper) requires a means for generating a path for the robot to travel, which can be either a manually-controlled teaching of the path or automatic mapping function. If “the place of use is frequently changed” or the “rooms are modified,” large amounts of data memory is required in order to store information related to each location. Similarly, the method and system disclosed in U.S. Pat. No. 4,119,900 (Kremnitz) requires powerful computation and sensors to constantly ascertain the orientation of the robot in a given space. Other examples of robotic systems requiring inputted information about the space in which the robot is working include methods and systems shown in U.S. Pat. No. 5,109,566 (Kobayashi et al.) and U.S. Pat. No. 5,284,522 (Kobayashi et al.).


Similarly, certain prior art systems not only require the training or programming of the robot to the specifics of a particular space, but also require some preparation or alteration to the space in which the robot is to work. For example, U.S. Pat. No. 5,341,540 (Soupert et al.) discloses a system in which in a preferred embodiment requires the robot to include a positioning system and that the area for the robot be set up with “marking beacons . . . placed at fixed reference points.” While this system can avoid an unknown obstacle and return to its preprogrammed path through signals from the beacons, the system requires both significant user set-up and on-board computational power.


Similar systems and methods containing one or more of the above-described disadvantages are disclosed in U.S. Pat. No. 5,353,224 (Lee et al.), U.S. Pat. No. 5,537,017 (Feiten et al.), U.S. Pat. No. 5,548,511 (Bancroft), and U.S. Pat. No. 5,634,237 (Paranjpe).


Yet another approach for confining a robot to a specified area involves providing a device defining the entire boundary of the area. For example, U.S. Pat. No. 6,300,737 (Bergvall et al.) discloses an electronic bordering system in which a cable is placed on or under the ground to separate the inner area from the outer area. Likewise, the system disclosed in U.S. Pat. No. 6,255,793 (Peless et al.) requires installation of a metallic wire through which electricity flows to define a border. While these systems provide an effective means for confinement, they are difficult to install, are not portable from room-to-room, and can be unsightly or a tripping hazard if not placed under ground or beneath carpeting. Equally important, such systems can be difficult to repair if the wire or other confinement device breaks, as the location of such breaks can be difficult to determine when the system is placed underground or under carpet.


The present invention provides a modified and improved system for confining a robot to a given space without the drawbacks of the prior art.


SUMMARY OF THE INVENTION

In accordance with the present invention a robot confinement system is disclosed comprising: a portable barrier signal transmitter, wherein said barrier signal is transmitted primarily along an axis, said axis defining a barrier; a mobile robot, where said mobile robot comprises means for turning in at least one direction, a barrier signal detector, and a control unit controlling said means for turning; whereby the control unit runs an algorithm for avoiding said barrier signal upon detection of said barrier signal, said algorithm comprising the step of turning the robot until said barrier signal is no longer detected.


Accordingly, the present invention has several objects and advantages.


It is an object of the invention to provide a simplified and portable system and method for confining a robot to a given area.


It is an object of the invention to provide a confinement system that does not require installation.


It is an object of the invention to provide a barrier system that can be set up intuitively and includes a means for visually indicating the barrier.


It is an additional object of the invention to provide a system such that a robot approaching the barrier from either side of the barrier will turn in such a way as to avoid crossing the barrier.


It is an object of the invention to provide a robot confinement system that operates regardless of the angle at which the robot approaches the barrier.


It is an additional object of a preferred embodiment of the invention to provide a system that is substantially impervious to the effects of sunlight, will not cause interference with other devices, and will not be interfered by other devices.


The preferred embodiment of the present invention is for a robotic, indoor cleaning device similar to the types disclosed in U.S. Pat. No. 4,306,329 (Yokoi), U.S. Pat. No. 5,293,955 (Lee), U.S. Pat. No. 5,369,347 (Yoo), U.S. Pat. No. 5,440,216 (Kim), U.S. Pat. No. 5,613,261 (Kawakami et al.), U.S. Pat. No. 5,787,545 (Colens), U.S. Pat. No. 5,815,880 (Nakanishi), U.S. Pat. No. 6,076,226 (Reed). One of skill in the art will recognize that the present invention can be used in any number of robotic applications where confinement is desired. In addition, while the preferred embodiments described herein are for a robot without a navigation system, one of skill in the art will recognize the utility of the invention in applications using more sophisticated robots.


Other features and advantages of the invention will be apparent from the following detailed description, including the associated drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows an embodiment of the robot confinement system according to the invention with the barrier signal transmitter in an unpowered state; FIG. 1B shows an embodiment of the robot confinement system according to the invention with the barrier signal transmitter in a powered state;



FIG. 2A shows a schematic representation of a preferred embodiment of the barrier signal transmitter; FIG. 2B shows a circuit diagram of a specific embodiment of the barrier signal transmitter;



FIG. 3A shows a side-view schematic representation of a mobile robot used in a preferred embodiment of the invention; FIG. 3B shows a top-view schematic representation of a mobile robot used in a preferred embodiment of the invention;



FIG. 4 shows a side-view of a preferred embodiment of an omni-directional barrier signal detector;



FIG. 5 demonstrates a hardware block diagram of the robot shown in FIGS. 3A & 3B;



FIG. 6 shows a schematic representation of an alternative embodiment of the robot employing multiple barrier signal detectors;



FIGS. 7A & 7B are flow-chart illustrations of the barrier avoidance algorithm of a preferred embodiment of the invention;



FIGS. 8A-C are schematic illustrations of the system and method of a preferred embodiment of the present invention;



FIGS. 9A-B are schematic illustrations of the system and method of an alternative embodiment of the present invention.





DETAILED DESCRIPTION

Referring to FIGS. 1A & 1B, living room 10 is shown separated from dining room 12 by interior walls 14 & 15. The living room and/or dining room may contain various furnishings, for example, couch 16, television 17, buffet 18 and table and chairs 19.


The rooms also contain a mobile robot 20 and a barrier signal transmitting device 30, which for purposes of this specification is also called a robot confinement (or RCON) transmitter 30. In FIGS. 1A & 1B, the robot is placed in the living room 10, and the RCON transmitter 30 is placed in the area dividing the living room 10 from the dining room 12, against interior wall 14 and pointing toward interior wall 15.


As described in more detail herein, FIG. 1B shows the same configuration of rooms with the RCON transmitter 30 in a powered state emitting, e.g., an infrared beam 42 from the RCON transmitter 30 toward interior wall 15. The beam 42 is directed primarily along an axis to create a boundary or barrier between living room 10 and dining room 12.


The system and method described herein each rely on a portable RCON transmitting unit 30 and a mobile robot 20. Each of these elements is first described independently, then the operation of a preferred embodiment of the invention is discussed.


RCON Transmitter



FIG. 2A illustrates a preferred embodiment of the RCON transmitter 30. The RCON transmitter 30 includes a first infrared emitter 32, a second infrared emitter 34, a power switch 36, and variable power-setting knob 38. The RCON transmitter enclosure 31 also houses the batteries (not shown) and necessary electronics for the various components. FIG. 2B shows a circuit diagram for the necessary electronics for an embodiment of the RCON transmitter 30. Other embodiments may use other conventional power sources.


In the embodiment shown in FIG. 2A, a user would turn on the RCON transmitter 30 using power switch 36 at the same time as the robot 20 begins operation. The user can also select a variable power using knob 38. In other embodiments, any number of known input devices can be used to turn on the unit and/or select a power setting, such as keypads, toggle switches, etc. A higher power can be used to provide a longer barrier useful for dividing a single room, while a lower power setting can be used to provide a barrier for a single doorway. Because of the reflective properties of various materials such as walls painted white, it is preferable to limit the power of the RCON transmitter 30 to the minimum necessary to provide the desired barrier.


In alternative embodiments, the RCON transmitter's power may be automatically turned off after a predetermined amount of time in order to preserve battery life.


In alternative embodiments, a control system can be used to turn on and turn off one or more RCON transmitters and/or robots in order to allow automatic cleaning of multiple rooms or spaces in a controlled manner. For example, a “smart house” control system might communicate directly with one or more RCON transmitters allowing a cycling of work spaces. In the alternative, the robot 20 might send a signal to the RCON to turn it on.


In the preferred embodiment, two infrared emitters 32 & 34 are used. The first IR emitter 32—the primary emitter—is powered to provide a directed barrier 42 of a given length from the RCON transmitter 30. In this embodiment, the beam 42 is a modulated, narrow IR beam. In the preferred embodiment, a collimated IR emitter is used such as Waitrony p/n IE-320H. The specifics of the emitter(s) are left to one of skill in the art; however, as explained in detail below, the beam 42 must have sufficient width. It is preferred that the minimum beam width be greater than the turning radius of the detector on a particular robot.


The second IR emitter 34—the secondary emitter—is powered to provide a diffuse region 44 near the RCON transmitter 30 to prevent robot 20 from crossing the beam 42 in its most narrow region closest to the RCON transmitter 30 and, in addition, prevents robot 20 from coming into direct contact with the RCON transmitter 30. In the preferred embodiment, a lens identical to the lens portion of the RCON detector, described below, is used for the secondary emitter 34. In other embodiments, a single active emitter operatively connected to appropriate optics can be used to create multiple emission points, including the two emitter system disclosed herein.


Because of potential interference from sunlight and other IR sources, most IR devices, such as remote controls, personal digital assistances and other IR communication devices, modulate the emitted signal. Herein, the emitters 32 & 34 modulate the beam at 38 kHz. In addition, IR devices modulate the beam to provide a serial bit stream to the unit being controlled to tell it what to do. In an embodiment of the present invention, additional modulation of the beam at a frequency, for example 500 Hz, different from the frequency of common IR bit streams prevents interference with other IR equipment.


While the preferred embodiment uses an infrared signal, the system and method of the present invention can use other signals such as electromagnetic energy to accomplish the goals, including radio waves, X-rays, microwaves, etc. Many of these types of waves have significant drawbacks. For example, radio waves are more difficult and expensive to make directional, and visible light suffers from interference from many sources and may be distracting to users. Sound waves could also be used, but it is similarly difficult to make purely directional and tend to scatter and reflect more.


Robot


As shown in FIGS. 3A & 3B, in the preferred embodiment, the robot 20 comprises a substantially circular shell 21 mounted to a chassis containing two wheels 22 & 23 mounted on opposite sides of a center line, wherein each of the wheels 22 & 23 can be independently driven to allow the robot to turn. In the preferred embodiment, the wheels are mounted in such a manner as to allow the robot to turn substantially in place. The preferred embodiment of the robot 20 also comprises motors 24, cleaning mechanism 25, rechargeable battery 26, microprocessor 27, and various tactile and optical sensors 28.


In FIG. 5 is illustrated a hardware block diagram of a robot similar to the one shown in FIGS. 3A & 3B. The hardware is built around a Winbond W78 XXX Series 8-bit processor. The processor is controlled by software stored in ROM. The system shown in FIG. 5 includes various control functions and motor drivers, along with various sensors (e.g. physical bump sensors, cliff sensors, the RCON detector/sensor).


For the instant invention, the robot also has an RCON detector 50, which in the preferred embodiment is a standard IR receiver module, which comprises a photodiode and related amplification and detection circuitry, mounted below an omni-directional lens, where omni-directional refers to a single plane. In a preferred embodiment, the IR receiver module is East Dynamic Corporation p/n IRM-8601S. However, any IR receiver module, regardless of modulation or peak detection wavelength, can be used as long as the RCON emitter is also changed to match the receiver. As shown in FIGS. 3A & 3B, the RCON detector is mounted at the highest point on the robot 20 and toward the front of the robot as defined by the primary traveling direction of the robot, as indicated by an arrow in FIG. 3B.


While the RCON detector should be mounted at the highest point of the robot in order to avoid shadows, it is desirable in certain applications to minimize the height of the robot 20 and/or the RCON detector 50 to prevent operational difficulties and to allow the robot 20 to pass under furniture or other obstacles. In certain embodiments, the RCON detector 50 can be spring mounted to allow the detector to collapse into the body of the robot when the robot runs under a solid overhanging object.



FIG. 4 shows in detail the preferred embodiment of the RCON detector 50. The RCON detector 50 includes a lens 52 that allows in the barrier signal (or rays) 42 from all directions through the outer lens wall 54 and focuses the rays at IR detector 55. At the same time, the method and systems of the present invention are likely to be used in the presence of sunlight. Because direct sunlight can easily saturate the IR detector 55, efforts may be made to exclude sunlight from the RCON detector 50. Therefore, in the preferred embodiment, opaque plastic horizontal plate 57 is used, which is supported by post 58.


The lens 52 used in the preferred embodiment is a primarily cylindrical device designed to accept rays perpendicular to the axis of the lens and to reject rays substantially above or substantially below the plane perpendicular to the axis of the lens. The lens focuses horizontal rays primarily on IR detector 55 mounted below the lens.


In the preferred embodiment, the geometry of the lens is determined by rotating a parabola about its focus, where the focus is collocated with the active element of the receiver 55. The inner lens wall 53 is thereby defined by the swept parabola. The rays are reflected by the phenomena called total internal reflection, defined here by the discontinuation between the lens material and the material internal to the inner lens wall 53. The preferred embodiment is constructed of clear polycarbonate chosen for its low cost and index of refraction.


The omni-directional nature of the RCON detector 50 allows a system with only a single RCON detector 50 to function equally well regardless of the angle of incident radiation from the RCON transmitter. If the RCON detector 50 is insensitive to the beams 42 & 44 from certain angles, then the robot 20 can break through the confining beams 42 & 44 when the robot 20 approaches the beam(s) such that the beam(s) occupies the RCON detector 50 blind spot.


In addition, in the preferred embodiment, the RCON transmitter 30 is battery powered. This imposes a high sensitivity requirement on the robot-mounted detector 50 in order to promote long battery life in the emitter 30. As such, the RCON detection system should be designed to gather as much IR as possible from the emitter(s).


The RCON detector of the preferred embodiment is designed to be triggered by modulated IR above a certain intensity threshold. If the IR levels are below the given threshold, the RCON detector computes no detection whatsoever and therefore triggers no specific control commands.


One of skill in the art will recognize that in alternative embodiments multiple RCON detectors 50 can be used. FIG. 6 illustrates such an embodiment using six side-mounted sensors 50. Each of the sensors should be oriented in a manner to have its field of view correspond to that of the single, top mounted sensor. Because a single, omni-directional RCON detector should be mounted at the highest point of the robot for optimal performance, it is possible to lower the profile of the robot by incorporating multiple detectors.


As disclosed above, the system and method of the present invention can be used with any number of robots existing in the prior art, including those designed for indoor cleaning applications.


Operation of System & Method


As shown in FIGS. 8A-C, an IR beam is used to divide the space (living room 10 and dining room 12) into two distinct areas. The robot has a sensor for detecting this beam 42 mounted at the robot's top front. As seen in FIG. 8B, whenever a measurable level of IR radiation strikes the detector the robot's IR avoidance behavior is triggered. In a preferred embodiment, this behavior causes the robot to spin in place to the left until the IR signal falls below detectable levels (FIG. 8C). The robot then resumes its previous motion. Spinning left is desired in certain systems because, by convention, the robot attempts to keep all objects to its right during following operations. The robot's confinement behavior is consistent with its other behaviors if it spins left on detecting the confining beam 42. In this embodiment, the IR sensor acts as a gradient detector. When the robot encounters a region of higher IR intensity the robot spins in place. Because the IR sensor is mounted at the front of the robot and because the robot does not move backward, the sensor always sees the increasing IR intensity before other parts of the robot. Thus spinning in place causes the sensor to translate to a region of decreased intensity. When the robot next moves forward, following the sensor, the robot necessarily moves to a region of decreased IR intensity—away from the beam.


