The device relates to a fiber placement cell for making fiber composite structures in which the dispensing head and creel are stationary relative to each other and the lay-up tool is mounted on the end of a movable robot arm.
Present day fiber placement systems for making composite parts use a stationary or rotating tool or workpiece with the dispensing head mounted on the end of a highly movable robot arm or other multi-axis manipulation system. U.S. Pat. No. 5,022,952 to Vaniglia shows a typical fiber placement system of this type. The robot arm or multi-axis system manipulates the dispensing head to apply the fiber to the tool in the desired pattern. In some systems, the tool may be mounted for rotation. The fiber is supplied from a creel that typically is fixed to the first axis of the manipulator, and the manipulation of the head by the robot arm requires that the fiber travel along a path that is continually changing in length and orientation. A modern fiber placement head typically moves through six degrees of freedom in delivering fiber to the part. This motion of the head results in stresses on the fiber which can cause it to break, and the mechanism used to guide and tension the fiber between the creel and the head is expensive and complex. The power, signal, and pneumatic lines that lead to the head also have to bend and move in response to the motion of the head. In order to accommodate this motion, the lines have to be designed with a certain amount of slack and free play along their length, and this increases the weight that has to be supported by the arm, slows down the motion of the arm and the head, reduces clearance between the layup system and the tool, and adds additional cost to the overall system.
The ability to quickly and automatically change out the dispensing head and/or the spools of fiber greatly improves the productivity of a fiber placement system. The currently available fiber placement systems which incorporate these features employ dockable, integrated head and creel assemblies which are attached to and move with the movable arm by means of commercial docking mechanisms, also referred to as tool changers. In addition to providing the mechanical load bearing support for the dispensing head, these docking mechanisms also have to provide automatic coupling and decoupling for all for the various electrical and pneumatic lines that lead to the head. In addition to the above mentioned issues associated with manipulating the required utilities through six degrees of freedom, this complexity further increases the potential for unreliability and adds even more cost to the system.
A fiber placement dispensing head is mounted on the end of a fixed support, the creel is fixed, and the lay-up tool is mounted on the end of a movable robot arm. The dispensing head remains stationary during fiber application to the tool, and the robot arm manipulates the tool as required to achieve the desired pattern of fiber application to the part. Tow material is directed to the head in nearly a straight line, without twisting or path length changes. The robot may be mounted on a linear slide to extend the reach of the robot arm to the tool, as may be required when applying fiber to an elongated part, or to allow fiber to be supplied from other work stations. The fixed head and creel provides a simple fixed path for the fiber between the creel and the fiber placement head, and simplifies the routing of utilities to the head. For parts which require different fiber blends to be applied to different segments of the workpiece, a number of different creels and heads may be positioned along the linear slide, and the robot can travel along the slide so that different fiber blends can be applied to the tool according to the part specification.
Turning now to the drawing figures,
The creel 12 utilizes standard spool mounting and tensioning components (not shown) to control the flow of the fiber from the creel to the head 15. As best seen in
Utilities 18 such as electrical power and control cables, and pneumatic hoses, are easily routed along the arm 14 to the dispensing head 15 in a reliable, cost effective manner. Since the utilities 18 are stationary, the utilities routing at the head itself can be configured to optimize the available clearance between the lay-up or part tooling 20 and the dispensing head 15. The stationary dispensing head 15 and arm 14 eliminate strain and fatigue stress on the utilities cables, hoses, and connectors of the utilities 18 since bending and flexing is eliminated.
In the preferred embodiment, a robotic mechanism 25 having six degrees of freedom is mounted on a linear slide 26 at a location that is opposite to the dispensing head 15, and is used to support the part tooling 20 that is attached to a mounting plate 22. The linear slide 26 is used to extend the range of the robot 25, and other systems may use a different method for extending the range of the robotic mechanism. The robot 25 comprises a base 27 that is capable of rotation about a vertical axis 28. A first end of a lower arm 29 is mounted to the base 27 by a first pivot 31. A second end of the lower arm 19 is coupled to an upper arm 32 by a second pivot 33. A first wrist mechanism 35, a rolling wrist, is provided at the end of the upper arm 32 that is remote from the second pivot 33, and the first wrist 35 is capable of rotary motion around the longitudinal axis of the upper arm 32. A second wrist mechanism 37, a bending wrist, is provided on the end of the first wrist 35, and the second wrist 37 allows pivoting motion around an axis that is that is perpendicular to the rotation of the first wrist 35. A third wrist mechanism 40, a rolling wrist, is provided on the end of the second wrist 37, and the third wrist 40 allows rotation around an axis that is perpendicular to the pivoting axis of the second wrist 37. The robot 25 that is shown is a standard industrial robot having six degrees of freedom, although robots having other degrees of freedom and other arrangements of arms and wrists may be used as desired.
The robot 25 manipulates the lay-up tooling 20 relative to the dispensing head 15 to lay up the fiber tow 14 at the proper speed and angular orientation.
The robot base 27 is mounted on a linear slide 26, and the slide is of sufficient length to permit the robot to carry the lay-up tooling 20 to other work stations which are provided with additional creel and dispensing head systems. As shown in
In an alternative embodiment shown in
Having thus described the device, various modifications and alterations will occur to those skilled in the art, which modifications and alterations are intended to be within the scope of the device as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3140058 | Courtney | Jul 1964 | A |
3309185 | Weber | Mar 1967 | A |
3574040 | Chitwood et al. | Apr 1971 | A |
3810805 | Goldsworthy et al. | May 1974 | A |
3963185 | Quirk | Jun 1976 | A |
4292108 | Weiss et al. | Sep 1981 | A |
4437616 | Magarian et al. | Mar 1984 | A |
5022952 | Vaniglia | Jun 1991 | A |
5273602 | Gill et al. | Dec 1993 | A |
6096164 | Benson et al. | Aug 2000 | A |
6107220 | Popper et al. | Aug 2000 | A |
7137182 | Nelson | Nov 2006 | B2 |
7282107 | Johnson et al. | Oct 2007 | B2 |
7404868 | Cope et al. | Jul 2008 | B2 |
7472736 | Kisch et al. | Jan 2009 | B2 |
20050236735 | Oldani et al. | Oct 2005 | A1 |
20050247396 | Oldani et al. | Nov 2005 | A1 |
20070029030 | McCowin | Feb 2007 | A1 |
20070044919 | Hoffmann | Mar 2007 | A1 |
20090095410 | Oldani | Apr 2009 | A1 |
20090101277 | Cramer et al. | Apr 2009 | A1 |
20100200168 | Oldani et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2579130 | Sep 1986 | FR |
2147561 | May 1985 | GB |
2009062749 | May 2009 | WO |
Entry |
---|
Ermert, et al, “R U Reinforcing plastics with robots?” Plastics Engineering, May 1981, pp. 37-46. |
Translation of French Patent 2579130, date unknown. |
“Coriolis composites a la fibre robot”, Plastiques & Caoutchoucs Magazine, Apr. 2007, one page. |
European Search Report; EP 11 16 5497; dated Nov. 21, 2011; 4 pages. |
Number | Date | Country | |
---|---|---|---|
20110277935 A1 | Nov 2011 | US |