This disclosure relates generally to the field of data processing systems and more particularly to robotic process automation systems.
Robotic process automation (RPA) is the application of technology that allows workers in an organization to configure computer software, known as a “robot” to capture and interpret existing applications for processing a transaction, manipulating data, triggering responses and communicating with other digital systems. The software robots in conventional RPA systems employ the software robots to interpret the user interface of third-party applications and to execute steps identically to a human user. For example, many tasks within organizations require individuals to perform the same repetitive tasks, such as entering data from invoices into an enterprise accounts payable application or entering data from a loan application into a loan processing system. RPA permits the automation of such application level repetitive tasks via software robots that are coded to repeatedly and accurately perform the repetitive task.
The software robots in conventional RPA systems execute on devices, physical or virtual, that are separate from an RPA server and which contain software to permit creation and/or execution of the software robot. While this has proven to be highly beneficial in facilitating data processing, the requirement for bot creation/execution software to be loaded onto different devices increases administrative complexity and can limit the processing capability of the RPA system. Moreover, because the software robots operate at an application level, as a human user would engage with such applications, conventional RPA systems are operating system dependent. A software robot encoded to perform tasks on, for example, a Windows® operating system, will need to be executed to perform the tasks for which it has been encoded on the Windows® operating system. This limitation can limit the scalability and increase the cost of deployment of an RPA system.
Computerized RPA methods and systems that increase the flexibility, lower the cost and increase reliability with which RPA systems may be deployed are disclosed herein. A robotic process automation system includes data storage which stores a plurality of sets of task processing instructions. Each set of task processing instructions is operable to interact at a user level with one or more designated user level application programs. The data storage also stores a plurality of work items, where each work item is stored for subsequent processing by executing a corresponding set of task processing instructions. A server processor is operatively coupled to the data storage and is configured to execute instructions that cause the server processor to respond to a request to perform an automation task to process a work item from the plurality of work items, by initiating a java virtual machine on a second device. Also initiated on the second device is a first user session that employs credentials of a first user, for managing execution of the automation task. The server processor permits retrieval of the set of task processing instructions that correspond to the work item. The server processor loads into the java virtual machine, with a platform class loader, one or more modules, such as logging and security, that perform functions common to the sets of task processing instructions. A first class loader a first set of task processing instructions is also loaded. Then each instruction in the first set of task processing instructions is loaded with a separate class loader. The server processor causes execution, under control of the first user session, on the second device, the task processing instructions that correspond to the work item.
The platform class loader control of certain common functions (such as security and logging) of its child class loaders, such as the first class loader and the class loaders for each command, permits centralized control of key functions and ensures that each set of task processing instructions is sandboxed, i.e. limited to its own credential authorizations and cannot affect the activities of other sets of task processing instructions. This is just as a human user is limited to resources and activities permitted by their own credentials. Moreover, this approach is extended to each command where each class loader is a child of the parent class loader, thus permitting direct application of the platform class loader's common services and preventing override of such services by way of the task processing instruction's class loader. Furthermore, employing a separate class loader for each command limits the impact of implementation of each command. A class loaded for one command will not inadvertently control the same class name for another class loader, as would be the case by employing a common class loader for all commands in a set of task processing instructions.
These and additional aspects related to the invention will be set forth in part in the description which follows, and in part will be apparent to those skilled in the art from the description or may be learned by practice of the invention. Aspects of the invention may be realized and attained by means of the elements and combinations of various elements and aspects particularly pointed out in the following detailed description and the appended claims.
It is to be understood that both the foregoing and the following descriptions are exemplary and explanatory only and are not intended to limit the claimed invention or application thereof in any manner whatsoever.
The accompanying drawings, which are incorporated in and constitute a part of this specification exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the inventive techniques disclosed herein. Specifically:
In the following detailed description, reference will be made to the accompanying drawings, in which identical functional elements are designated with like numerals. Elements designated with reference numbers ending in a suffix such as 0.1, 0.2, 0.3 are referred to collectively by employing the main reference number without the suffix. For example, 100 refers to topics 100.1, 100.2, 100.3 generally and collectively. The aforementioned accompanying drawings show by way of illustration, and not by way of limitation, specific embodiments and implementations consistent with principles of the present invention. These implementations are described in sufficient detail to enable those skilled in the art to practice the invention and it is to be understood that other implementations may be utilized and that structural changes and/or substitutions of various elements may be made without departing from the scope and spirit of present invention. The following detailed description is, therefore, not to be construed in a limited sense.