In another preferred embodiment, the room confinement behavior works as a single behavior in a strictly priority based behavior system which controls the robot's motion. Each of the behaviors is assigned a priority, and the behavior with the highest priority requests control of the robot at any given time and has full control of the robot. These behaviors may include driving forward, turning when bumped, spiraling, etc. The confinement behavior is one of the highest priority behaviors. It requests control of the robot when the room confinement IR sensor has detected a signal from a room confinement transmitter.


A flow-chart of a preferred embodiment of the control logic of the confinement behavior is shown in FIG. 7A. The robot determines whether the RCON detector detects a signal (step 110). If a signal is detected, the robot chooses a turning direction (step 120). The robot then begins to turn in the chosen direction until the signal is no longer detected (step 130). Once the signal is no longer detected, the robot continues turning for an additional distance (step 140).


In the preferred embodiment of step 120, the direction is chosen through the algorithm illustrated in the flow chart shown in FIG. 7B. The robot's control logic keeps track of the robot's discrete interactions with the beam. The robot first increments the counter by one (step 122). On odd numbered interactions, the robot chooses a new turning direction randomly (steps 124 & 126); on even numbered interactions, the robot again uses its most recent turning direction.


In other embodiments, the robot can always turn a single direction or choose a direction randomly. When the robot always turns one direction, the robot may get stuck in a loop by turning away from the beam, bumping into another obstacle in a room, turning back toward the beam, seeing the beam again, turning away, bumping again, ad infinitum. Moreover, when the robot only turns in a single direction, it preferentially ends up at one end of the beam. Where the robot's task is to complete work evenly throughout a room, such as cleaning, a single turning direction is not optimal. If the direction is chosen purely randomly, the robot may turn back and forth quite a bit as it encounters the beam more than once.


In the preferred embodiment of step 140, the robot turns an additional 20 degrees from the point at which the signal is lost. The amount of the turn, which was selected arbitrarily in the preferred embodiment, is left to the particular robot and application. The additional turn prevents the robot from re-encountering the confinement beam immediately after exiting the beam. For various applications, the amount of additional movement (linear or turning) can be a predetermined distance or time, or in the alternative may include a random component.


In still other embodiments, the robot's avoidance behavior may include reversing the robot's direction until the beam 42 is no longer detected.


In other embodiments, the RCON detector is able to determine the gradient levels of the beam. This information can be used to send the robot in the direction of the lowest level of detection and prevent the situation where the robot is situated entirely within the beam and therefore turns in 360 degrees without the detector exiting the beam. In these embodiments, if the robot turns 360 degrees without exiting the beam, the control logic may give a higher priority to a “gradient behavior.” The gradient behavior divides the possible robot headings into a fixed number of angular bins, each bin covering an equal sweep of the angular area around the robot. The robot then turns at a constant rate while sampling the number of detections in each angular bin. (For a system using infrared signals, detection counts are monotonically related to the signal strength.) After the robot has rotated more than 360 degrees, the gradient behavior commands the robot to turn toward the angular bin with the lowest detection count. When the robot achieves the correct heading, the gradient behavior commands the robot to move forward a predetermined distance, for example one-half of the width of the robot, then control is released from the gradient behavior. If necessary, this process repeats until the robot has moved into a region where IR intensity is below the detection threshold.


One of skill in the art will recognize that the emitter/detector system can also be used to guide the robot in any number of ways. For example, the beam 42 could be used to allow the robot to perform work parallel to the edge of the beam, allowing, for example, the floor right up to the edge of the room confinement beam to be cleaned.


In an alternative embodiment of the present invention, the RCON transmitter may comprise both a signal emitter and a signal detector. As shown in FIG. 9A, the RCON transmitter 210 includes both a primary emitter 212 and a detector 214. The RCON transmitter 210 is placed at one end of the desired barrier and a retroreflector 230 is placed at the opposite end of the desired barrier. The retroreflector, which reflects the beam back toward the emitter regardless of the orientation of the retroreflector relative to the beam, can be constructed from, for example, standard bicycle reflectors. As shown in FIG. 9A, primary emitter 212 produces beam 242. A portion of beam 242 reflects from retroreflector 230 and is detected by detector 214.


In the embodiment shown in FIGS. 9A & 9B, the IR radiation emitted by the primary emitter 212 can be modulated in either of two ways constituting signal A or signal B. During normal operation, the beam 242 emitted from the primary emitter 212 is reflected by the retro-reflective material 230 back into the detector 214. When this is true the RCON transmitter broadcasts signal A, which is received by robot 220. As shown in FIG. 9B, if the robot or other object comes between the emitter 212 and the retro-reflective material 230 then no signal is returned to the receiver 214 and the RCON transmitter 210 broadcasts signal B, which is received by robot 220. The robot 220 then uses this information to improve its performance. The robot turns away from the beam as described previously only when the robot detects signal B. When the robot detects signal A no action is taken.


For certain applications, the embodiment shown in FIGS. 9A & 9B provides improved performance. For example, in cleaning application, the completeness of cleaning is improved because the robot tends to clean up to the line connecting the confinement device and the retro-reflective material. Also, this embodiment is more resistant to beam blockage. If furniture or other obstacles partially occlude the beam, the robot tends to turn away when it is further from crossing the beam. Finally, an indicator, such as an LED, can be added to the RCON transmitter to indicate when the device is functioning and correctly aimed.


In other embodiments, the RCON transmitter can be used to define an annular confinement region. For example, an RCON transmitter with two omni-directional emitters may be employed, wherein the first emitter would broadcast the standard modulated beam and the second emitter would a emit radiation 180 degrees out of phase with the output of the first emitter, but with less power. The robot would be programmed to turn when the IR was not detected. As the robot gets further from the emitter, it would eventually, lose the beam and turn back into it. As it gets closer, the radiation from the second emitter would jam the radiation from the first emitter, creating essentially unmodulated IR. The detector would fail to detect this, and the robot would again turn back into the annulus.


In yet another embodiment, the RCON transmitter can be used as a “home base.” For example, once the voltage of the robot's battery drops below a predetermined level, the robot can use the gradient detection behavior to home in on the RCON transmitter. This allows the user to easily find the robot when it has finished cleaning instead of it randomly ending up in corners, under furniture, etc.


Although the description above contain many specificities, there should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention.


Other embodiments of the invention are within the scope of the following claims.

Claims
  • 1. A robot confinement system, comprising: a portable barrier signal transmitting device comprising: a first emitter configured to emit a first confinement beam; andan input device enabling a user to select an amount of power of the first confinement beam; anda mobile robot comprising: at least two wheels;at least one motor connected to the at least two wheels for moving the mobile robot on a surface;a cleaner configured to clean the surface as the mobile robot moves on the surface;a detector configured to detect the first confinement beam; anda controller configured to control the at least one motor to change a movement path of the mobile robot to prevent the mobile robot from crossing the first confinement beam by determining whether the detector detects the first confinement beam, andupon determining that the detector detects the first confinement beam, turning the robot in a chosen direction until the detector no longer detects the first confinement beam.
  • 2. The robot confinement system of claim 1, wherein the controller is configured to continue to turn the mobile robot in the chosen direction at least a predetermined amount after the first confinement beam is no longer detected by the detector.
  • 3. The robot confinement system of claim 1, wherein the controller is configured to randomly determine the chosen direction in response to the detector detecting the first confinement beam.
  • 4. The robot confinement system of claim 1, wherein the controller is configured to prevent the mobile robot from crossing the first confinement beam by reversing a direction most recently traveled by the robot.
  • 5. The robot confinement system of claim 1, wherein the portable barrier signal transmitting device comprises a second emitter configured to emit a second confinement beam, and wherein the mobile robot is configured to detect the second confinement beam when the mobile robot is within a predetermined distance of the portable barrier signal transmitting device.
  • 6. The robot confinement system of claim 5, wherein the controller is configured to change the movement path of the mobile robot to prevent the mobile robot from physically contacting the portable barrier transmitting device in response to detection of the second confinement beam.
  • 7. The robot confinement system of claim 5, wherein the first emitter is configured to emit the first confinement beam as a collimated confinement beam and the second emitter is configured to emit the second confinement beam as a substantially omni-directional beam.
  • 8. The robot confinement system of claim 1, wherein the mobile robot further includes: a bump sensor operable to detect a physical contact with a shell of the mobile robot as the mobile robot moves on the surface; anda cliff sensor operable to detect a falling edge of the surface as the mobile robot moves toward the falling edge,wherein the controller is operable to change the movement path of the mobile robot in response to detection of the physical contact and in response to detection of the falling edge.
  • 9. The robot confinement system of claim 1, wherein the detector of the mobile robot is configured to detect the first confinement beam when an intensity of the first confinement beam is above a predefined intensity threshold.
  • 10. The robot confinement system of claim 1, wherein the input device of the portable barrier signal transmitting device is configured to enable the user to select the amount of power of the first confinement beam based on based on a room length of a room or a doorway length of a doorway.
  • 11. A method performed by a user of a robot confinement system, the method comprising: positioning a portable barrier signal transmitting device on a surface, the portable barrier signal transmitting device comprising a first emitter configured to emit a first confinement beam;activating the portable barrier signal transmitting device;using an input device of the portable signal transmitting device to select an amount of power of the first confinement beam; andcausing a mobile robot to move along a movement path on the surface and clean the surface, so that the mobile robot changes the movement path of the mobile robot to prevent the mobile robot from crossing the first confinement beam by determining whether a detector of the mobile robot detects the first confinement beam, andupon determining that the detector detects the first confinement beam, turning in a chosen direction until the detector no longer detects the first confinement beam.
  • 12. The method of claim 11, wherein using the input device to select an amount of power of the first confinement beam comprises selecting the amount of power based on a room length of a room or a doorway length of a doorway.
  • 13. The method of claim 11, wherein changing the movement path of the mobile robot comprises continuing to turn the mobile robot in the chosen direction at least a predetermined amount after the first confinement beam is no longer detected by the detector.
  • 14. The method of claim 11, wherein the mobile robot is configured to randomly determine the chosen direction in response to the detector detecting the first confinement beam.
  • 15. The method of claim 11, wherein changing the movement path of the mobile robot comprises reversing a direction most recently traveled by the robot.
  • 16. The method of claim 11, wherein the portable barrier signal transmitting device comprises a second emitter configured to emit a second confinement beam, and wherein the mobile robot is configured to detect the second confinement beam when the mobile robot is within a predetermined distance of the portable barrier signal transmitting device.
  • 17. The method of claim 16, wherein the first emitter is configured to emit the first confinement beam as a collimated confinement beam and the second emitter is configured to emit the second confinement beam as a substantially omni-directional beam.
  • 18. The method of claim 16, wherein changing the movement path of the mobile robot comprises changing the movement path to prevent the mobile robot from physically contacting the portable barrier transmitting device in response to detection of the second confinement beam.
  • 19. The method of claim 11, wherein the mobile robot detects the first confinement beam when an intensity of the first confinement beam is above a predefined intensity threshold.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority from U.S. Non-provisional patent application Ser. No. 13/715,363, filed Dec. 14, 2012, which is a continuation of U.S. Non-provisional patent application Ser. No. 12/540,564, filed Aug. 13, 2009, (now U.S. Pat. No. 8,368,339 issued on Feb. 5, 2013 which is a continuation of U.S. Non-provisional patent application Ser. No. 11/929,558, filed Oct. 30, 2007, (now U.S. Pat. No. 7,579,803 issued on Aug. 25, 2009), which is a continuation of U.S. Non-provisional patent application Ser. No. 11/691,735, filed Mar. 27, 2007, (now Abandoned) which is a continuation of and claims the benefit of priority from U.S. Non-provisional patent application Ser. No. 11/221,392, filed Sep. 8, 2005, (now U.S. Pat. No. 7,196,487 issued on Mar. 27, 2007), which is a continuation of and claims the benefit of priority from U.S. Non-provisional patent application Ser. No. 10/921,775, filed Aug. 19, 2004, (now U.S. Pat. No. 6,965,209 issued on Nov. 15, 2005), which is a continuation of and claims the benefit of priority from U.S. Non-provisional patent application Ser. No. 10/696,456, filed Oct. 29, 2003, (now U.S. Pat. No. 6,781,338 issued on Aug. 24, 2004), which is a divisional of and claims the benefit of priority from U.S. Non-provisional patent application Ser. No. 10/056,804, filed Jan. 24, 2002, (now U.S. Pat. No. 6,690,134 issued on Feb. 10, 2004), which claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 60/263,692, filed Jan. 24, 2001, which applications are incorporated

