Paint systems may be applied to exterior surfaces of commercial aircraft. Typically, surface preparation is performed on bare or primed surfaces, and then primer, base coat and decorative coat are applied.
The surface preparation may be performed manually. However, manual surface preparation such as sanding poses human health hazards such as dust inhalation and poor ergonomics.
These hazards can be avoided by a robot system that autonomously performs surface preparation. In addition to avoiding human health hazards, the robot system can provide a more consistent process than manual surface preparation.
The following features for a robot system would be desirable: the ability to (1) cover a surface rapidly, yet maintain a high quality surface finish; (2) maintain consistent stroke or path patterns; and (3) maintain constant force with different tool orientations. This last feature is especially desirable with respect to commercial aircraft.
It would also be desirable for the robot system to satisfy these objectives with respect to large open surface areas and small restricted areas on a commercial aircraft. (A commercial aircraft fuselage typically has large open surface areas above and below windows and doors, and small restricted areas between windows.) It would be desirable for a robot system to move from nose to tail while performing surface preparation on both the larger open surface areas and the smaller restricted areas without having to change end effector tools.
According to an embodiment herein, a method comprises using a robotic end effector to perform surface preparation on a surface of an aircraft component. The end effector includes first, second and third abrasion tools having their backing pads in a triangular arrangement.
According to another embodiment herein, a robot system comprises a robotic end effector including first, second and third abrasion tools having backing pads arranged in a triangular arrangement.
According to another embodiment herein, a system comprises a multi-axis robot and an end effector including first, second and third random orbital abrasion tools in a triangular arrangement. The abrasion tools are selectively retractable, extendable and operable.
The features and functions may be achieved independently in various embodiments or may be combined in other embodiments, further details of which can be seen with reference to the following description and drawings.
Reference is made to
At block 110, the aircraft or aircraft component is loaded in a paint hangar or booth. In some embodiments, the paint hangar may be a class 1 division 1 (C1D1) location having the area of a football field. A C1D1 location refers to a location in which ignitable concentrations of gases or vapors may exist. A tug may be used to move the entire aircraft into the hangar or a forklift truck may be used to move a component into the hangar.
At block 120, the aircraft or component is masked. Wet chemical cleaning may be performed on the surfaces to be painted.
At block 130, a robot system is used to prepare surfaces of the aircraft component. The surface preparation may include, without limitation, surface abrasion and sanding. Surface preparation as described herein is performed with a robotic end effector including first, second and third random orbital abrasion tools having backing pads arranged in a triangular arrangement. The type of surface preparation (e.g., sanding) is determined by the type of media attached to the backing pads.
The surfaces may be bare composite or metal, or the surfaces may have already been primed. If the surface is already primed, the primed surface may be sanded to reactivate the primer. Then a new layer of primer may be applied and cured. If the surface is bare, the abrasion tools may use abrasive material (e.g., unwoven pads) to clean the surfaces of debris or contaminants. An adhesion promoter and primer are then applied. The primer is then cured.
At block 140, a second robotic end effector is used to paint the prepared surfaces. At block 150, the aircraft or aircraft component is unmasked and unloaded.
In addition to avoiding human health hazards and providing a more consistent process, a robot system herein may be moved from nose to tail while preparing both the larger open surface areas and the smaller restricted areas, without having to change end effector tools.
Reference is now made to
The triangular arrangement allows the system 210 to cover large surface areas. It also provides overlapping surface coverage, which reduces the need to perform surface preparation multiple times.
The abrasion tools 240, 250 and 260 are rotatable as a group about an axis C. Each abrasion tool 240, 250 and 260 may also be independently retracted and extended. The abrasion tools 240, 250 and 260 are independently operable. This combination of features allows the system 210 to adapt from covering large areas to covering smaller areas. For instance, doors, windows, lap joins, and section joins requires edge sanding which can be performed with one or two of the abrasion tools 240, 250 and 260. The combination of rotation and retraction also enables the end effector 230 to follow a single straight path (vertical or horizontal), which simplifies the programming of the robot 220.
