The disclosure relates to the field of robotics, and more particularly to a control system and a robot for atomization and disinfection.
Space disinfection for epidemic prevention is an important means to prevent the spread of virus. The conventional way of disinfection is mainly artificial spray, and the burden is heavy. Moreover, the concentration of aerosols in the air is difficult to meet requirements of the epidemic prevention due to space air and personnel flow.
The disclosure provides a robot for atomization and disinfection (also referred to as atomizing disinfection robot) to realize an intelligent maintenance of sterilization aerosol, improve an intelligence of space disinfection and epidemic prevention, and reduce a burden of manual disinfection.
Specifically, the embodiment of the disclosure provides a robot for atomization and disinfection, which may include a robot body, an aerosol generator and an aerosol concentration detector arranged outside the robot body, and a main controller arranged inside the robot body.
The aerosol generator is configured for spraying aerosol mist particles into air.
The aerosol concentration detector is configured for detecting an aerosol concentration in the air.
The main controller is connected to the aerosol generator and the aerosol concentration detector, and is configured to control a spray volume of the aerosol mist particles sprayed from the aerosol generator in real time according to the aerosol concentration in the air detected by the aerosol concentration detector after the aerosol generator sprays the aerosol mist particles into the air.
In an embodiment, the robot for atomization and disinfection may further include:
a communicator connected to the main controller and configured for feeding back at least one of the aerosol concentration in the air detected by the aerosol concentration detector and the spray volume of the aerosol mist particles sprayed by the aerosol generator to an external monitoring center, and receiving a disinfection control command from the external monitoring center. The disinfection control command is configured to control the spray volume of the aerosol mist particles sprayed by the aerosol generator.
In an embodiment, the robot for atomization and disinfection may further include:
an infrared camera connected to the main controller and configured for real-time monitoring body temperature information of surrounding mobile personnel.
The main controller is further configured to judge whether the monitored body temperature information of the surrounding mobile personnel is abnormal, and send warning information to the external monitoring center through the communicator when the monitored body temperature information of the surrounding mobile personnel is abnormal.
In an embodiment, the robot for atomization and disinfection may further include:
a navigation camera connected to the main controller and configured for acquiring environmental image information around the robot.
The main controller is further configured to control at least one motion control quantity of the robot according to the environmental image information, and the at least one motion control quantity may include one or more selected from a group consisting of motion speed, motion angle and motion distance.
In an embodiment, the communicator is further configured to receive a motion control command from the external monitoring center.
The main controller is further configured to control the motion control quantity of the robot according to the motion control command.
In an embodiment, the robot for atomization and disinfection may further include:
a laser rangefinder connected to the main controller and configured for obtaining current distance information of an obstacle around the robot in a preset direction.
The main controller is further configured to control the motion control quantity of the robot according to the current distance information.
In an embodiment, the aerosol generator is configured to use compressed air to pass through a fine atomization nozzle in form of a high-speed air flow to generate a negative pressure around the fine atomization nozzle and thereby carry a liquid medicine of a liquid storage tank into the high-speed air flow to thereby smash the liquid medicine into aerosol mist particles of different sizes. Droplets of large mist particles of the aerosol mist particles fall back into the liquid storage tank through a collision of a return baffle, and remaining small mist particles of the aerosol mist particles are sprayed out at a high speed to form aerosol-like medicine particles in the air.
In an embodiment, the aerosol concentration detector is configured to pump the air through an air pump into a detection chamber to form an air flow, irradiate the air flow by light emitted from a LED light source, detect an absorbed rate of the light by the aerosol mist particles in the air flow, and thereby determine the aerosol concentration in the air.
In an embodiment, the main controller is further configured to construct a real-time track planning map path of the robot according to the environmental image information and thereby control the robot to move along the real-time track planning map path.
In an embodiment, an application scenario of the robot for atomization and disinfection may include one or more selected from a group consisting of hospital, hotel, shopping mall and station.
Compared with the prior art, the embodiments of the disclosure may mainly have the following beneficial effects.
The aerosol concentration is dynamically monitored in real time, and the sterilization aerosol is supplemented in real time according to a concentration change, the stability of the sterilization aerosol concentration is maintained, the intelligence of space disinfection and epidemic prevention is improved, and the burden of manual disinfection is reduced.
The disclosure will be further described in detail below in combination with the accompanying drawings and embodiments. It can be understood that the specific embodiments described herein are only used to explain the disclosure and not to limit the disclosure. In addition, it should be noted that for ease of description, only some but not all structures related to the disclosure are shown in the drawings.
In the description of the disclosure, it should be noted that the orientation or positional relationship indicated by the terms “center”, “up”, “down”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside” is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the disclosure and simplifying the description, rather than indicating or implying that the device or element must have a specific orientation, be configured and operated in a specific orientation, and therefore cannot be understood as a limitation of the disclosure. In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance. The terms “first position” and “second position” are two different positions.
In the description of the disclosure, it should be noted that the terms “installation”, “connect to” and “connection” should be understood in a broad sense unless otherwise clearly specified and limited, for example, they can be fixed connection or detachable connection; they can be mechanical connection or electrical connection; they can be connected directly or indirectly through an intermediate medium, and they can be a connection between the two elements. For those skilled in the related art, the specific meaning of the above terms in the disclosure can be understood in specific situations.
The aerosol generator 1 is configured for spraying aerosol mist particles into air.
Specifically, the aerosol generator 1 realizes the quantitative output of aerosols according to physical characteristics of different medicines. As shown in
The aerosol concentration detector 3 is configured to detect an aerosol concentration in the air.