US Referenced Citations (1020)
Number Name Date Kind
1755054 Darst Apr 1930 A
1780221 Buchmann Nov 1930 A
1970302 Gerhardt Aug 1934 A
2136324 John Nov 1938 A
2302111 Dow et al. Nov 1942 A
2353621 Sav et al. Jul 1944 A
2770825 Pullen Nov 1956 A
2930055 Fallen et al. Mar 1960 A
3119369 Harland et al. Jan 1964 A
3166138 Dunn Jan 1965 A
3333564 Waters Aug 1967 A
3375375 Robert et al. Mar 1968 A
3381652 Schaefer et al. May 1968 A
3457575 Bienek Jul 1969 A
3550714 Bellinger Dec 1970 A
3569727 Aggarwal et al. Mar 1971 A
3649981 Woodworth Mar 1972 A
3674316 De Brey Jul 1972 A
3678882 Kinsella Jul 1972 A
3690559 Rudloff Sep 1972 A
3744586 Leinauer Jul 1973 A
3756667 Bombardier et al. Sep 1973 A
3809004 Leonheart May 1974 A
3816004 Bignardi Jun 1974 A
3825916 Steele Jul 1974 A
3845831 James Nov 1974 A
RE28268 Autrand Dec 1974 E
3851349 Lowder Dec 1974 A
3853086 Asplund Dec 1974 A
3863285 Hukuba Feb 1975 A
3888181 Kups Jun 1975 A
3937174 Haaga Feb 1976 A
3952361 Wilkins Apr 1976 A
3989311 Debrey Nov 1976 A
3989931 Phillips Nov 1976 A
4004313 Capra Jan 1977 A
4012681 Finger et al. Mar 1977 A
4070170 Leinfelt Jan 1978 A
4099284 Shinozaki et al. Jul 1978 A
4119900 Kremnitz Oct 1978 A
4175589 Nakamura et al. Nov 1979 A
4175892 De bray Nov 1979 A
4196727 Verkaart et al. Apr 1980 A
4198727 Farmer Apr 1980 A
4199838 Simonsson Apr 1980 A
4209254 Reymond et al. Jun 1980 A
D258901 Keyworth Apr 1981 S
4297578 Carter Oct 1981 A
4305234 Pichelman Dec 1981 A
4306329 Yokoi Dec 1981 A
4309758 Halsall et al. Jan 1982 A
4328545 Halsall et al. May 1982 A
4367403 Miller Jan 1983 A
4369543 Chen et al. Jan 1983 A
4401909 Gorsek Aug 1983 A
4416033 Specht Nov 1983 A
4445245 Lu May 1984 A
4465370 Yuasa et al. Aug 1984 A
4477998 You Oct 1984 A
4481692 Kurz Nov 1984 A
4482960 Pryor Nov 1984 A
4492058 Goldfarb et al. Jan 1985 A
4513469 Godfrey et al. Apr 1985 A
D278732 Ohkado May 1985 S
4518437 Sommer May 1985 A
4534637 Suzuki et al. Aug 1985 A
4556313 Miller et al. Dec 1985 A
4575211 Matsumura et al. Mar 1986 A
4580311 Kurz Apr 1986 A
4601082 Kurz Jul 1986 A
4618213 Chen Oct 1986 A
4620285 Perdue Oct 1986 A
4624026 Olson et al. Nov 1986 A
4626995 Lofgren et al. Dec 1986 A
4628454 Ito Dec 1986 A
4638445 Mattaboni Jan 1987 A
4644156 Takahashi et al. Feb 1987 A
4649504 Krouglicof et al. Mar 1987 A
4652917 Miller Mar 1987 A
4654492 Koerner et al. Mar 1987 A
4654924 Getz et al. Apr 1987 A
4660969 Sorimachi et al. Apr 1987 A
4662854 Fang May 1987 A
4674048 Okumura Jun 1987 A
4679152 Perdue Jul 1987 A
4680827 Hummel Jul 1987 A
4696074 Cavalli Sep 1987 A
D292223 Trumbull Oct 1987 S
4700301 Dyke Oct 1987 A
4700427 Knepper Oct 1987 A
4703820 Reinaud Nov 1987 A
4709773 Clement et al. Dec 1987 A
4710020 Maddox et al. Dec 1987 A
4712740 Duncan et al. Dec 1987 A
4716621 Zoni Jan 1988 A
4728801 O'Connor Mar 1988 A
4733343 Yoneda et al. Mar 1988 A
4733431 Martin Mar 1988 A
4735136 Lee et al. Apr 1988 A
4735138 Gawler et al. Apr 1988 A
4748336 Fujie et al. May 1988 A
4748833 Nagasawa Jun 1988 A
4756049 Uehara Jul 1988 A
4767213 Hummel Aug 1988 A
4769700 Pryor Sep 1988 A
4777416 George et al. Oct 1988 A
D298766 Tanno et al. Nov 1988 S
4782550 Jacobs Nov 1988 A
4796198 Boultinghouse et al. Jan 1989 A
4806751 Abe et al. Feb 1989 A
4811228 Hyyppa Mar 1989 A
4813906 Matsuyama et al. Mar 1989 A
4815157 Tsuchiya Mar 1989 A
4817000 Eberhardt Mar 1989 A
4818875 Weiner Apr 1989 A
4829442 Kadonoff et al. May 1989 A
4829626 Harkonen et al. May 1989 A
4832098 Palinkas et al. May 1989 A
4851661 Everett Jul 1989 A
4854000 Takimoto Aug 1989 A
4854006 Nishimura et al. Aug 1989 A
4855915 Dallaire Aug 1989 A
4857912 Everett et al. Aug 1989 A
4858132 Holmquist Aug 1989 A
4867570 Sorimachi et al. Sep 1989 A
4880474 Koharagi et al. Nov 1989 A
4887415 Martin Dec 1989 A
4891762 Chotiros Jan 1990 A
4893025 Lee Jan 1990 A
4901394 Nakamura et al. Feb 1990 A
4905151 Weiman et al. Feb 1990 A
4909972 Britz Mar 1990 A
4912643 Beirne Mar 1990 A
4918441 Bohman Apr 1990 A
4919224 Shyu et al. Apr 1990 A
4919489 Kopsco Apr 1990 A
4920060 Parrent et al. Apr 1990 A
4920605 Takashima May 1990 A
4933864 Evans et al. Jun 1990 A
4937912 Kurz Jul 1990 A
4953253 Fukuda et al. Sep 1990 A
4954962 Evans et al. Sep 1990 A
4955714 Stotler et al. Sep 1990 A
4956891 Wulff Sep 1990 A
4961303 McCarty et al. Oct 1990 A
4961304 Ovsborn et al. Oct 1990 A
4962453 Pong et al. Oct 1990 A
4967862 Pong et al. Nov 1990 A
4971591 Raviv et al. Nov 1990 A
4973912 Kaminski et al. Nov 1990 A
4974283 Holsten et al. Dec 1990 A
4977618 Allen Dec 1990 A
4977639 Takahashi et al. Dec 1990 A
4986663 Cecchi et al. Jan 1991 A
5001635 Yasutomi et al. Mar 1991 A
5002145 Wakaumi et al. Mar 1991 A
5012886 Jonas et al. May 1991 A
5018240 Holman May 1991 A
5020186 Lessig et al. Jun 1991 A
5022812 Coughlan et al. Jun 1991 A
5023788 Kitazume et al. Jun 1991 A
5024529 Svetkoff et al. Jun 1991 A
D318500 Malewicki et al. Jul 1991 S
5032775 Mizuno et al. Jul 1991 A
5033151 Kraft et al. Jul 1991 A
5033291 Podoloff et al. Jul 1991 A
5040116 Evans et al. Aug 1991 A
5045769 Everett Sep 1991 A
5049802 Mintus et al. Sep 1991 A
5051906 Evans et al. Sep 1991 A
5062819 Mallory Nov 1991 A
5070567 Holland Dec 1991 A
5084934 Lessig et al. Feb 1992 A
5086535 Grossmeyer et al. Feb 1992 A
5090321 Abouav Feb 1992 A
5093955 Blehert et al. Mar 1992 A
5094311 Akeel Mar 1992 A
5098262 Wecker et al. Mar 1992 A
5105502 Takashima Apr 1992 A
5105550 Shenoha Apr 1992 A
5109566 Kobayashi et al. May 1992 A
5111401 Everett, Jr. et al. May 1992 A
5115538 Cochran et al. May 1992 A
5127128 Lee Jul 1992 A
5136675 Hodson Aug 1992 A
5136750 Takashima et al. Aug 1992 A
5142985 Stearns et al. Sep 1992 A
5144471 Takanashi et al. Sep 1992 A
5144714 Mori et al. Sep 1992 A
5144715 Matsuyo et al. Sep 1992 A
5152028 Hirano Oct 1992 A
5152202 Strauss Oct 1992 A
5154617 Suman et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5163202 Kawakami et al. Nov 1992 A
5163320 Goshima et al. Nov 1992 A
5164579 Pryor et al. Nov 1992 A
5165064 Mattaboni Nov 1992 A
5170352 McTamaney et al. Dec 1992 A
5173881 Sindle Dec 1992 A
5182833 Yamaguchi et al. Feb 1993 A
5187662 Kamimura et al. Feb 1993 A
5202742 Frank et al. Apr 1993 A
5204814 Noonan et al. Apr 1993 A
5206500 Decker et al. Apr 1993 A
5208521 Aoyama May 1993 A
5216777 Moro et al. Jun 1993 A
5222786 Sovis et al. Jun 1993 A
5227985 DeMenthon Jul 1993 A
5233682 Abe et al. Aug 1993 A
5239720 Wood et al. Aug 1993 A
5251358 Moro et al. Oct 1993 A
5261139 Lewis Nov 1993 A
5276618 Everett Jan 1994 A
5276939 Uenishi Jan 1994 A
5277064 Knigga et al. Jan 1994 A
5279672 Betker et al. Jan 1994 A
5284452 Corona Feb 1994 A
5284522 Kobayashi et al. Feb 1994 A
5293955 Lee Mar 1994 A
D345707 Alister Apr 1994 S
5303448 Hennessey et al. Apr 1994 A
5307273 Oh et al. Apr 1994 A
5309592 Hiratsuka May 1994 A
5310379 Hippely et al. May 1994 A
5315227 Pierson et al. May 1994 A
5319827 Yang Jun 1994 A
5319828 Waldhauser et al. Jun 1994 A
5321614 Ashworth Jun 1994 A
5323483 Baeg Jun 1994 A
5324948 Dudar et al. Jun 1994 A
5331713 Tipton Jul 1994 A
5341186 Kato Aug 1994 A
5341540 Soupert et al. Aug 1994 A
5341549 Wirtz et al. Aug 1994 A
5345649 Whitlow Sep 1994 A
5352901 Poorman Oct 1994 A
5353224 Lee et al. Oct 1994 A
5363305 Cox et al. Nov 1994 A
5363935 Schempf et al. Nov 1994 A
5369347 Yoo Nov 1994 A
5369838 Wood et al. Dec 1994 A
5386862 Glover et al. Feb 1995 A
5399951 Lavallee et al. Mar 1995 A
5400244 Watanabe et al. Mar 1995 A
5404612 Ishikawa Apr 1995 A
5410479 Coker Apr 1995 A
5416627 Wilmoth May 1995 A
5435405 Schempf et al. Jul 1995 A
5440216 Kim Aug 1995 A
5442358 Keeler et al. Aug 1995 A
5444965 Colens Aug 1995 A
5446356 Kim Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5451135 Schempf et al. Sep 1995 A
5454129 Kell Oct 1995 A
5455982 Armstrong et al. Oct 1995 A
5459532 Baba Oct 1995 A
5465525 Mifune et al. Nov 1995 A
5465619 Sotack et al. Nov 1995 A
5467273 Faibish et al. Nov 1995 A
5471391 Gudat et al. Nov 1995 A
5471560 Allard et al. Nov 1995 A
5491670 Weber Feb 1996 A
5497529 Boesi Mar 1996 A
5498948 Bruni et al. Mar 1996 A
5502638 Takenaka Mar 1996 A
5505072 Oreper Apr 1996 A
5507067 Hoekstra et al. Apr 1996 A
5510893 Suzuki Apr 1996 A
5511147 Abdel Apr 1996 A
5515572 Hoekstra et al. May 1996 A
5534762 Kim Jul 1996 A
5535476 Kresse et al. Jul 1996 A
5537017 Feiten et al. Jul 1996 A
5537711 Tseng Jul 1996 A
5539953 Kurz Jul 1996 A
5542146 Hoekstra et al. Aug 1996 A
5542148 Young Aug 1996 A
5546631 Chambon Aug 1996 A
5548511 Bancroft Aug 1996 A
5551119 Wörwag Sep 1996 A
5551525 Pack et al. Sep 1996 A
5553349 Kilstrom et al. Sep 1996 A
5555587 Guha Sep 1996 A
5560077 Crotchett Oct 1996 A
5568589 Hwang Oct 1996 A
D375592 Ljunggren Nov 1996 S
5608306 Rybeck et al. Mar 1997 A
5608894 Kawakami et al. Mar 1997 A
5608944 Gordon Mar 1997 A
5610488 Miyazawa Mar 1997 A
5611106 Wulff Mar 1997 A
5611108 Knowlton et al. Mar 1997 A
5613261 Kawakami et al. Mar 1997 A
5613269 Miwa Mar 1997 A
5621291 Lee Apr 1997 A
5622236 Azumi et al. Apr 1997 A
5634237 Paranjpe Jun 1997 A
5634239 Tuvin et al. Jun 1997 A
5636402 Kubo et al. Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5646494 Han Jul 1997 A
5647554 Ikegami et al. Jul 1997 A
5650702 Azumi Jul 1997 A
5652489 Kawakami Jul 1997 A
5682313 Edlund et al. Oct 1997 A
5682839 Grimsley et al. Nov 1997 A
5696675 Nakamura et al. Dec 1997 A
5698861 Oh Dec 1997 A
5709007 Chiang Jan 1998 A
5710506 Broell et al. Jan 1998 A
5714119 Kawagoe et al. Feb 1998 A
5717169 Liang et al. Feb 1998 A
5717484 Hamaguchi et al. Feb 1998 A
5720077 Nakamura et al. Feb 1998 A
5722051 Agrawal Feb 1998 A
5722109 Delmas et al. Mar 1998 A
5732401 Conway Mar 1998 A
5735017 Barnes et al. Apr 1998 A
5735959 Kubo et al. Apr 1998 A
5742975 Knowlton et al. Apr 1998 A
5745235 Vercammen et al. Apr 1998 A
5752871 Tsuzuki May 1998 A
5756904 Oreper et al. May 1998 A
5761762 Kubo Jun 1998 A
5764888 Bolan et al. Jun 1998 A
5767437 Rogers Jun 1998 A
5767960 Orman Jun 1998 A
5770936 Hirai et al. Jun 1998 A
5777596 Herbert Jul 1998 A
5778486 Kim Jul 1998 A
5781697 Jeong Jul 1998 A
5781960 Kilstrom et al. Jul 1998 A
5784755 Karr et al. Jul 1998 A
5786602 Pryor et al. Jul 1998 A
5787545 Colens Aug 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5794297 Muta Aug 1998 A
5802665 Knowlton et al. Sep 1998 A
5812267 Everett et al. Sep 1998 A
5814808 Takada et al. Sep 1998 A
5815880 Nakanishi Oct 1998 A
5815884 Imamura et al. Oct 1998 A
5819008 Asama et al. Oct 1998 A
5819360 Fujii Oct 1998 A
5819936 Saveliev et al. Oct 1998 A
5820821 Kawagoe et al. Oct 1998 A
5821730 Drapkin Oct 1998 A
5825981 Matsuda Oct 1998 A
5828770 Leis et al. Oct 1998 A
5831597 West et al. Nov 1998 A
5836045 Anthony et al. Nov 1998 A
5839156 Park et al. Nov 1998 A
5839532 Yoshiji et al. Nov 1998 A
5841259 Kim et al. Nov 1998 A
5867800 Leif Feb 1999 A
5867861 Kasen et al. Feb 1999 A
5869910 Colens Feb 1999 A
5894621 Kubo Apr 1999 A
5896611 Haaga Apr 1999 A
5903124 Kawakami May 1999 A
5905209 Oreper May 1999 A
5907886 Buscher Jun 1999 A
5910700 Crotzer Jun 1999 A
5911260 Suzuki Jun 1999 A
5916008 Wong Jun 1999 A
5924167 Wright et al. Jul 1999 A
5926909 McGee Jul 1999 A
5933102 Miller et al. Aug 1999 A
5933913 Wright et al. Aug 1999 A
5935179 Kleiner et al. Aug 1999 A
5935333 Davis Aug 1999 A
5940346 Sadowsky et al. Aug 1999 A
5940927 Haegermarck et al. Aug 1999 A
5940930 Oh et al. Aug 1999 A
5942869 Katou et al. Aug 1999 A
5943730 Boomgaarden Aug 1999 A
5943733 Tagliaferri Aug 1999 A
5943933 Evans et al. Aug 1999 A
5947225 Kawakami et al. Sep 1999 A
5950408 Schaedler Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5968281 Wright et al. Oct 1999 A
5974348 Rocks Oct 1999 A
5974365 Mitchell Oct 1999 A
5983448 Wright et al. Nov 1999 A
5984880 Lander et al. Nov 1999 A
5987383 Keller et al. Nov 1999 A
5989700 Krivopal Nov 1999 A
5991951 Kubo et al. Nov 1999 A
5995883 Nishikado Nov 1999 A
5995884 Allen et al. Nov 1999 A
5996167 Close Dec 1999 A
5998953 Nakamura et al. Dec 1999 A
5998971 Corbridge Dec 1999 A
6000088 Wright et al. Dec 1999 A
6009358 Angott et al. Dec 1999 A
6012618 Matsuo et al. Jan 2000 A
6021545 Delgado et al. Feb 2000 A
6023813 Thatcher et al. Feb 2000 A
6023814 Imamura Feb 2000 A
6025687 Himeda et al. Feb 2000 A
6026539 Mouw et al. Feb 2000 A
6030464 Azevedo Feb 2000 A
6030465 Marcussen et al. Feb 2000 A
6032327 Oka et al. Mar 2000 A
6032542 Warnick et al. Mar 2000 A
6036572 Sze Mar 2000 A
6038501 Kawakami Mar 2000 A
6040669 Hog Mar 2000 A