In some embodiments, all three abrasion tools 240, 250 and 260 may be random orbital abrasion tools. Each random orbital abrasion tool 240, 250 and 260 produces a random orbit by simultaneously spinning its backing pad and moving its backing pad in an elliptical path, which ensures that no single part of abrasive material travels the same path twice. Because of this unique random orbital action, the random orbital abrasion tool produces a better surface finish than jitterbug sanders and other types of sanders.
In other embodiments, however the abrasion tools 240, 250 and 260 may include a combination of random orbital tools and other tools. For instance, these other embodiments may include a combination of a random orbital sander, another type of orbital sander, and a jitterbug sander.
If the system 210 is intended for a C1D1 location, the abrasion tools 240, 250 and 260 may be driven pneumatically to avoid sparking. As for the robot 220, it may be a C1D1 robot.
Limiting the number of abrasion tools to three is ideal for pneumatic power. The three abrasion tools 240, 250 and 260 maintain a relatively low payload. In addition, more than three abrasion tools would require a larger supply or volume of air and would increase the weight significantly. Weight becomes a factor when dealing with paint robots that have low payloads. Exceeding payload limits can cause the robot 220 to fault out or produce unstable motions.
The surface preparation may include, but is not limited to, sanding, abrading, polishing, and scrubbing. Examples of the surface preparation media include, but are not limited to sand paper, unwoven abrasive pads, and polishing media. The surface preparation media is attached to the backing pads 245, 255 and 265. In some embodiments, the abrasion tools 240, 250 and 260 may have backing pads of different sizes and use media of different types.
The robot system 210 further includes a controller 270 for controlling the robot 210 to move the end effector 230 to a desired position and orientation. The controller 270 also commands the end effector 230 to operate in a desired manner. The controller 270 may be processor-based.
Multiple systems 210 may be used at the same time on a commercial aircraft. For instance, at least eight systems 210 may perform surface preparation at the same time on a wide body aircraft.
Reference is now made to
A first ball joint 350 is connected to the abrasion tool 310, a second ball joint 360 is serially connected to the first ball joint 350, and a linear actuator 370 is serially connected to the second ball joint 360. The linear actuator 370 is secured to a body 380 of the robotic end effector.
During operation, the linear actuator 370 applies a constant force to the serial connection of first and second ball joints 350 and 360 in the direction of the arrow F. The ball joints 350 and 360, in turn, transmit the force to the abrasion tool 310. The force presses the backing pad 320 and surface preparation medium 330 against an aircraft surface 300, while the motor 340 spins the medium 330 and moves the medium 330 in an elliptical path against the surface 300.
Each ball joint 350 and 360 includes first and second rod ends coupled with a spherical interface that is allowed a swivel of up to angle δ. In some embodiments, δ=35 degrees.
Surface preparation with random orbital abrasion tools produces a better surface finish than with other types of abrasion tools, provided that the medium 330 stays normal to the surface 300. However, random orbital abrasion tools are prone to chattering. The chattering can cause uncontrolled patterns or removal during sanding, which can result in a non-uniform finish.
The serially-connected ball joints 350 and 360 provide an unexpected result: they prevent the abrasion tool 310 from chattering during operation. The two ball joints 350 and 360 allow for motion in the horizontal direction with an applied downward force applied at the top of the abrasion tool 310 and centered.
By preventing chattering, the abrasion tool 310 stays normal to the surface 300. Moreover, uncontrolled patterns or removal during surface preparation are avoided. This is beneficial for a single random orbital abrasion tool is desirable. It is especially beneficial for end effectors that utilize three random orbital abrasion tools.
In some embodiments, the linear actuator 370 includes a pneumatic double compression cylinder connected to the second ball joint 360. The compression cylinder provides a linear force using compressed air. The compression cylinder is rigid in the direction of pad motion. A double acting compression cylinder is advantageous because the pressure stays constant throughout the entire stroke. In contrast, in a single acting cylinder, the force will change based on the displacement of an internal spring.