Specifically, the aerosol concentration detector 3 is designed based on a principle of spectral detection. According to different characteristics of different spectral absorbed rate of medicines, a target LED light source is selected to determine the aerosol concentration (also referred to as sterilization aerosol concentration) in the air by detecting the absorbed rate of the target light source. As shown in
The main controller 2 is connected to the aerosol generator 1 and the aerosol concentration detector 3 to control a spray volume of aerosol mist particles from the aerosol generator 1 in real time according to an aerosol concentration in the air detected by the aerosol concentration detector 3 after the aerosol generator 1 sprays aerosol mist particles into the air.
Specifically, the main controller 2 controls the spray volume of aerosol mist particles from the aerosol generator 1 according to a preset required aerosol concentration. At the same time, the aerosol concentration detector 3 detects the aerosol concentration in the air and feeds it back to the main controller 2. The main controller 2 adjusts the spray volume of aerosol mist particles from the aerosol generator 1 in real time according to the concentration. When the aerosol concentration in the current air is too low, the main controller 2 controls the aerosol generator 1 to increase the spray volume of sprayed aerosol mist particles. When the aerosol concentration in the current air is too high, the main controller 2 controls the aerosol generator 1 to reduce the spray volume of sprayed aerosol mist particles and maintain the stability of the sterilization aerosol concentration in the air.
In an illustrated embodiment, as shown in
Specifically, the communicator 4 can send the aerosol concentration in the air detected by the aerosol concentration detector 3 and/or the spray volume of aerosol mist particles sprayed by the aerosol generator 1 to the monitoring center in real time. For example, the aerosol concentration in the air and/or the spray volume of aerosol mist particles can be displayed on a large screen of the monitoring center, so that the staff can understand the current disinfection situation of the robot for atomization and disinfection in real time. Moreover, the monitoring center can also send a disinfection control command to the robot to command the robot to work according to the instructions of the staff, for example, to control the spray volume of aerosol mist particles from aerosol generator 1.
In the technical solution of the embodiment of the disclosure, the aerosol concentration is dynamically monitored in real time, and the sterilization aerosol is supplemented in real time according to the concentration change, so as to maintain the stability of the concentration of the sterilization aerosol, improve the intelligence of space disinfection and epidemic prevention, and reduce the burden of manual disinfection.
The infrared camera 5 is connected to the main controller 2 and configured for real-time monitoring body temperature information of surrounding mobile personnel. The main controller 2 is configured to judge whether the body temperature information of the surrounding mobile personnel is abnormal. The main controller 2 will send warning information to the monitoring center through the communicator 4 when the body temperature information of the surrounding mobile personnel is abnormal.
Specifically, as shown in
The navigation camera 6 is connected to the main controller 2 and configured for acquiring environmental image information around the robot. The main controller 2 is configured to control at least one motion control quantity of the robot according to the environmental image information. The at least one motion control quantity includes one or more selected from a group consisting of motion speed, motion angle and motion distance. The communicator 4 is further configured to receive a motion control command from the monitoring center. The main controller 2 is further configured to control the motion control quantity of the robot according to the motion control command.
Specifically, because the working environment of the robot for atomization and disinfection is complex and uncertain, such as pedestrians passing by, the robot is required to recognize the surrounding environment in real time and respond in time. Therefore, it is necessary to build a multi-level information sensing system and develop an intelligent cruise robot system through multi-sensor information fusion technology. As shown in
In an illustrated embodiment, the main controller 2 is further configured to construct a real-time track planning map path of the robot according to the environmental image information, and control the robot to move along the path.
Specifically, the operator decides operation mode (i.e., working mode) of the cruise robot in advance. In a remote-control mode, the operator obtains the on-site environment image of the robot from the navigation camera 6 on the robot platform, and then controls the moving direction and speed of the robot through the handle. In an autonomous cruise mode of the robot, the road condition information is obtained simultaneously through the RGB camera and the depth camera, so as to obtain the depth information while obtaining the image information of the road surface and obstacles, and transmit it to the main controller 2 through the image interface. The main controller 2 carries out image processing and image feature extraction to obtain effective road condition information. The visual control core unit uses intelligent algorithm to map the effective road condition information to the vehicle driving motion control quantity. It can be understood that the visual control core unit includes a processor and a memory connected to the processor, and the memory includes software modules, executable by the processor.
The laser rangefinder 7 (also referred to as laser ranging unit) is connected to the main controller 2 and configured for obtaining a current distance information of an obstacle around the robot in a preset direction. The main controller 2 is configured to control the motion control quantity of the robot according to the current distance information.
Specifically, as shown in
In an illustrated embodiment, an application scenario of the robot for atomization and disinfection includes but are not limited to hospital, hotel, shopping mall, station, etc.
In the technical solution of the illustrated embodiment of the disclosure, the aerosol concentration is dynamically monitored in real time, and the sterilization aerosol is supplemented in real time according to the concentration change, so as to maintain the stability of the concentration of the sterilization aerosol, improve the intelligence of space disinfection and epidemic prevention, and reduce the burden of manual disinfection.
It is noted that the above is only the illustrated embodiments of the disclosure and the applied technical principle. Those skilled in the related art will understand that the disclosure is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made for those skilled in the related art without departing from the protection scope of the disclosure. Therefore, although the disclosure has been described in more detail through the above embodiments, the disclosure is not limited to the above embodiments, but can also include more other equivalent embodiments without departing from the concept of the disclosure, and the scope of the disclosure is determined by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2021100367862 | Jan 2021 | CN | national |