6041471 Charky et al. Mar 2000 A
6041472 Kasen et al. Mar 2000 A
6046800 Ohtomo et al. Apr 2000 A
6049620 Dickinson et al. Apr 2000 A
6050648 Keleny Apr 2000 A
6052821 Chouly et al. Apr 2000 A
6055042 Sarangapani Apr 2000 A
6055702 Imamura et al. May 2000 A
6061868 Moritsch et al. May 2000 A
6065182 Wright et al. May 2000 A
6070290 Schwarze et al. Jun 2000 A
6073432 Schaedler Jun 2000 A
6076025 Ueno et al. Jun 2000 A
6076026 Jambhekar et al. Jun 2000 A
6076226 Reed Jun 2000 A
6076227 Schallig et al. Jun 2000 A
6081257 Zeller Jun 2000 A
6088020 Mor Jul 2000 A
6094775 Behmer Aug 2000 A
6099091 Campbell Aug 2000 A
6101670 Song Aug 2000 A
6101671 Wright et al. Aug 2000 A
6108031 King et al. Aug 2000 A
6108067 Okamoto Aug 2000 A
6108269 Kabel Aug 2000 A
6108597 Kirchner et al. Aug 2000 A
6108859 Burgoon Aug 2000 A
6112143 Allen et al. Aug 2000 A
6112996 Matsuo Sep 2000 A
6119057 Kawagoe Sep 2000 A
6122798 Kobayashi et al. Sep 2000 A
6124694 Bancroft et al. Sep 2000 A
6125498 Roberts et al. Oct 2000 A
6131237 Kasper et al. Oct 2000 A
6138063 Himeda Oct 2000 A
6142252 Kinto et al. Nov 2000 A
6146041 Chen et al. Nov 2000 A
6146278 Kobayashi Nov 2000 A
6154279 Thayer Nov 2000 A
6154694 Aoki et al. Nov 2000 A
6160479 Ahlen et al. Dec 2000 A
6167332 Kurtzberg et al. Dec 2000 A
6167587 Kasper et al. Jan 2001 B1
6192548 Huffman Feb 2001 B1
6192549 Kasen et al. Feb 2001 B1
6202243 Beaufoy et al. Mar 2001 B1
6216307 Kaleta et al. Apr 2001 B1
6220865 Macri et al. Apr 2001 B1
6226830 Hendriks et al. May 2001 B1
6230362 Kasper et al. May 2001 B1
6237741 Guidetti May 2001 B1
6240342 Fiegert et al. May 2001 B1
6243913 Frank et al. Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6255793 Peless Jul 2001 B1
6259979 Holmquist Jul 2001 B1
6261379 Conrad et al. Jul 2001 B1
6263539 Baig Jul 2001 B1
6263989 Won Jul 2001 B1
6272936 Oreper et al. Aug 2001 B1
6276478 Hopkins et al. Aug 2001 B1
6278918 Dickson et al. Aug 2001 B1
6279196 Kasen et al. Aug 2001 B2
6282526 Ganesh Aug 2001 B1
6283034 Miles Sep 2001 B1
6285778 Nakajima et al. Sep 2001 B1
6285930 Dickson et al. Sep 2001 B1
6286181 Kasper et al. Sep 2001 B1
6300737 Bergvall et al. Oct 2001 B1
6321337 Reshef et al. Nov 2001 B1
6321515 Colens Nov 2001 B1
6323570 Nishimura et al. Nov 2001 B1
6324714 Walz et al. Dec 2001 B1
6327741 Reed Dec 2001 B1
6332400 Meyer Dec 2001 B1
6339735 Peless Jan 2002 B1
6362875 Burkley Mar 2002 B1
6370453 Sommer Apr 2002 B2
6374155 Wallach et al. Apr 2002 B1
6374157 Takamura Apr 2002 B1
6381802 Park May 2002 B2
6385515 Dickson et al. May 2002 B1
6388013 Saraf et al. May 2002 B1
6389329 Colens May 2002 B1
6397429 Legatt et al. Jun 2002 B1
6400048 Nishimura et al. Jun 2002 B1
6401294 Kasper Jun 2002 B2
6408226 Byrne et al. Jun 2002 B1
6412141 Kasper et al. Jul 2002 B2
6415203 Inoue et al. Jul 2002 B1
6418586 Fulghum Jul 2002 B2
6421870 Basham et al. Jul 2002 B1
6427285 Legatt et al. Aug 2002 B1
6430471 Kintou et al. Aug 2002 B1
6431296 Won Aug 2002 B1
6437227 Theimer Aug 2002 B1
6437465 Nishimura et al. Aug 2002 B1
6438456 Feddema et al. Aug 2002 B1
6438793 Miner et al. Aug 2002 B1
6442476 Poropat Aug 2002 B1
6442789 Legatt et al. Sep 2002 B1
6443509 Levin et al. Sep 2002 B1
6444003 Sutcliffe Sep 2002 B1
6446302 Kasper et al. Sep 2002 B1
6454036 Airey et al. Sep 2002 B1
D464091 Christianson Oct 2002 S
6457206 Judson Oct 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463368 Feiten et al. Oct 2002 B1
6465982 Bergvall et al. Oct 2002 B1
6473167 Odell Oct 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6481515 Kirkpatrick et al. Nov 2002 B1
6482252 Conrad et al. Nov 2002 B1
6490539 Dickson et al. Dec 2002 B1
6491127 Holmberg et al. Dec 2002 B1
6493612 Bisset et al. Dec 2002 B1
6493613 Peless et al. Dec 2002 B2
6496754 Song et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6502657 Kerrebrock et al. Jan 2003 B2
6504610 Bauer et al. Jan 2003 B1
6507773 Parker et al. Jan 2003 B2
6519808 Legatt et al. Feb 2003 B2
6525509 Petersson et al. Feb 2003 B1
D471243 Cioffi et al. Mar 2003 S
6530102 Pierce et al. Mar 2003 B1
6530117 Peterson Mar 2003 B2
6532404 Colens Mar 2003 B2
6535793 Allard Mar 2003 B2
6540424 Hall et al. Apr 2003 B1
6540607 Mokris et al. Apr 2003 B2
6548982 Papanikolopoulos et al. Apr 2003 B1
6553612 Dyson et al. Apr 2003 B1
6556722 Russell et al. Apr 2003 B1
6556892 Kuroki et al. Apr 2003 B2
6557104 Vu et al. Apr 2003 B2
D474312 Stephens et al. May 2003 S
6563130 Dworkowski et al. May 2003 B2
6571415 Gerber et al. Jun 2003 B2
6571422 Gordon et al. Jun 2003 B1
6572711 Sclafani et al. Jun 2003 B2
6574536 Kawagoe et al. Jun 2003 B1
6580246 Jacobs Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6586908 Petersson et al. Jul 2003 B2
6587573 Stam et al. Jul 2003 B1
6590222 Bisset et al. Jul 2003 B1
6594551 McKinney et al. Jul 2003 B2
6594844 Jones Jul 2003 B2
6597076 Scheible et al. Jul 2003 B2
D478884 Slipy et al. Aug 2003 S
6601265 Burlington Aug 2003 B1
6604021 Imai et al. Aug 2003 B2
6604022 Parker et al. Aug 2003 B2
6605156 Clark et al. Aug 2003 B1
6609269 Kasper Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6611734 Parker et al. Aug 2003 B2
6611738 Ruffner Aug 2003 B2
6615108 Peless et al. Sep 2003 B1
6615434 Davis et al. Sep 2003 B1
6615885 Ohm Sep 2003 B1
6622465 Jerome et al. Sep 2003 B2
6624744 Wilson et al. Sep 2003 B1
6625843 Kim et al. Sep 2003 B2
6629028 Paromtchik et al. Sep 2003 B2
6633150 Wallach et al. Oct 2003 B1
6637546 Wang Oct 2003 B1
6639659 Granger Oct 2003 B2
6658325 Zweig Dec 2003 B2
6658354 Lin Dec 2003 B2
6658692 Lenkiewicz et al. Dec 2003 B2
6658693 Reed Dec 2003 B1
6661239 Ozick Dec 2003 B1
6662889 De Fazio et al. Dec 2003 B2
6668951 Won Dec 2003 B2
6670817 Fournier et al. Dec 2003 B2
6671592 Bisset et al. Dec 2003 B1
6671925 Field et al. Jan 2004 B2
6677938 Maynard Jan 2004 B1
6687571 Byrne et al. Feb 2004 B1
6690134 Jones et al. Feb 2004 B1
6690993 Foulke et al. Feb 2004 B2
6697147 Ko et al. Feb 2004 B2
6705332 Field et al. Mar 2004 B2
6711280 Stafsudd et al. Mar 2004 B2
6732826 Song et al. May 2004 B2
6735811 Field et al. May 2004 B2
6735812 Hekman et al. May 2004 B2
6737591 Lapstun et al. May 2004 B1
6741054 Koselka et al. May 2004 B2
6741364 Lange et al. May 2004 B2
6748297 Song et al. Jun 2004 B2
6756703 Chang Jun 2004 B2
6760647 Nourbakhsh et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769004 Barrett Jul 2004 B2
6774596 Bisset Aug 2004 B1
6779380 Nieuwkamp Aug 2004 B1
6781338 Jones et al. Aug 2004 B2
6809490 Jones et al. Oct 2004 B2
6810305 Kirkpatrick Oct 2004 B2
6810350 Blakley Oct 2004 B2
6830120 Yashima et al. Dec 2004 B1
6832407 Salem et al. Dec 2004 B2
6836701 McKee Dec 2004 B2
6841963 Song et al. Jan 2005 B2
6845297 Allard Jan 2005 B2
6848146 Wright et al. Feb 2005 B2
6854148 Rief et al. Feb 2005 B1
6856811 Burdue et al. Feb 2005 B2
6859010 Jeon et al. Feb 2005 B2
6859682 Naka et al. Feb 2005 B2
6860206 Rudakevych et al. Mar 2005 B1
6865447 Lau et al. Mar 2005 B2
6870792 Chiappetta Mar 2005 B2
6871115 Huang et al. Mar 2005 B2
6883201 Jones et al. Apr 2005 B2
6886651 Slocum et al. May 2005 B1
6888333 Laby May 2005 B2
6901624 Mori et al. Jun 2005 B2
6906702 Tanaka et al. Jun 2005 B1
6914403 Tsurumi Jul 2005 B2
6917854 Bayer Jul 2005 B2
6925357 Wang et al. Aug 2005 B2
6925679 Wallach et al. Aug 2005 B2
6929548 Wang Aug 2005 B2
D510066 Hickey et al. Sep 2005 S
6938298 Aasen Sep 2005 B2
6940291 Ozick Sep 2005 B1
6941199 Bottomley Sep 2005 B1
6956348 Landry et al. Oct 2005 B2
6957712 Song et al. Oct 2005 B2
6960986 Asama et al. Nov 2005 B2
6965209 Jones et al. Nov 2005 B2
6965211 Tsurumi Nov 2005 B2
6968592 Takeuchi et al. Nov 2005 B2
6971140 Kim Dec 2005 B2
6975246 Trudeau Dec 2005 B1
6980229 Ebersole Dec 2005 B1
6985556 Shanmugavel et al. Jan 2006 B2
6993954 George et al. Feb 2006 B1
6999850 McDonald Feb 2006 B2
7013527 Thomas et al. Mar 2006 B2
7024278 Chiappetta et al. Apr 2006 B2
7024280 Parker et al. Apr 2006 B2
7027893 Perry et al. Apr 2006 B2
7030768 Wanie Apr 2006 B2
7031805 Lee et al. Apr 2006 B2
7032469 Bailey Apr 2006 B2
7040869 Beenker May 2006 B2
7041029 Fulghum et al. May 2006 B2
7051399 Field et al. May 2006 B2
7053578 Diehl et al. May 2006 B2
7054716 McKee et al. May 2006 B2
7055210 Keppler et al. Jun 2006 B2
7057120 Ma et al. Jun 2006 B2
7057643 Iida et al. Jun 2006 B2
7059012 Song et al. Jun 2006 B2
7065430 Naka et al. Jun 2006 B2
7066291 Martins et al. Jun 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7079923 Abramson et al. Jul 2006 B2
7085623 Siegers Aug 2006 B2
7085624 Aldred et al. Aug 2006 B2
7113847 Chmura et al. Sep 2006 B2
7133746 Abramson et al. Nov 2006 B2
7142198 Lee Nov 2006 B2
7148458 Schell et al. Dec 2006 B2
7155308 Jones Dec 2006 B2
7167775 Abramson et al. Jan 2007 B2
7171285 Kim et al. Jan 2007 B2
7173391 Jones et al. Feb 2007 B2
7174238 Zweig Feb 2007 B1
7188000 Chiappetta et al. Mar 2007 B2
7193384 Norman et al. Mar 2007 B1
7196487 Jones et al. Mar 2007 B2
7201786 Wegelin et al. Apr 2007 B2
7206677 Hulden Apr 2007 B2
7211980 Bruemmer et al. May 2007 B1
7225500 Diehl et al. Jun 2007 B2
7246405 Yan Jul 2007 B2
7248951 Hulden Jul 2007 B2
7275280 Haegermarck et al. Oct 2007 B2
7283892 Boillot et al. Oct 2007 B1
7288912 Landry et al. Oct 2007 B2
7318248 Yan Jan 2008 B1
7320149 Huffman et al. Jan 2008 B1
7321807 Laski Jan 2008 B2
7324870 Lee Jan 2008 B2
7328196 Peters Feb 2008 B2
7332890 Cohen et al. Feb 2008 B2
7346428 Huffman et al. Mar 2008 B1
7352153 Yan Apr 2008 B2
7359766 Jeon et al. Apr 2008 B2
7360277 Moshenrose et al. Apr 2008 B2
7363108 Noda et al. Apr 2008 B2
7388879 Sabe et al. Jun 2008 B2
7389156 Ziegler et al. Jun 2008 B2
7389166 Harwig et al. Jun 2008 B2
7408157 Yan Aug 2008 B2
7418762 Arai et al. Sep 2008 B2
7430455 Casey et al. Sep 2008 B2
7430462 Chiu et al. Sep 2008 B2
7441298 Svendsen et al. Oct 2008 B2
7444206 Abramson et al. Oct 2008 B2
7448113 Jones et al. Nov 2008 B2
7459871 Landry et al. Dec 2008 B2
7467026 Sakagami et al. Dec 2008 B2
7474941 Kim et al. Jan 2009 B2
7503096 Lin Mar 2009 B2
7515991 Egawa et al. Apr 2009 B2
7539557 Yamauchi May 2009 B2
7555363 Augenbraun et al. Jun 2009 B2
7557703 Yamada et al. Jul 2009 B2
7567052 Jones et al. Jul 2009 B2
7568259 Yan Aug 2009 B2
7571511 Jones et al. Aug 2009 B2
7578020 Jaworski et al. Aug 2009 B2
7579803 Jones et al. Aug 2009 B2
7600521 Woo Oct 2009 B2
7603744 Reindle Oct 2009 B2
7611583 Buckley et al. Nov 2009 B2
7617557 Reindle Nov 2009 B2
7620476 Morse et al. Nov 2009 B2
7636928 Uno Dec 2009 B2
7636982 Jones et al. Dec 2009 B2
7647144 Haegermarck Jan 2010 B2
7650666 Jang Jan 2010 B2
7660650 Kawagoe et al. Feb 2010 B2
7663333 Jones et al. Feb 2010 B2
7693605 Park Apr 2010 B2
7706917 Chiappetta et al. Apr 2010 B1
7720554 DiBernardo et al. May 2010 B2
7761954 Ziegler et al. Jul 2010 B2
7765635 Park Aug 2010 B2
7784147 Burkholder et al. Aug 2010 B2
7801645 Taylor et al. Sep 2010 B2
7805220 Taylor et al. Sep 2010 B2
7809944 Kawamoto Oct 2010 B2
7832048 Harwig et al. Nov 2010 B2
7849555 Hahm et al. Dec 2010 B2
7853645 Brown et al. Dec 2010 B2
7860680 Arms et al. Dec 2010 B2
7920941 Park et al. Apr 2011 B2
7937800 Yan May 2011 B2
7957836 Myeong et al. Jun 2011 B2
8087117 Kapoor et al. Jan 2012 B2
8368339 Jones et al. Feb 2013 B2
20010004719 Sommer Jun 2001 A1
20010013929 Torsten Aug 2001 A1
20010020200 Das et al. Sep 2001 A1
20010021882 Hosonuma et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010037163 Allard Nov 2001 A1
20010043509 Green et al. Nov 2001 A1
20010045883 Holdaway et al. Nov 2001 A1
20010047231 Peless et al. Nov 2001 A1
20010047895 De Fazio et al. Dec 2001 A1
20020011367 Kolesnik Jan 2002 A1
20020011813 Koselka et al. Jan 2002 A1
20020016649 Jones Feb 2002 A1
20020021219 Edwards Feb 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020036779 Kiyoi et al. Mar 2002 A1
20020081937 Yamada et al. Jun 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020097400 Jung et al. Jul 2002 A1
20020104963 Mancevski Aug 2002 A1
20020108209 Peterson Aug 2002 A1
20020112742 Bredo et al. Aug 2002 A1
20020113973 Ge Aug 2002 A1
20020116089 Kirkpatrick Aug 2002 A1
20020120364 Colens Aug 2002 A1
20020124343 Reed Sep 2002 A1
20020153185 Song et al. Oct 2002 A1
20020156556 Ruffner Oct 2002 A1
20020159051 Guo Oct 2002 A1
20020166193 Kasper Nov 2002 A1
20020169521 Goodman et al. Nov 2002 A1
20020173877 Zweig Nov 2002 A1
20020189871 Won Dec 2002 A1
20030009259 Hattori et al. Jan 2003 A1
20030015232 Nguyen Jan 2003 A1
20030019071 Field et al. Jan 2003 A1