Reference is now made to
The end effector body 430 includes spaced-apart upper and lower plates 432 and 434. These plates 432 and 434 carry three pneumatic double compression cylinders 440. The body 430 further includes three brackets 436 suspended from the lower plate 434. Each bracket 436 is located beneath a corresponding pneumatic cylinder 440. Each bracket 436 supports an abrasion tool 420 and serially-connected ball joints 450. Each upper ball joint is connected to its corresponding pneumatic cylinder 440. Each bracket 436 includes slots 438 for allowing its abrasion tool 420 to be moved up and down (retracted and extended) by its corresponding pneumatic cylinder 440. Guide pins 460 may be used to limit the range of retraction/extension and also prevent the abrasion tool 420 from rotating.
Additional reference is made to
Reference is made once again to
Pressure transducers (not shown) regulate compressed air to enable the pneumatic cylinders 440 to apply constant force regardless of orientation. For instance, these transducers allow the end effector 410 to be oriented upside down, yet still enable the abrasion tools 420 to apply the same force as those that are right-side up. The transducers may regulate input pressure via a DC voltage. The transducers may be housed in the controller 270 (which is shown in
The combination of the compression cylinders 440 and the triangular arrangement of backing pads 422 enables the end effector 410 to maintain consistent stroke or path patterns. The robot has a limited range of motion. To maintain the same path pattern as it approaches its limits, the robot adjusts its motion by rotation of the end effector 410. The three backing pads 422 allow 120 degree changes without changing the path pattern. See
Some embodiments of the robot may also include an x-y-z positioning system (not shown in
The robot may have additional degrees of freedom. For example, the robot may include a rail system for movement along the length of the aircraft (e.g., between nose and tail).
The robot may also include a robotic arm for moving the end effector 410 vertically. The arm may have a length that enables the end effector 410 to reach the belly and crown of the aircraft.
Reference is now made to
The white axes 820 represent the points to which the robot 710 travels. The robot motion may be based on point to point movements. As can be seen, the orientations of the axes 820 are not all equal. This is because the robot 710 needs to maneuver around the restricted surface area and also because the robot 710 has axis limits on its joints; thus, it is unable to maintain the same orientation at its farthest reach. The combination of rotation and retraction allows the end effector 410 to reach the furthest points.
For large open areas, the robot 710 may move the end effector 410 in vertical or horizontal strokes. There may be an overlap depending on film thickness (a thicker coat might require additional abrasion) and the type of abrasion that is used.
Reference is now made to
At block 900, the robot is moved to a location along the fuselage. A starting location might be the nose of the fuselage. The robot may be moved by a rail system or transport vehicle. At the location, several sections of the fuselage may be within reach of the robot system.
At block 910, the robot moves the end effector to a start position of a section of the fuselage. At block 920, the end effector is configured to perform surface preparation on that section. Configuring the end effector may include setting its pressure based on location of the fuselage and then extending one or more of the abrasion tools. If the area is large, all three abrasion tools will be extended. If the area is smaller, only one or two abrasion tools will be extended. Pressure settings may take gravity into account. Consider the preparation of an aircraft's belly and crown. During preparation of the belly, the end effector is below the belly and gravity pulls the end effector away from the belly. During preparation of the crown, the end effector is above the crown, and gravity pulls the end effector into the crown. The pressure settings enable the same constant force to be applied to the belly of the fuselage and to the crown.
At block 930, the extended abrasion tools are actuated and moved in a pattern over the section. Surface preparation on that section is performed.
At block 940, once the surface preparation on that section has been completed, the abrasion tools are retracted. If an additional section at that location requires preparation (block 950), the robot moves the end effector to a different section within its reach (block 910). If all sections have been prepared (block 950) but additional locations remain (block 960), the robot is moved to a different location for further work (block 900).
This process may be repeated until surface preparation on the fuselage has been completed (block 960). In this manner, surface preparation of the fuselage may be performed from nose to tail with the robot being moved in essentially a straight path without having to change end effector tools. The surface preparation is performed quickly with an excellent finish.
