1. Field of Invention
The present invention relates to a disposable, sterile cartridge for use with a robotic floor-cleaning device and a method of using said disposable, sterile cartridge and said robotic floor-cleaning device in a hospital or laboratory environment.
2. Background of the Invention
Autonomous robot cleaning devices are known in the art. For example, U.S. Pat. Nos. 5,940,927 and 5,781,960 disclose an Autonomous Surface Cleaning Apparatus and a Nozzle Arrangement for a Self-Guiding Vacuum Cleaner. Also, U.S. Pat. Nos. 6,605,156 and 6,883,201 disclose improved, automated cleaning devices with self-contained power supplies. Particularly, these devices provide optimized cleaning efficiency under reduced power requirements. Nonetheless, these devices are not adapted to provide cleaning of surfaces using sterile, disposable cleaning assemblies. In other words, after said cleaning devices clean a dirty floor, the incorporated brushes and surfaces in contact with said floor become contaminated. As such, their use in environments where the transfer of pathogens cannot be allowed to occur, such as a hospital operating room, is obviated. Therefore, an invention that allows a robotic floor-cleaning device to repeatedly clean a sensitive environment while maintaining sanitary and sterile conditions would be of benefit.
An automated (robotic) floor-cleaner, such as the commercial available Scooba® or Floor Genie™, is adapted to allow sterile cleaning of sensitive environments, such as a hospital operating room. In particular, the floor-cleaner chassis is redesigned to be mounted on a deck containing cleaning devices that contact the floor. The cleaning devices mounted on the deck, which can comprise such cleaning devices as vacuum heads, brushes, cleaning fluid sprays, and conceivably sanitizing devices such as a UV germicidal light, are provided pre-sterilized. As such, the adapted floor-cleaner chassis allows the deck to be mounted to the bottom of the chassis; the floor-cleaner is then used to clean a floor, after which, the deck is removed from the chassis and disposed. The robotic-floor cleaner and sterilization system cleans floors between or even during cases. The system's disposable, sterile cleaning-cassettes ensure a sterile environment. Further, the robotic floor cleaner reduces the “turnover time” required between cases, as it operates simultaneously while the staff prepares the room for the next case.
The present invention comprises a housing infrastructure including
Therefore, one object of the present invention is to provide a sterile cleaning device that is operable without human intervention to clean designated areas.
It is another object of the present invention to provide an automated floor-cleaning device adapted to receive a sterile, disposable cartridge attachable to the lower chassis of said floor-cleaning device.
It is yet another object of the present invention to provide a sterile, disposable cartridge for use with automated floor-cleaning devices.
At least one of the above objects is met in whole or in part by the present invention. Additional objects are apparent by the following description and claims.
The present invention can best be understood in connection with the accompanying drawings. It is noted that the invention is not limited to the precise embodiments shown in drawings, in which:
100 Robotic Floor Cleaner with Cartridge; 102 Sterile, Disposable Cartridge; 104 Light; 106 On/Off Switch; 108 Rechargeable Battery; 110 Cover; 112 Waste Receptacle; 114 Vacuum; 116 Motor/Impeller; 118 Bumper; 120 Brush; 120′ Brush; 122 Reusable Chassis; 124 Independent Motors; 126 Cleaning Fluid Reservoir; 128 Spray Nozzle; 130 Floor; 132 Vacuum Inlet; 134 Wheel; 136 Castor; 138 Side Handles with Latch Bar Control; 138′ Counter-Latch; 141 Motor; 142 Latching Slots; 144 Brush Motor Drive Socket; 146 Drive Motor Shaft Socket; 148 Vacuum Connections; 150 Water/Cleaning Fluid Connection
The entire Robotic Floor Cleaner with Cartridge 100 is powered by rechargeable battery pack 108 and is controlled by computer 152. Flashing light 104 indicates operation and ON/OFF switch 106 is preferably provided at a top of reusable portion 122. The drive configuration is similar to that of a zero turning radius riding lawnmower. Here, the two fixed drive wheels 134 are driven by two independent motors 124 near the front. Two passive swiveling casters 136 are near the rear. Side handles 138 with latch bar control coupling and de-coupling from disposable platform 102 that carries both drive wheels 134, brushes 120 and 120′ as well as casters 136.
In the foregoing description, certain terms and visual depictions are used to illustrate the preferred embodiment. However, no unnecessary limitations are to be construed by the terms used or illustrations depicted, beyond what is shown in the prior art, since the terms and illustrations are exemplary only, and are not meant to limit the scope of the present invention. It is further known that other modifications may be made to the present invention, without departing the scope of the invention, as noted in the appended claims.
This application claims the benefit of provisional patent application U.S. Ser. No. 60/701,106, filed Jul. 20, 2005 by the present inventor. The contents of U.S. Ser. No. 60/701,106 are expressly incorporated herein by reference thereto. The following references are hereby explicitly incorporated by reference thereto: U.S. Pat. No. 6,605,156 B1U.S. Pat. No. 6,883,201Applications filed along with present application by current inventor on this date entitled: IN-CEILING FOCUS LOCATED SURGICAL LIGHTINGHOSPITAL OPERATING ROOM RE-DESIGNAMBIENT LIGHTING IN HOSPITAL SURGICAL ENVIRONMENTSUSE OF ULTRAVIOLET GERMICIDAL IRRADIATION IN HEALTH CARE ENVIRONMENTSIN-WALL WASTE RECEPTACLES FOR HOSPITAL AND LABORATORY ENVIRONMENTSMULTIFUNCTIONAL FLOOR PODSRE-DESIGN OF OPERATING ROOM TABLES
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/28228 | 7/20/2006 | WO | 00 | 2/6/2008 |
Number | Date | Country | |
---|---|---|---|
60701106 | Jul 2005 | US |