20030023356 Keable Jan 2003 A1
20030024986 Mazz et al. Feb 2003 A1
20030025472 Jones et al. Feb 2003 A1
20030028286 Glenn et al. Feb 2003 A1
20030030399 Jacobs Feb 2003 A1
20030058262 Sato et al. Mar 2003 A1
20030060928 Abramson et al. Mar 2003 A1
20030067451 Tagg et al. Apr 2003 A1
20030097875 Lentz et al. May 2003 A1
20030120389 Abramson et al. Jun 2003 A1
20030124312 Autumn Jul 2003 A1
20030126352 Barrett Jul 2003 A1
20030137268 Papanikolopoulos et al. Jul 2003 A1
20030146384 Logsdon et al. Aug 2003 A1
20030159232 Hekman et al. Aug 2003 A1
20030168081 Lee et al. Sep 2003 A1
20030175138 Beenker Sep 2003 A1
20030192144 Song et al. Oct 2003 A1
20030193657 Uomori et al. Oct 2003 A1
20030216834 Allard Nov 2003 A1
20030221114 Hino et al. Nov 2003 A1
20030229421 Chmura et al. Dec 2003 A1
20030229474 Suzuki et al. Dec 2003 A1
20030233171 Heiligensetzer Dec 2003 A1
20030233177 Johnson et al. Dec 2003 A1
20030233870 Mancevski Dec 2003 A1
20030233930 Ozick Dec 2003 A1
20040016077 Song et al. Jan 2004 A1
20040020000 Jones Feb 2004 A1
20040030448 Solomon Feb 2004 A1
20040030449 Solomon Feb 2004 A1
20040030450 Solomon Feb 2004 A1
20040030451 Solomon Feb 2004 A1
20040030570 Solomon Feb 2004 A1
20040030571 Solomon Feb 2004 A1
20040031113 Wosewick et al. Feb 2004 A1
20040049877 Jones et al. Mar 2004 A1
20040055163 McCambridge et al. Mar 2004 A1
20040068351 Solomon Apr 2004 A1
20040068415 Solomon Apr 2004 A1
20040068416 Solomon Apr 2004 A1
20040074038 Im et al. Apr 2004 A1
20040074044 Diehl et al. Apr 2004 A1
20040076324 Burl et al. Apr 2004 A1
20040083570 Song et al. May 2004 A1
20040085037 Jones et al. May 2004 A1
20040088079 Lavarec et al. May 2004 A1
20040093122 Galibraith May 2004 A1
20040098167 Yi et al. May 2004 A1
20040111184 Chiappetta et al. Jun 2004 A1
20040111821 Lenkiewicz et al. Jun 2004 A1
20040113777 Matsuhira et al. Jun 2004 A1
20040117064 McDonald Jun 2004 A1
20040117846 Karaoguz et al. Jun 2004 A1
20040118998 Wingett et al. Jun 2004 A1
20040128028 Miyamoto et al. Jul 2004 A1
20040133316 Dean Jul 2004 A1
20040134336 Solomon Jul 2004 A1
20040134337 Solomon Jul 2004 A1
20040143919 Wilder Jul 2004 A1
20040148419 Chen et al. Jul 2004 A1
20040148731 Damman et al. Aug 2004 A1
20040153212 Profio et al. Aug 2004 A1
20040156541 Jeon et al. Aug 2004 A1
20040158357 Lee et al. Aug 2004 A1
20040181706 Chen et al. Sep 2004 A1
20040187249 Jones et al. Sep 2004 A1
20040187457 Colens Sep 2004 A1
20040196451 Aoyama Oct 2004 A1
20040200505 Taylor et al. Oct 2004 A1
20040201361 Koh et al. Oct 2004 A1
20040204792 Taylor et al. Oct 2004 A1
20040204804 Lee et al. Oct 2004 A1
20040210345 Noda et al. Oct 2004 A1
20040210347 Sawada et al. Oct 2004 A1
20040211444 Taylor et al. Oct 2004 A1
20040221790 Sinclair et al. Nov 2004 A1
20040236468 Taylor et al. Nov 2004 A1
20040244138 Taylor et al. Dec 2004 A1
20040255425 Arai et al. Dec 2004 A1
20050000543 Taylor et al. Jan 2005 A1
20050010330 Abramson et al. Jan 2005 A1
20050010331 Taylor et al. Jan 2005 A1
20050015920 Kim et al. Jan 2005 A1
20050021181 Kim et al. Jan 2005 A1
20050028316 Thomas et al. Feb 2005 A1
20050053912 Roth et al. Mar 2005 A1
20050055796 Wright et al. Mar 2005 A1
20050067994 Jones et al. Mar 2005 A1
20050081782 Buckley et al. Apr 2005 A1
20050085947 Aldred et al. Apr 2005 A1
20050091782 Gordon et al. May 2005 A1
20050091786 Wright et al. May 2005 A1
20050137749 Jeon et al. Jun 2005 A1
20050144751 Kegg et al. Jul 2005 A1
20050150074 Diehl et al. Jul 2005 A1
20050150519 Keppler et al. Jul 2005 A1
20050154795 Kuz et al. Jul 2005 A1
20050156562 Cohen et al. Jul 2005 A1
20050162119 Landry et al. Jul 2005 A1
20050163119 Ito et al. Jul 2005 A1
20050165508 Kanda et al. Jul 2005 A1
20050166354 Uehigashi Aug 2005 A1
20050166355 Tani Aug 2005 A1
20050172445 Diehl et al. Aug 2005 A1
20050183229 Uehigashi Aug 2005 A1
20050183230 Uehigashi Aug 2005 A1
20050187678 Myeong et al. Aug 2005 A1
20050192707 Park et al. Sep 2005 A1
20050204717 Colens Sep 2005 A1
20050209736 Kawagoe Sep 2005 A1
20050211880 Schell et al. Sep 2005 A1
20050212929 Schell et al. Sep 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20050217042 Reindle Oct 2005 A1
20050218852 Landry et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050229340 Sawalski et al. Oct 2005 A1
20050229355 Crouch et al. Oct 2005 A1
20050235451 Yan Oct 2005 A1
20050251292 Casey et al. Nov 2005 A1
20050255425 Pierson Nov 2005 A1
20050258154 Blankenship et al. Nov 2005 A1
20050273967 Taylor et al. Dec 2005 A1
20050288819 De Guzman Dec 2005 A1
20060000050 Cipolla et al. Jan 2006 A1
20060009879 Lynch et al. Jan 2006 A1
20060010638 Shimizu et al. Jan 2006 A1
20060020369 Taylor et al. Jan 2006 A1
20060020370 Abramson Jan 2006 A1
20060021168 Nishikawa Feb 2006 A1
20060025134 Cho et al. Feb 2006 A1
20060037170 Shimizu Feb 2006 A1
20060042042 Mertes et al. Mar 2006 A1
20060044546 Lewin et al. Mar 2006 A1
20060060216 Woo Mar 2006 A1
20060061657 Rew et al. Mar 2006 A1
20060064828 Stein et al. Mar 2006 A1
20060087273 Ko et al. Apr 2006 A1
20060089765 Pack et al. Apr 2006 A1
20060100741 Jung May 2006 A1
20060107894 Buckley et al. May 2006 A1
20060119839 Bertin et al. Jun 2006 A1
20060143295 Costa-Requena et al. Jun 2006 A1
20060146776 Kim Jul 2006 A1
20060150361 Aldred et al. Jul 2006 A1
20060184293 Konandreas et al. Aug 2006 A1
20060185690 Song et al. Aug 2006 A1
20060190133 Konandreas et al. Aug 2006 A1
20060190134 Ziegler et al. Aug 2006 A1
20060190146 Morse et al. Aug 2006 A1
20060196003 Song et al. Sep 2006 A1
20060200281 Ziegler et al. Sep 2006 A1
20060220900 Ceskutti et al. Oct 2006 A1
20060229774 Park et al. Oct 2006 A1
20060259194 Chiu Nov 2006 A1
20060259494 Watson et al. Nov 2006 A1
20060278161 Burkholder et al. Dec 2006 A1
20060288519 Jaworski et al. Dec 2006 A1
20060293787 Kanda et al. Dec 2006 A1
20060293808 Qian Dec 2006 A1
20070006404 Cheng et al. Jan 2007 A1
20070016328 Ziegler et al. Jan 2007 A1
20070017061 Yan Jan 2007 A1
20070028574 Yan Feb 2007 A1
20070032904 Kawagoe et al. Feb 2007 A1
20070042716 Goodall et al. Feb 2007 A1
20070043459 Abbott et al. Feb 2007 A1
20070061041 Zweig Mar 2007 A1
20070061043 Ermakov et al. Mar 2007 A1
20070114975 Cohen et al. May 2007 A1
20070142964 Abramson Jun 2007 A1
20070150096 Yeh et al. Jun 2007 A1
20070156286 Yamauchi Jul 2007 A1
20070157415 Lee et al. Jul 2007 A1
20070157420 Lee et al. Jul 2007 A1
20070179670 Chiappetta et al. Aug 2007 A1
20070213892 Jones et al. Sep 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070234492 Svendsen et al. Oct 2007 A1
20070244610 Ozick et al. Oct 2007 A1
20070245511 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070261193 Gordon et al. Nov 2007 A1
20070266508 Jones et al. Nov 2007 A1
20070290649 Jones et al. Dec 2007 A1
20080007203 Cohen et al. Jan 2008 A1
20080039974 Sandin et al. Feb 2008 A1
20080052846 Kapoor et al. Mar 2008 A1
20080091304 Ozick et al. Apr 2008 A1
20080109126 Sandin et al. May 2008 A1
20080134458 Ziegler et al. Jun 2008 A1
20080140255 Ziegler et al. Jun 2008 A1
20080155768 Ziegler et al. Jul 2008 A1
20080184518 Taylor et al. Aug 2008 A1
20080266748 Lee Oct 2008 A1
20080276407 Schnittman et al. Nov 2008 A1
20080281470 Gilbert et al. Nov 2008 A1
20080282494 Won et al. Nov 2008 A1
20080294288 Yamauchi Nov 2008 A1
20080302586 Yan Dec 2008 A1
20080307590 Jones et al. Dec 2008 A1
20090007366 Svendsen et al. Jan 2009 A1
20090038089 Landry et al. Feb 2009 A1
20090048727 Hong et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055022 Casey et al. Feb 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090292393 Casey et al. Nov 2009 A1
20090319083 Jones et al. Dec 2009 A1
20100006028 Buckley et al. Jan 2010 A1
20100011529 Won et al. Jan 2010 A1
20100049365 Jones et al. Feb 2010 A1
20100063628 Landry et al. Mar 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100107355 Won et al. May 2010 A1
20100257690 Jones et al. Oct 2010 A1
20100257691 Jones et al. Oct 2010 A1
20100263158 Jones et al. Oct 2010 A1
20100268384 Jones et al. Oct 2010 A1
20100293742 Chung et al. Nov 2010 A1
20100312429 Jones et al. Dec 2010 A1
Foreign Referenced Citations (352)
Number Date Country
2128842 Dec 1980 DE
3317376 Dec 1987 DE
3536907 Feb 1989 DE
3404202 Dec 1992 DE
199311014 Oct 1993 DE
4338841 May 1995 DE
4414683 Oct 1995 DE
19849978 Feb 2001 DE
10242257 Apr 2003 DE
102004038074 Jun 2005 DE
10357636 Jul 2005 DE
102004041021 Aug 2005 DE
102005046813 Apr 2007 DE
338988 Dec 1988 DK
0265542 May 1988 EP
0281085 Sep 1988 EP
0286328 Oct 1988 EP
0294101 Dec 1988 EP
0352045 Jan 1990 EP
0433697 Jun 1991 EP
0437024 Jul 1991 EP
0554978 Aug 1993 EP
0615719 Sep 1994 EP
0792726 Sep 1997 EP
0930040 Jul 1999 EP
0845237 Apr 2000 EP
0861629 Sep 2001 EP
1228734 Aug 2002 EP
1149333 Nov 2002 EP
1380245 Jan 2004 EP
1380246 Jan 2004 EP
1018315 Nov 2004 EP
1553472 Jul 2005 EP
1557730 Jul 2005 EP
1642522 Apr 2006 EP
1672455 Jun 2006 EP
1836941 Sep 2007 EP
2238196 Aug 2005 ES
722755 Mar 1932 FR
2601443 Jan 1988 FR
2828589 Feb 2003 FR
702426 Jan 1954 GB
2128842 May 1984 GB
2225221 May 1990 GB
2267360 Dec 1993 GB
2283838 May 1995 GB
2284957 Jun 1995 GB
2300082 Oct 1996 GB
2344747 Jun 2000 GB
2404330 Feb 2005 GB
2417354 Feb 2006 GB
08286741 Nov 1996 JO
53021869 Feb 1978 JP
53110257 Sep 1978 JP
57064217 Apr 1982 JP
59005315 Jan 1984 JP
59033511 Mar 1984 JP
59094005 May 1984 JP
59099308 Jun 1984 JP
59112311 Jun 1984 JP
59120124 Jul 1984 JP
59131668 Sep 1984 JP
59164973 Sep 1984 JP
59184917 Oct 1984 JP
2283343 Nov 1984 JP
59212924 Dec 1984 JP
59226909 Dec 1984 JP
60089213 May 1985 JP
60211510 Oct 1985 JP
60259895 Dec 1985 JP
61023221 Jan 1986 JP
61097712 May 1986 JP
61160366 Jul 1986 JP
62070709 Apr 1987 JP
62074018 Apr 1987 JP
62120510 Jun 1987 JP
62154008 Jul 1987 JP
62164431 Jul 1987 JP
62263507 Nov 1987 JP
62263508 Nov 1987 JP
62189057 Dec 1987 JP
62292126 Dec 1987 JP
63079623 Apr 1988 JP
63158032 Jul 1988 JP
63203483 Aug 1988 JP
63241610 Oct 1988 JP
1118752 Aug 1989 JP
2-6312 Jan 1990 JP
3051023 Mar 1991 JP
4019586 Jan 1992 JP
4074285 Mar 1992 JP
4084921 Mar 1992 JP
5023269 Feb 1993 JP
5042076 Feb 1993 JP
5046246 Feb 1993 JP
584200 Apr 1993 JP
5091604 Apr 1993 JP
5095879 Apr 1993 JP
5150827 Jun 1993 JP
5150829 Jun 1993 JP
5054620 Jul 1993 JP
5040519 Oct 1993 JP
05257527 Oct 1993 JP
5257533 Oct 1993 JP
05285861 Nov 1993 JP
5302836 Nov 1993 JP
5312514 Nov 1993 JP
05046239 Dec 1993 JP
5341904 Dec 1993 JP
6003251 Jan 1994 JP
6038912 Feb 1994 JP
H06-010772 Feb 1994 JP
6105781 Apr 1994 JP
6137828 May 1994 JP
6154143 Jun 1994 JP
6293095 Oct 1994 JP
06327 598 Nov 1994 JP
7047046 Feb 1995 JP
07129239 May 1995 JP
7059702 Jun 1995 JP
7222705 Aug 1995 JP
07222705 Aug 1995 JP
7270518 Oct 1995 JP
7281742 Oct 1995 JP
07281752 Oct 1995 JP
7295638 Nov 1995 JP
7313417 Dec 1995 JP
07319542 Dec 1995 JP
7334242 Dec 1995 JP
8000393 Jan 1996 JP
08016241 Jan 1996 JP
8016776 Jan 1996 JP
08063229 Jan 1996 JP
8084696 Apr 1996 JP
8089449 Apr 1996 JP
08089451 Apr 1996 JP
8123548 May 1996 JP
8152916 Jun 1996 JP
08256960 Oct 1996 JP
8263137 Oct 1996 JP
8286744 Nov 1996 JP
8286745 Nov 1996 JP
8286747 Nov 1996 JP
8335112 Dec 1996 JP
8339297 Dec 1996 JP
943901 Feb 1997 JP
9044240 Feb 1997 JP
9066855 Mar 1997 JP
9145309 Jun 1997 JP
09160644 Jun 1997 JP
9179625 Jul 1997 JP
09179625 Jul 1997 JP
09185410 Jul 1997 JP
9192069 Jul 1997 JP
2555263 Aug 1997 JP
9204223 Aug 1997 JP
09206258 Aug 1997 JP
09233712 Sep 1997 JP
9251318 Sep 1997 JP
9265319 Oct 1997 JP
9269807 Oct 1997 JP
9269810 Oct 1997 JP
9319431 Dec 1997 JP
9319432 Dec 1997 JP
9319434 Dec 1997 JP
9325812 Dec 1997 JP
10055215 Feb 1998 JP
10117973 May 1998 JP
10118963 May 1998 JP
10165738 Jun 1998 JP
10177414 Jun 1998 JP
10228316 Aug 1998 JP
10295595 Nov 1998 JP
10314088 Dec 1998 JP
11015941 Jan 1999 JP
11085269 Mar 1999 JP
11102220 Apr 1999 JP
11162454 Jun 1999 JP
11174145 Jul 1999 JP
11175149 Jul 1999 JP
11178765 Jul 1999 JP
114008764 Jul 1999 JP
11212642 Aug 1999 JP
11212642 Aug 1999 JP
11213157 Aug 1999 JP
11282532 Oct 1999 JP
11282533 Oct 1999 JP
11295412 Oct 1999 JP
2000047728 Feb 2000 JP
2000056006 Feb 2000 JP
2000056831 Feb 2000 JP
2000060782 Feb 2000 JP
2000066722 Mar 2000 JP
2000075925 Mar 2000 JP
2000102499 Apr 2000 JP
2000275321 Oct 2000 JP
2000279353 Oct 2000 JP
2000353014 Dec 2000 JP
2001022443 Jan 2001 JP
2001067588 Mar 2001 JP
2001087182 Apr 2001 JP
2001121455 May 2001 JP
2001125641 May 2001 JP
2001508572 Jun 2001 JP
2001197008 Jul 2001 JP
3197758 Aug 2001 JP
3201903 Aug 2001 JP
2001216482 Aug 2001 JP