Number | Name | Date | Kind |
---|---|---|---|
136875 | Stearns | Mar 1873 | A |
1368752 | Rauworth | Feb 1921 | A |
2759305 | Helbig | Aug 1956 | A |
4712289 | Stamm et al. | Dec 1987 | A |
5138800 | Janusz | Aug 1992 | A |
5161331 | Zambon | Nov 1992 | A |
5231803 | Lanzer | Aug 1993 | A |
5248341 | Berry et al. | Sep 1993 | A |
5377455 | Lanzer | Jan 1995 | A |
5377566 | Mandigo | Jan 1995 | A |
5482496 | Lanzer | Jan 1996 | A |
5607343 | Keith, Jr. | Mar 1997 | A |
5987217 | Wisniewski et al. | Nov 1999 | A |
6086457 | Perlov et al. | Jul 2000 | A |
6193337 | Roeker | Feb 2001 | B1 |
6312316 | Takahashi et al. | Nov 2001 | B1 |
6352227 | Hathaway | Mar 2002 | B1 |
6425169 | Briscoe | Jul 2002 | B1 |
6672945 | Matsuo et al. | Jan 2004 | B1 |
6855032 | Yang et al. | Feb 2005 | B1 |
6921317 | Wood et al. | Jul 2005 | B2 |
7022004 | Bohler | Apr 2006 | B2 |
7118452 | Wood | Oct 2006 | B2 |
7144313 | Greenwood | Dec 2006 | B1 |
7252577 | Wood | Aug 2007 | B2 |
7427228 | Kirsch | Sep 2008 | B1 |
8051796 | Clifford | Nov 2011 | B2 |
8251780 | Ward et al. | Aug 2012 | B2 |
8328600 | Duescher | Dec 2012 | B2 |
8366518 | Bailey | Feb 2013 | B2 |
8647172 | Duescher | Feb 2014 | B2 |
20020072297 | Kennerknecht et al. | Jun 2002 | A1 |
20020173226 | Carlson, III | Nov 2002 | A1 |
20030045208 | Neidrich et al. | Mar 2003 | A1 |
20040082285 | Bohler | Apr 2004 | A1 |
20040102136 | Wood et al. | May 2004 | A1 |
20040102140 | Wood et al. | May 2004 | A1 |
20040132392 | Bohler | Jul 2004 | A1 |
20040203326 | Lischka | Oct 2004 | A1 |
20050070210 | Jeong | Mar 2005 | A1 |
20050181707 | Wood | Aug 2005 | A1 |
20050282472 | Jeong | Dec 2005 | A1 |
20060194528 | Rawlins et al. | Aug 2006 | A1 |
20070042677 | Wood | Feb 2007 | A1 |
20080032603 | Manor | Feb 2008 | A1 |
20080057842 | Lampka et al. | Mar 2008 | A1 |
20110183586 | Lehman | Jul 2011 | A1 |
20120142255 | Panergo et al. | Jun 2012 | A1 |
20120220194 | Maloney et al. | Aug 2012 | A1 |
20130090038 | Duescher | Apr 2013 | A1 |
20130090039 | Duescher | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2645405 | Apr 1977 | DE |
2645405 | Apr 1977 | DE |
20318660 | Feb 2004 | DE |
20318660 | Feb 2004 | DE |
WO 9114539 | Oct 1991 | WO |
WO9114539 | Oct 1991 | WO |
Entry |
---|
DE 2645405A1 English Machine Translation. |
DE 20318660U1 English Machine Translation. |
Nagata et al., “Robotic sanding system for new designed furniture with free-formed surface,” Robotics and Computer-Integrated Manufacturing 23, pp. 371-379 (2007). |
Ryuh et al, “An automatic tool changer and integrated software for a robotic die polishing station”, Mechanism and Machine Theory, Pergamon, Amsterdam, NL, vol. 41, No. 4, Apr. 1, 2006 (Apr. 1, 2006), pp. 415-432. |
Number | Date | Country | |
---|---|---|---|
20130109277 A1 | May 2013 | US |