2001258807 Sep 2001 JP
2001265437 Sep 2001 JP
2001275908 Oct 2001 JP
2001289939 Oct 2001 JP
2001306170 Nov 2001 JP
2002073170 Mar 2002 JP
2002078650 Mar 2002 JP
2002204768 Jul 2002 JP
2002204769 Jul 2002 JP
2002247510 Aug 2002 JP
2002532180 Oct 2002 JP
2002533797 Oct 2002 JP
2002323925 Nov 2002 JP
2002333920 Nov 2002 JP
2002355206 Dec 2002 JP
2002360471 Dec 2002 JP
2002360482 Dec 2002 JP
2002366227 Dec 2002 JP
2002369778 Dec 2002 JP
2003005296 Jan 2003 JP
2003010076 Jan 2003 JP
2003010088 Jan 2003 JP
2003015740 Jan 2003 JP
2003028528 Jan 2003 JP
2003036116 Feb 2003 JP
2003038401 Feb 2003 JP
2003038402 Feb 2003 JP
2003047579 Feb 2003 JP
2003068 Mar 2003 JP
2003084994 Mar 2003 JP
2003167628 Jun 2003 JP
2003180586 Jul 2003 JP
2003180587 Jul 2003 JP
2003186539 Jul 2003 JP
2003190064 Jul 2003 JP
2003241836 Aug 2003 JP
2003262520 Sep 2003 JP
2003304992 Oct 2003 JP
2003310509 Nov 2003 JP
2003330543 Nov 2003 JP
2004123040 Apr 2004 JP
2004148021 May 2004 JP
2004160102 Jun 2004 JP
2004166968 Jun 2004 JP
2004174228 Jun 2004 JP
2004198330 Jul 2004 JP
2004219185 Aug 2004 JP
2004351234 Dec 2004 JP
2005118354 May 2005 JP
2005135400 May 2005 JP
2005211360 Aug 2005 JP
2005224265 Aug 2005 JP
2005230032 Sep 2005 JP
2005245916 Sep 2005 JP
2005346700 Dec 2005 JP
2005352707 Dec 2005 JP
2006043071 Feb 2006 JP
2006079145 Mar 2006 JP
2006079157 Mar 2006 JP
2006155274 Jun 2006 JP
2006164223 Jun 2006 JP
2006227673 Aug 2006 JP
2006247467 Sep 2006 JP
2006260161 Sep 2006 JP
2006293662 Oct 2006 JP
2006296697 Nov 2006 JP
2007034866 Feb 2007 JP
2007213180 Aug 2007 JP
2009015611 Jan 2009 JP
2010198552 Sep 2010 JP
9526512 Oct 1995 WO
9530887 Nov 1995 WO
9617258 Jun 1996 WO
9715224 May 1997 WO
9740734 Nov 1997 WO
9741451 Nov 1997 WO
9853456 Nov 1998 WO
9905580 Feb 1999 WO
9916078 Apr 1999 WO
9938056 Jul 1999 WO
9938237 Jul 1999 WO
9943250 Sep 1999 WO
0038026 Jun 2000 WO
0038028 Jun 2000 WO
0038029 Jun 2000 WO
0004430 Oct 2000 WO
0078410 Dec 2000 WO
0106904 Feb 2001 WO
0106905 Feb 2001 WO
0180703 Nov 2001 WO
0191623 Dec 2001 WO
0224292 Mar 2002 WO
0239864 May 2002 WO
0239868 May 2002 WO
02058527 Aug 2002 WO
02062194 Aug 2002 WO
02067744 Sep 2002 WO
02067745 Sep 2002 WO
02067752 Sep 2002 WO
02069774 Sep 2002 WO
02069775 Sep 2002 WO
02074150 Sep 2002 WO
02075350 Sep 2002 WO
02075356 Sep 2002 WO
02075469 Sep 2002 WO
02075470 Sep 2002 WO
02081074 Oct 2002 WO
02101477 Dec 2002 WO
03015220 Feb 2003 WO
03024292 Mar 2003 WO
03026474 Apr 2003 WO
03040546 May 2003 WO
03040845 May 2003 WO
03040846 May 2003 WO
03062850 Jul 2003 WO
03062852 Jul 2003 WO
2004004533 Jan 2004 WO
2004004534 Jan 2004 WO
2004006034 Jan 2004 WO
2004025947 Mar 2004 WO
2004043215 May 2004 WO
2004058028 Jul 2004 WO
2005006935 Jan 2005 WO
2005036292 Apr 2005 WO
2005037496 Apr 2005 WO
2005055795 Jun 2005 WO
2005055796 Jun 2005 WO
2005076545 Aug 2005 WO
2005077243 Aug 2005 WO
2005077244 Aug 2005 WO
2005081074 Sep 2005 WO
2005082223 Sep 2005 WO
2005083541 Sep 2005 WO
2005098475 Oct 2005 WO
2005098476 Oct 2005 WO
2006046400 May 2006 WO
2006061133 Jun 2006 WO
2006068403 Jun 2006 WO
2006073248 Jul 2006 WO
2006089307 Aug 2006 WO
2007028049 Mar 2007 WO
2007036490 Apr 2007 WO
2007065033 Jun 2007 WO
2007137234 Nov 2007 WO
Non-Patent Literature Citations (236)
Entry
Andersen et al., “Landmark based navigation strategies,” SPIE Conference on Mobile Robots XIII, SPIE vol. 3525, pp. 170-181, Jan. 8, 1999.
Ascii, Mar. 25, 2002, http://ascii.jp/elem/000/000/330/330024/, accessed Nov. 2011, 15 pages (with English translation).
Barker, “Navigation by the Stars—Ben Barker 4th Year Project,” Nov. 2004, 20 pages.
Becker et al., “Reliable Navigation Using Landmarks,” IEEE International Conference on Robotics and Automation, 0-7803-1965-6, pp. 401-406, 1995.
Benayad-Cherif et al., “Mobile Robot Navigation Sensors,” SPIE vol. 1831 Mobile Robots, VII, pp. 378-387, 1992.
Betke et al. “Mobile robot localization using landmarks,” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems '94 Advanced Robotic Systems and the Real World (IROS '94), Accessed via IEEE Xplore, 1994, 8 pages.
Bison et al., “Using a structured beacon for cooperative position estimation,” Robotics and Autonomous Systems, 29(1):33-40, Oct. 1999.
Blaasvaer et al., “AMOR—An Autonomous Mobile Robot Navigation System,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2266-2271, 1994.
Borges et al., “Optimal Mobile Robot Pose Estimation Using Geometrical Maps,” IEEE Transactions on Robotics and Automation, 18(1): 87-94, Feb. 2002.
Braunstingl et al., “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception,” ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain, pp. 367-376, Sep. 1995.
Bulusu et al., “Self Configuring Localization systems: Design and Experimental Evaluation,” ACM Transactions on Embedded Computing Systems, 3(1):24-60, 2003.
Caccia et al., “Bottom-Following for Remotely Operated Vehicles,” 5th IFAC Conference, Alaborg, Denmark, pp. 245-250, Aug. 2000.
U.S. Appl. No. 60/605,066 as provided to WIPO in PCT/US2005/030422, corresponding to U.S. Appl. No. 11/574,290, U.S.publication 2008/0184518, filed Aug. 27, 2004.
U.S. Appl. No. 60/605,181 as provided to WIPO in PCT/US2005/030422, corresponding to U.S. Appl. No. 11/574,290, U.S.publication 2008/0184518, filed Aug. 27, 2004.
Chae et al., “StarLITE: A new artificial landmark for the navigation of mobile robots,” http://www.irc.atr.jp/jk-nrs2005/pdf/Starlite.pdf, 4 pages, 2005.
Chamberlin et al., “Team 1: Robot Locator Beacon System, ” NASA Goddard SFC, Design Proposal, 15 pages, Feb. 2006.
Champy, “Physical management of IT assets in Data Centers using RFID technologies,” RFID 2005 University, Oct. 12-14, 2005 , 19 pages.
Chiri, “Joystick Control for Tiny OS Robot,” http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2002/chiri.pdf. 12 pages, Aug. 2002.
Christensen et al. “Theoretical Methods for Planning and Control in Mobile Robotics,” 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 81-86, May 1997.
CleanMate 365, Intelligent Automatic Vacuum Cleaner, Model No. QQ-1, User Manual www.metapo.com/support/user—manual.pdf, Dec. 2005, 11 pages.
Clerentin et al., “A localization method based on two omnidirectional perception systems cooperation,” Proc of IEEE International Conference on Robotics & Automation, San Francisco, CA vol. 2, pp. 1219-1224, Apr. 2000.
Corke, “High Performance Visual serving for robots end-point control,” SPIE vol. 2056, Intelligent Robots and Computer Vision, 1993, 10 pages.
Cozman et al., “Robot Localization using a Computer Vision Sextant,” IEEE International Midwest Conference on Robotics and Automation, pp. 106-111, 1995.
D'Orazio et al., “Model based Vision System for mobile robot position estimation”, SPIE, vol. 2058 Mobile Robots VIII, pp. 38-49, 1992.
De Bakker et al., “Smart PSD—array for sheet of light range imaging”, Proc. of SPIE, vol. 3965, pp. 1-12, May 2000.
Denning Roboscrub image (1989), 1 page.
Desaulniers et al., “An Efficient Algorithm to find a shortest path for a car-like Robot,” IEEE Transactions on robotics and Automation , 11(6):819-828, Dec. 1995.
Dorfmüller-Ulhaas, “Optical Tracking From User Motion to 3D Interaction,” http://www.cg.tuwien.ac.at/research/publications/2002/Dorfmueller-Ulhaas-thesis, 182 pages, 2002.
Dorsch et al., “Laser Triangulation: Fundamental uncertainty in distance measurement,” Applied Optics, 33(7):1306-1314, Mar. 1994.
Doty et al., “Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent,” AAAI 1993 Fall Symposium Series, Instantiating Real-World Agents, pp. 1-6, Oct. 22-24, 1993.
Dudek et al., “Localizing a Robot with Minimum Travel” Proceedings of the sixth annual ACM-SIAM symposium on Discrete Algorithms, 27(2):583-604, Apr. 1998.
Dulimarta et al., “Mobile Robot Localization in Indoor Environment”, Pattern Recognition, 30(1):99-111, 1997.
Dyson's Robot Vacuum Cleaner—the DC06, May 2004, Retrieved from the Internet: URL< http://www.gizmag.com/go/1282/>. Accessed Nov. 2011, 3 pages.
EBay, “Roomba Timer—> Timed Cleaning—Floorvac Robotic Vacuum,” Retrieved from the Internet: URL Cgi.ebay.com/ws/eBay|SAP|.dll?viewitem&category=43526&item=4375198387&rd=1, 5 pages, Apr. 2005.
Electrolux Trilobite, “Time to enjoy life,” Retrieved from the Internet: URL<http://www.robocon.co.kr/trilobite/Presentation—Trilobite—Kor—030104.ppt, 26 pages, accessed Dec. 2011.
Electrolux Trilobite, Jan. 12, 2001, http://www.electroluxui.com:8080/2002%5C822%5C833102EN.pdf, accessed Jul. 2, 2012, 10 pages.
Electrolux, “Designed for the well-lived home,” Retrieved from the Internet: URL<http://www.electroluxusa.com/node57.as[?currentURL=node142.asp%3F >. Accessed Mar. 2005, 2 pages.
Eren et al., “Accuracy in position estimation of mobile robots based on coded infrared signal transmission,” Proceedings: Integrating Intelligent Instrumentation and Control, Instrumentation and Measurement Technology Conference, 1995, IMTC/95. pp. 548-551, 1995.
Eren et al., “Operation of Mobile Robots in a Structured Infrared Environment,” Proceedings ‘Sensing, Processing, Networking’, IEEE Instrumentation and Measurement Technology Conference, 1997 (IMTC/97), Ottawa, Canada vol. 1, pp. 20-25, May 1997.
Euroflex Intelligente Monstre, (English excerpt only), 2006, 15 pages.
Euroflex, Jan. 2006, Retrieved from the Internet: URL< http://www.euroflex.tv/novita—dett.php?id=15, accessed Nov. 2011, 1 page.
eVac Robotic Vacuum S1727 Instruction Manual, Sharper Image Corp, Copyright 2004, 16 pages.
Everyday Robots, “Everyday Robots: Reviews, Discussion and News for Consumers,” Aug. 2004, Retrieved from the Internet: URL< www.everydayrobots.com/index.php?option=content&task=view&id=9> (Sep. 2012), 4 pages.
Evolution Robotics, “NorthStar—Low-cost Indoor Localiztion—How it Works,” E Evolution Robotics , 2 pages, 2005.
Facchinetti Claudio et al., “Self-Positioning Robot Navigation Using Ceiling Images Sequences,” ACCV '95, 5 pages, Dec. 1995.
Facchinetti Claudio et al., “Using and Learning Vision-Based Self-Positioning for Autonomous Robot Navigation,” ICARCV '94, vol. 3, pp. 1694-1698, 1994.
Facts on Trilobite, webpage, Retrieved from the Internet: URL< http://trilobiteelectroluxse/presskit—en/model11335asp?print=yes&pressID=>. 2 pages, accessed Dec. 2003.
Fairfield et al., “Mobile Robot Localization with Sparse Landmarks,” SPIE vol. 4573, pp. 148-155, 2002.
Favre-Bulle, “Efficient tracking of 3D—Robot Position by Dynamic Triangulation,” IEEE Instrumentation and Measurement Technology Conference IMTC 98 Session on Instrumentation and Measurement in Robotics, vol. 1, pp. 446-449, May 1998.
Fayman, “Exploiting Process Integration and Composition in the context of Active Vision,” IEEE Transactions on Systems, Man, and Cybernetics—Part C: Application and reviews, vol. 29, No. 1, pp. 73-86, Feb. 1999.
Floorbot GE Plastics—IMAGE, available at http://www.fuseid.com/, 1989-1990, Accessed Sep. 2012, 1 page.
Floorbotics, VR8 Floor Cleaning Robot, Product Description for Manufacturing, URL: <http://www.consensus.sem.au/SoftwareAwards/CSAarchive/CSA2004/CSAart04/FloorBot/F>. Mar. 2004, 11 pages.
Franz et al., “Biomimetric robot navigation”, Robotics and Autonomous Systems, vol. 30 pp. 133-153, 2000.
Friendly Robotics, “Friendly Robotics—Friendly Vac, Robotic Vacuum Cleaner,” Retrieved from the Internet: URL< www.friendlyrobotics.com/vac.htm > 5 pages, Apr. 2005.
Friendly Robotics, Retrieved from the Internet: URL<http://www.robotsandrelax.com/PDFs/RV400Manual.pdf>. 18 pages, accessed Dec. 2011.
Fuentes et al., “Mobile Robotics 1994,” University of Rochester. Computer Science Department, TR 588, 44 pages, Dec. 1994.
Fukuda et al., “Navigation System based on Ceiling Landmark Recognition for Autonomous mobile robot,” 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, pp. 1466/1471, Aug. 1995.
Gat, “Robust Low-Computation Sensor-driven Control for Task-Directed Navigation,” Proc of IEEE International Conference on Robotics and Automation , Sacramento, CA pp. 2484-2489, Apr. 1991.
Gionis, “A hand-held optical surface scanner for environmental Modeling and Virtual Reality,” Virtual Reality World, 16 pages, 1996.
Goncalves et al., “A Visual Front-End for Simultaneous Localization and Mapping”, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 44-49, Apr. 2005.
Gregg et al., “Autonomous Lawn Care Applications,” 2006 Florida Conference on Recent Advances in Robotics, Miami, Florida, May 25-26, 2006, Florida International University, 5 pages.
Grumet, “Robots Clean House,” Popular Mechanics, Nov. 2003, 3 pages.
Hamamatsu “SI PIN Diode S5980, S5981 S5870—Multi-element photodiodes for surface mounting,” Hamatsu Photonics, 2 pages, Apr. 2004.
Haralick et al. “Pose Estimation from Corresponding Point Data”, IEEE Transactions on Systems, Man, and Cybernetics, 19(6):1426-1446, Nov. 1989.
Hausler, “About the Scaling Behaviour of Optical Range Sensors,” Fringe '97, Proceedings of the 3rd International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, pp. 147-155, Sep. 1997.
Hitachi, http://www.hitachi.co.jp/New/cnews/hi—030529—hi—030529.pdf , 8 pages, May 29, 2003.
Hitachi: News release: “The home cleaning robot of the autonomous movement type (experimental machine),” Retrieved from the Internet: URL< www.i4u.com./japanreleases/hitachirobot.htm>. 5 pages, Mar. 2005.
Hoag et al., “Navigation and Guidance in interstellar space,” ACTA Astronautica, vol. 2, pp. 513-533 , Feb. 1975.
Home Robot—UBOT; Microbotusa.com, retrieved from the WWW at www.microrobotusa.com, accessed Dec. 2, 2008, 2 pages.
Huntsberger et al., “CAMPOUT: A Control Architecture for Tightly Coupled Coordination of Multirobot Systems for Planetary Surface Exploration,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 33(5):550-559, Sep. 2003.
Iirobotics.com, “Samsung Unveils Its Multifunction Robot Vacuum,” Retrieved from the Internet: URL<.www.iirobotics.com/webpages/hotstuff.php?ubre=111>. 3 pages, Mar. 2005.
InMach “Intelligent Machines,” Retrieved from the Internet: URL<www.inmach.de/inside.html>. 1 page , Nov. 2008.
Innovation First, “2004 EDU Robot Controller Reference Guide,” Retrieved from the Internet: URL<http://www.ifirobotics.com>. 13 pages, Mar. 2004.
IT media, Retrieved from the Internet: URL<http://www.itmedia.co.jp/news/0111/16/robofesta—m.html>. Accessed Nov. 1, 2011, 4 pages.
It's eye, Retrieved from the Internet: URL< www.hitachi.co.jp/rd/pdf/topics/hitac2003—10.pdf>. 2 pages, 2003.
Jarosiewicz et al., “Final Report—Lucid,” University of Florida, Departmetn of Electrical and Computer Engineering, EEL 5666—Intelligent Machine Design Laboratory, 50 pages, Aug. 1999.
Jensfelt et al., “Active Global Localization for a mobile robot using multiple hypothesis tracking,” IEEE Transactions on Robots and Automation, 17(5): 748-760, Oct. 2001.
Jeong et al., “An intelligent map-building system for indoor mobile robot using low cost photo sensors,” SPIE, vol. 6042, 6 pages, 2005.
Kahney, “Robot Vacs are in the House,” Retrieved from the Internet: URL<www.wired.com/news/technology/o,1282,59237,00.html>. 6 pages, Jun. 2003.
Karcher “Karcher RoboCleaner RC 3000,” Retrieved from the Internet: URL<www.robocleaner.de/english/screen3.html>. 4 pages, Dec. 2003.
Karcher RC 3000 Cleaning Robot-user manual Manufacturer: Alfred-Karcher GmbH & Co, Cleaning Systems, Alfred Karcher-Str 28-40, PO Box 160, D-71349 Winnenden, Germany, Dec. 2002, 8 pages.
Karcher RC3000 RoboCleaner,—IMAGE, Accessed at <http://www.karcher.de/versions/int/assets/video/2—4—robo—en.swf>. Accessed Sep. 2009, 1 page.
Karcher USA, RC3000 Robotic Cleaner, website: http://www.karcher-usa.com/showproducts.php?op=view prod&paraml=143&param2=&param3=, 3 pages, accessed Mar. 2005.
Karcher, “Product Manual Download Karch”, available at www.karcher.com, 16 pages, 2004.
Karlsson et al, “Core Technologies for service Robotics,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2979-2984, Sep. 2004.
Karlsson et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 24-29, Apr. 2005.
King and Weiman, “HelpmateTM Autonomous Mobile Robots Navigation Systems,” SPIE vol. 1388 Mobile Robots, pp. 190-198, 1990.
Kleinberg, The Localization Problem for Mobile Robots, Laboratory for Computer Science, Massachusetts Institute of Technology, 1994 IEEE, pp. 521-531, 1994.
Knights, et al., “Localization and Identification of Visual Landmarks,” Journal of Computing Sciences in Colleges, 16(4):312-313, May 2001.
Kolodko et al., “Experimental System for Real-Time Motion Estimation,” Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), pp. 981-986, 2003.
Komoriya et al., “Planning of Landmark Measurement for the Navigation of a Mobile Robot,” Proceedings of the 1992 IEEE/RSJ International Cofnerence on Intelligent Robots and Systems, Raleigh, NC pp. 1476-1481, Jul. 1992.
KOOLVAC Robotic Vacuum Cleaner Owner's Manual, Koolatron, 2004, 13 pages.
Krotkov et al., “Digital Sextant,” Downloaded from the internet at: http://www.cs.cmu.edu/˜epk/ , 1 page, 1995.
Krupa et al., “Autonomous 3-D Positioning of Surgical Instruments in Robotized Laparoscopic Surgery Using Visual Servoin,” IEEE Transactions on Robotics and Automation, 19(5):842-853, Oct. 2003.
Kuhl et al., “Self Localization in Environments using Visual Angles,” VRCAI '04 Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry, pp. 472-475, 2004.
Kurs et al, Wireless Power transfer via Strongly Coupled Magnetic Resonances, Downloaded from www.sciencemag.org, Aug. 2007, 5 pages.
Kurth, “Range-Only Robot Localization and SLAM with Radio”, http://www.ri.cmu.edu/pub—files/pub4/kurth—derek—2004—1/kurth—derek—2004—1.pdf. 60 pages, May, 2004, accessed Jul. 27, 2012.
Kwon et al., “Table Recognition through Range-based Candidate Generation and Vision based Candidate Evaluation,” ICAR 2007, The 13th International Conference on Advanced Robotics Aug. 21-24, 2007, Jeju, Korea, pp. 918-923, 2007.
Lambrinos et al., “A mobile robot employing insect strategies for navigation,” Retrieved from the Internat: URL<http://www8.cs.umu.se/kurser/TDBD17/VT04/dl/Assignment%20Papers/lambrinos-RAS-2000.pdf>. 38 pages, Feb. 1999.
Lang et al., “Visual Measurement of Orientation Using Ceiling Features”, 1994 IEEE, pp. 552-555, 1994.
Lapin, “Adaptive position estimation for an automated guided vehicle,” SPIE, vol. 1831 Mobile Robots VII, pp. 82-94, 1992.
LaValle et al., “Robot Motion Planning in a Changing, Partially Predictable Environment,” 1994 IEEE International Symposium on Intelligent Control, Columbus, OH, pp. 261-266, Aug. 1994.
Lee et al., “Development of Indoor Navigation system for Humanoid Robot Using Multi-sensors Integration”, ION NTM, San Diego, CA pp. 798-805, Jan. 2007.
Lee et al., “Localization of a Mobile Robot Using the Image of a Moving Object,” IEEE Transaction on Industrial Electronics, 50(3):612-619, Jun. 2003.
Leonard et al., “Mobile Robot Localization by tracking Geometric Beacons,” IEEE Transaction on Robotics and Automation, 7(3):376-382, Jun. 1991.
Li et al. “Robust Statistical Methods for Securing Wireless Localization in Sensor Networks,” Information Processing in Sensor Networks, 2005, Fourth International Symposium on, pp. 91-98, Apr. 2005.
Li et al., “Making a Local Map of Indoor Environments by Swiveling a Camera and a Sonar,” Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 954-959, 1999.
Lin et al., “Mobile Robot Navigation Using Artificial Landmarks,” Journal of robotics System, 14(2): 93-106, 1997.
Linde, Dissertation—“On Aspects of Indoor Localization,” Available at: https://eldorado.tu-dortmund.de/handle/2003/22854, University of Dortmund, 138 pages, Aug. 2006.
Lumelsky et al., “An Algorithm for Maze Searching with Azimuth Input”, 1994 IEEE International Conference on Robotics and Automation, San Diego, CA vol. 1, pp. 111-116, 1994.
Luo et al., “Real-time Area-Covering Operations with Obstacle Avoidance for Cleaning Robots,” IEEE, pp. 2359-2364, 2002.
Ma, Thesis—“Documentation on Northstar,” California Institute of Technology, 14 pages, May 2006.
Madsen et al., “Optimal landmark selection for triangulation of robot position,” Journal of Robotics and Autonomous Systems, vol. 13 pp. 277-292, 1998.
Malik et al., “Virtual Prototyping for Conceptual Design of a Tracked Mobile Robot,” Electrical and Computer Engineering, Canadian Conference on, IEEE, PI. pp. 2349-2352, May 2006.
Martishevcky, “The Accuracy of point light target coordinate determination by dissectoral tracking system”, SPIE vol. 2591, pp. 25-30, Oct. 23, 2005.
Maschinemarkt Würzburg 105, No. 27, pp. 3, 30, Jul. 5, 1999 (with English translation).
Matsumura Camera Online Shop: Retrieved from the Internet: URL< http://www.rakuten.co.jp/matsucame/587179/711512/>. Accessed Nov. 2011, 15 pages (with English translation).
Matsutek Enterprises Co. Ltd, “Automatic Rechargeable Vacuum Cleaner,” http://matsutek.manufacturer.globalsources.com/si/6008801427181/pdtl/Home-vacuum/10 . . . , Apr. 2007, 3 pages.
McGillem et al., “Infra-red Lacation System for Navigation and Autonomous Vehicles,” 1988 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1236-1238, Apr. 1988.
McGillem,et al. “A Beacon Navigation Method for Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, 38(3):132-139, Aug. 1989.
McLurkin “Stupid Robot Tricks: A Behavior-based Distributed Algorithm Library for Programming Swarms of Robots,” Paper submitted for requirements of BSEE at MIT, May 2004, 127 pages.
McLurkin, “The Ants: A community of Microrobots,” Paper submitted for requirements of BSEE at MIT, May 1995, 60 pages.
Michelson, “Autonomous navigation,” McGraw-Hill—Access Science, Encyclopedia of Science and Technology Online, 2007, 4 pages.
Miro et al., “Towards Vision Based Navigation in Large Indoor Environments,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2096-2102, Oct. 2006.
MobileMag, “Samsung Unveils High-tech Robot Vacuum Cleaner,” Retrieved from the Internet: URL<http://www.mobilemag.com/content/100/102/C2261/>. 4 pages, Mar. 2005.
Monteiro et al., “Visual Servoing for Fast Mobile Robot: Adaptive Estimation of Kinematic Parameters,” Proceedings of the IECON '93., International Conference on Industrial Electronics, Maui, HI, pp. 1588-1593, Nov. 1993.
Moore et al., “A simple Map—bases Localization strategy using range measurements,” SPIE, vol. 5804 pp. 612-620, 2005.
Morland,“Autonomous Lawnmower Control”, Downloaded from the internet at: http://cns.bu.edu/˜cjmorlan/robotics/lawnmower/report.pdf, 10 pages, Jul. 2002.
Munich et al., “ERSP: A Software Platform and Architecture for the Service Robotics Industry,” Intelligent Robots and Systems, 2005. (IROS 2005), pp. 460-467, Aug. 2005.
Munich et al., “SIFT-ing Through Features with ViPR”, IEEE Robotics & Automation Magazine, pp. 72-77, Sep. 2006.
Nam et al., “Real-Time Dynamic Visual Tracking Using PSD Sensors and extended Trapezoidal Motion Planning”, Applied Intelligence 10, pp. 53-70, 1999.
Nitu et al., “Optomechatronic System for Position Detection of a Mobile Mini-Robot,” IEEE Ttransactions on Industrial Electronics, 52(4):969-973, Aug. 2005.
On Robo, “Robot Reviews Samsung Robot Vacuum (VC-RP30W),” Retrieved from the Internet: URL <www.onrobo.com/reviews/AT—Home/vacuum—cleaners/on00vcrb30rosam/index.htm>. 2 pages, 2005.
OnRobo “Samsung Unveils Its Multifunction Robot Vacuum,” Retrieved from the Internet: URL <www.onrobo.com/enews/0210/samsung—vacuum.shtml>. 3 pages, Mar. 2005.
Pages et al., “A camera-projector system for robot positioning by visual serving,” Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW06), 8 pages, Jun. 2006.
Pages et al., “Optimizing Plane-to-Plane Positioning Tasks by Image-Based Visual Servoing and Structured Light,” IEEE Transactions on Robotics, 22(5):1000-1010, Oct. 2006.
Pages et al., “Robust decoupled visual servoing based on structured light,” 2005 IEEE/RSJ, Int. Conf. on Intelligent Robots and Systems, pp. 2676-2681, 2005.
Park et al., “A Neural Network Based Real-Time Robot Tracking Controller Using Position Sensitive Detectors,” IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on Neutral Networks, Orlando, Florida pp. 2754-2758, Jun./Jul. 1994.
Park et al., “Dynamic Visual Servo Control of Robot Manipulators using Neutral Networks,” The Korean Institute Telematics and Electronics, 29-B(10):771-779, Oct. 1992.
Paromtchik “Toward Optical Guidance of Mobile Robots,” Proceedings of the Fourth World Multiconference on Systemics, Cybermetics and Informatics, Orlando, FL, USA, Jul. 23, 2000, vol. IX, pp. 44-49, available at http://emotion.inrialpes.fr/˜paromt/infos/papers/paromtchik:asama:sci:2000.ps.gz, accessed Jul. 3, 2012, 6 pages.
Paromtchik et al., “Optical Guidance System for Multiple mobile Robots,” Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, vol. 3, pp. 2935-2940, May 2001.
Penna et al., “Models for Map Building and Navigation”, IEEE Transactions on Systems. Man. and Cybernetics., 23(5):1276-1301, Sep./Oct. 1993.
Pirjanian et al. “Representation and Execution of Plan Sequences for Multi-Agent Systems,” Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2117-2123, Oct. 2001.
Pirjanian et al., “A decision-theoretic approach to fuzzy behavior coordination”, 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1999. CIRA '99., Monterey, CA, pp. 101-106, Nov. 1999.
Pirjanian et al., “Distributed Control for a Modular, Reconfigurable Cliff Robot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 4083-4088, May 2002.
Pirjanian et al., “Improving Task Reliability by Fusion of Redundant Homogeneous Modules Using Voting Schemes,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM, pp. 425-430, Apr. 1997.
Pirjanian et al., “Multi-Robot Target Acquisition using Multiple Objective Behavior Coordination,” Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 2696-2702, Apr. 2000.
Pirjanian, “Challenges for Standards for consumer Robotics,” IEEE Workshop on Advanced Robotics and its Social impacts, pp. 260-264, Jun. 2005.
Pirjanian, “Reliable Reaction,” Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 158-165, 1996.
Prassler et al., “A Short History of Cleaning Robots,” Autonomous Robots 9, 211-226, 2000, 16 pages.
Put Your Roomba . . . On, Automatic webpages: http://www.acomputeredge.com/roomba, 5 pages, accessed Apr. 2005.
Remazeilles et al., “Image based robot navigation in 3D environments,” Proc. of SPIE, vol. 6052, pp. 1-14, Dec. 2005.
Rives et al., “Visual servoing based on ellipse features,” SPIE, vol. 2056 Intelligent Robots and Computer Vision pp. 356-367, 1993.
Roboking—not just a vacuum cleaner, a robot!, Jan. 21, 2004, infocom.uz/2004/01/21/robokingne-prosto-pyilesos-a-robot/, accessed Oct. 10, 2011, 5 pages.
RoboMaid Sweeps Your Floors So You Won't Have to, the Official Site, website: Retrieved from the Internet: URL<http://therobomaid.com/>. 2 pages, accessed Mar. 2005.
Robot Buying Guide, “LG announces the first robotic vacuum cleaner for Korea,” Retrieved from the Internet: URL<http://robotbg.com/news/2003/04/22/lg—announces—the—first—robotic—vacu>. 1 page, Apr. 2003.
Robotics World, “A Clean Sweep,” 5 pages, Jan. 2001.
Ronnback, “On Methods for Assistive Mobile Robots,” Retrieved from the Internet: URL<http://www.openthesis.org/documents/methods-assistive-mobile-robots-595019.html>. 218 pages, Jan. 2006.
Roth-Tabak et al., “Environment Model for mobile Robots Indoor Navigation,” SPIE, vol. 1388 Mobile Robots, pp. 453-463, 1990.
Sahin et al., “Development of a Visual Object Localization Module for Mobile Robots,” 1999 Third European Workshop on Advanced Mobile Robots, (Eurobot '99), pp. 65-72, 1999.
Salomon et al., “Low-Cost Optical Indoor Localization system for Mobile Objects without Image Processing,” IEEE Conference on Emerging Technologies and Factory Automation, 2006. (ETFA '06), pp. 629-632, Sep. 2006.
Sato, “Range Imaging Based on Moving Pattern Light and Spatio-Temporal Matched Filter,” Proceedings International Conference on Image Processing, vol. 1., Lausanne, Switzerland, pp. 33-36, Sep. 1996.
Schenker et al., “Lightweight rovers for Mars science exploration and sample return,” Intelligent Robots and Computer Vision XVI, SPIE Proc. 3208, pp. 24-36, 1997.
Schlemmer, “Electrolux Trilobite Robotic Vacuum,” Retrieved from the Internet: URL< www.hammacher.com/publish/71579.asp?promo=xsells>. 3 pages, Mar. 2005.
Schofield, “Neither Master nor slave—A Practical Study in the Development and Employment of Cleaning Robots, Emerging Technologies and Factory Automation,” 1999 Proceedings ETFA '99 1999 7th IEEE International Conference on Barcelona, Spain, pp. 1427-1434, Oct. 1999.
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery,” Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, Baltimore, MD, pp. 1049-1050, 1994.
Sim et al, “Learning Visual Landmarks for Pose Estimation,” IEEE International Conference on Robotics and Automation, vol. 3, Detroit, MI, pp. 1972-1978, May 1999.
Sobh et al., “Case Studies in Web-Controlled Devices and Remote Manipulation,” Automation Congress, 2002 Proceedings of the 5th Biannual World, pp. 435-440, Dec. 2002.
Special Reports, “Vacuum Cleaner Robot Operated in Conjunction with 3G Celluar Phone,” 59(9): 3 pages, Retrieved from the Internet: URL<http://www.toshiba.co.jp/tech/review/2004/09/59—0>. 2004.
Stella et al., “Self-Location for Indoor Navigation of Autonomous Vehicles,” Part of the SPIE conference on Enhanced and Synthetic Vision SPIE vol. 3364, pp. 298-302, 1998.
Summet, “Tracking Locations of Moving Hand-held Displays Using Projected Light,” Pervasive 2005, LNCS 3468, pp. 37-46, 2005.
Svedman et al., “Structure from Stereo Vision using Unsynchronized Cameras for Simultaneous Localization and Mapping,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2998, 2005.
SVET Computers—New Technologies—Robot Vacuum Cleaner, Oct. 1999, available at http://www.sk.rs/1999/10/sknt01.html, 1 page, accessed Nov. 1, 2011.
Taipei Times, “Robotic vacuum by Matsuhita about to undergo testing,” Retrieved from the Internet: URL<http://www.taipeitimes.com/News/worldbiz/archives/2002/03/26/0000129338>. accessed Mar. 2002, 2 pages.
Takio et al., “Real-Time Position and Pose Tracking Method of Moving Object Using Visual Servo System,” 47th IEEE International Symposium on Circuits and Systems, pp. 167-170, 2004.
Tech-on!, Retrieved from the Internet: URL<http://techon.nikkeibp.co.jp/members/01db/200203/1006501/>. 4 pages, accessed Nov. 2011.
Teller, “Pervasive pose awareness for people, Objects and Robots,” http://www.ai.mit.edu/lab/dangerous-ideas/Spring2003/teller-pose.pdf, 6 pages, Apr. 2003.
Terada et al., “An Acquisition of the Relation between Vision and Action using Self-Organizing Map and Reinforcement Learning,” 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, pp. 429-434, Apr. 1998.
The Sharper Image, eVac Robotic Vacuum—Product Details, www.sharperiamge.com/us/en/templates/products/pipmorework1printable.jhtml, 1 page, Accessed Mar. 2005.
TheRobotStore.com, “Friendly Robotics Robotic Vacuum RV400—The Robot Store,” www.therobotstore.com/s.nl/sc.9/category.-109/it.A/id.43/.f, 1 page, Apr. 2005.
Thrun, Sebastian, “Learning Occupancy Grid Maps With Forward Sensor Models,” Autonomous Robots 15, 28 pages, Sep. 1, 2003.
TotalVac.com, RC3000 RoboCleaner website, 2004, Accessed at http://ww.totalvac.com/robot—vacuum.htm (Mar. 2005), 3 pages.
Trebi-Ollennu et al., “Mars Rover Pair Cooperatively Transporting a Long Payload,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C. pp. 3136-3141, May 2002.
Tribelhorn et al., “Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education,” IEEE, pp. 1393-1399, 2007.
Tse et al., “Design of a Navigation System for a Household Mobile Robot Using Neural Networks,” Department of Manufacturing Engg. & Engg. Management, City University of Hong Kong, pp. 2151-2156, 1998.
UAMA (Asia) Industrial Co., Ltd., “RobotFamily,” 2005, 1 page.
UBOT, cleaning robot capable of wiping with a wet duster, Retrieved from the Internet: URL<http://us.aving.net/news/view.php?articleId=23031>. 4 pages, accessed Nov. 2011.
Watanabe et al., “Position Estimation of Mobile Robots With Internal and External Sensors Using Uncertainty Evolution Technique,” 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 2011-2016, May 1990.
Watts, “Robot, boldly goes where no man can,” The Times—pp. 20, Jan. 1985.
Wijk et al., “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking,” IEEE Transactions on Robotics and Automation, 16(6):740-752, Dec. 2000.
Wolf et al., “Robust Vision-Based Localization by Combining an Image-Retrieval System with Monte Carol Localization,”, IEEE Transactions on Robotics, 21(2):208-216, Apr. 2005.
Wolf et al., “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, D.C., pp. 359-365, May 2002.
Wong, “EIED Online>> Robot Business”, ED Online ID# 13114, 17 pages, Jul. 2006.
Yamamoto et al., “Optical Sensing for Robot Perception and Localization,” 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 14-17, 2005.
Yata et al., “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer,” Proceedings of the 1998 IEEE, International Conference on Robotics & Automation, Leuven, Belgium, pp. 1590-1596, May 1998.
Yujin Robotics,“An intelligent cleaning robot,” Retrieved from the Internet: URL<http://us.aving.net/news/view.php?articleId=7257>. 8 pages, accessed Nov. 2011.
Yun et al., “Image-Based Absolute Positioning System for Mobile Robot Navigation,” IAPR International Workshops SSPR, Hong Kong, pp. 261-269, Aug. 2006.
Yun et al., “Robust Positioning a Mobile Robot with Active Beacon Sensors,” Lecture Notes in Computer Science, 2006, vol. 4251, pp. 890-897, 2006.
Yuta et al., “Implementation of an Active Optical Range sensor Using Laser Slit for In-Door Intelligent Mobile Robot,” IEE/RSJ International Workshop on Intelligent Robots and Systems (IROS 91) vol. 1, Osaka, Japan, pp. 415-420, Nov. 3-5, 1991.
Zha et al., “Mobile Robot Localization Using Incomplete Maps for Change Detection in a Dynamic Environment,” Advanced Intelligent Mechatronics '97. Final Program and Abstracts., IEEE/ASME International Conference, pp. 110, Jun. 1997.
Zhang et al., “A Novel Mobile Robot Localization Based on Vision,” SPIE vol. 6279, 6 pages, Jan. 2007.
Zoombot Remote Controlled Vaccuum—RV-500 NEW Roomba 2, website: http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&category=43526&item=4373497618&rd=1, accessed Apr. 20, 2005, 7 pages.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Dec. 26, 2012.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Sep. 12, 2012.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Apr. 17, 2012.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Feb. 13, 2012.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Oct. 11, 2011.
Collection of pictures of robotic cleaners, devices AA-BF, 50 pages, undated.
Office Action from U.S. Appl. No. 11/671,305, dated Aug. 22, 2007.
English Language Translation of EP1380245, published Jan. 2004.
English Language Translation of EP1557730, published Jul. 2005.
English Language Translation of JP2003061882, published Mar. 2003.
English Language Translation of WO02/071175, published Sep. 2002.
English Language Translation of WO2004/058028, published Jul. 2004.
English Language Translation of W02004059409, published Jul. 2004.
English Language Translation of WO2005055795, published Jun. 2005.
English Language Translation of WO2006/061133, published Jun. 2006.
English Language Translation of WO2006/068403, published Jun. 2006.
Notice of Allowance in U.S. Appl. No. 12/827,016, dated Mar. 14, 2011.
Notice of Allowance in U.S. Appl. No. 12/827,016, dated Nov. 17, 2010.
Notice of Allowance in U.S. Appl. No. 12/540,564, dated Apr. 20, 2011.
Office Action in U.S. Appl. No. 12/540,564, dated Oct. 28, 2010.
Notice of Allowance in U.S. Appl. No. 11/929,608, dated Mar. 26, 2009.
Notice of Allowance in U.S. Appl. No. 11/929,558, dated May 29, 2009.
Notice of Allowance in U.S. Appl. No. 11/929,558, dated Mar. 26, 2009.
Office Action in U.S. Appl. No. 11/929,558, dated Aug. 11, 2008.
Office Action in U.S. Appl. No. 11/691,735, dated Oct. 17, 2007.
Notice of Allowance in U.S. Appl. No. 11/221,392, dated Jan. 8, 2007.
Office Action in U.S. Appl. No. 11/221,392, dated Jun. 6, 2006.
Office Action in U.S. Appl. No. 11/221,392, dated Nov. 30, 2005.
Notice of Allowance in U.S. Appl. No. 101921,775, dated Jun. 16, 2005.
Office Action in U.S. Appl. No. 10/921,775, dated Mar. 10, 2005.
Notice of Allowance in U.S. Appl. No. 10/696,456, dated Apr. 13, 2004.
Notice of Allowance in U.S. Appl. No. 1 01056,804, dated Oct. 21, 2003.
Office Action in U.S. Appl. No. 101056,804, dated Apr. 21, 2003.
Office Action in Japanese Patent Application No. 2003-008478, drafting date of Jan. 8, 2004, and English language translation thereof.
Related Publications (1)
Number Date Country
20140222251 A1 Aug 2014 US
Provisional Applications (1)
Number Date Country
60263692 Jan 2001 US
Divisions (1)
Number Date Country
Parent 10056804 Jan 2002 US
Child 10696456 US
Continuations (7)
Number Date Country
Parent 13715363 Dec 2012 US
Child 14179284 US
Parent 12540564 Aug 2009 US
Child 13715363 US
Parent 11929558 Oct 2007 US
Child 12540564 US
Parent 11691735 Mar 2007 US
Child 11929558 US
Parent 11221392 Sep 2005 US
Child 11691735 US
Parent 10921775 Aug 2004 US
Child 11221392 US
Parent 10696456 Oct 2003 US
Child 10921775 US