In
The control room 108 provides to the client device 110, software code to implement a node manager 114 that executes on the client device 110 and which provides to a user 112 a visual interface via browser 113 to view progress of and to control execution of the automation task. It should be noted here that the node manager 114 is provided to the client device 110 on demand, when required by the client device 110 to execute a desired automation task. In one embodiment, the node manager 114 may remain on the client device 110 after completion of the requested automation task to avoid the need to download it again. In another embodiment, the node manager 114 may be deleted from the client device 110 after completion of the requested automation task. The node manager 114 also maintains a connection to the control room 108 to inform the control room 108 that device 110 is available for service by the control room 108, irrespective of whether a live user session 118 exists. When executing a bot 104, the node manager 114 impersonates the user 112 by employing credentials associated with the user 112. In certain embodiments, the system 10 employs user impersonation as described in U.S. Patent Applications entitled ROBOTIC PROCESS AUTOMATION SYSTEM WITH DEVICE USER IMPERSONATION filed on Mar. 31, 2019, assigned application Ser. No. 16/371,046, which application is assigned to the assignee of the present application and which is hereby incorporated by reference in its entirety. In application Ser. No. 16/371,046 the term “bot runner” is used in the manner that the term “bot” is used in the present application.
The control room 108 initiates on the client device 110, a user session 118 (seen as a specific instantiation 118.1) to perform the automation task. The control room 108 retrieves the set of task processing instructions 104 that correspond to the work item 106. The task processing instructions 104 that correspond to the work item 106 execute under control of the user session 118.1, on the device 110. The node manager 114 provides update data indicative of status of processing of the work item to the control room 108. The control room 108 terminates the user session 118.1 upon completion of processing of the work item 106. User session 118.1 is shown in further detail at 119, where an instance 124.1 of user session manager 124 is seen along with a bot player 126, proxy service 128 and one or more virtual machine(s) 130, such as a virtual machine that runs Java® or Python®. The user session manager 124 provides a generic user session context within which a bot 104 executes.
The bots 104 execute on a player, via a computing device, to perform the functions encoded by the bot. Additional aspects of operation of bots may be found in the following pending patent application, which refers to bots as automation profiles, System and Method for Compliance Based Automation, filed in the U.S. Patent Office on Jan. 6, 2016, and assigned application Ser. No. 14/988,877, which is hereby incorporated by reference in its entirety.
Some or all of the bots 104 may in certain embodiments be located remotely from the control room 108. Moreover, the devices 110 and 111 may also be located remotely from the control room 108. The bots 104 and the tasks 106 are shown in separate containers for purposes of illustration but they may be stored in separate or the same device(s), or across multiple devices. The control room 108 performs user management functions, source control of the bots 104, along with providing a dashboard that provides analytics and results of the bots 104, performs license management of software required by the bots 104 and manages overall execution and management of scripts, clients, roles, credentials, and security etc. The major functions performed by the control room 108 include: (i) a dashboard that provides a summary of registered/active users, tasks status, repository details, number of clients connected, number of scripts passed or failed recently, tasks that are scheduled to be executed and those that are in progress; (ii) user/role management—permits creation of different roles, such as bot creator, bot runner, admin, and custom roles, and activation, deactivation and modification of roles; (iii) repository management—to manage all scripts, tasks, workflows and reports etc.; (iv) operations management permits checking status of tasks in progress and history of all tasks, and permits the administrator to stop/start execution of hots currently executing; (v) audit trail—logs creation of all actions performed in the control room; (vi) task scheduler—permits scheduling tasks which need to be executed on different clients at any particular time; (vii) credential management—permits password management; and (viii) security: management—permits rights management for all user roles. The control room 108 is shown generally for simplicity of explanation. Multiple instances of the control room 108 may be employed where large numbers of bots are deployed to provide for scalability of the RPA system 10.
In the event that a device, such as device 111 (seen operated by user 112.2) does not satisfy the minimum processing capability to run node manager 114, the control room 108 provides on another device, such as device 115, that has the requisite capability, within a Virtual Machine (VM), seen as VM 116 that is resident on the device 115, a node manager 114 that is in communication with browser 113 on device 111. This permits RPA system 10 to operate with devices that may have lower processing capability, such as older laptops, desktops, and portable/mobile devices such as tablets and mobile phones. In certain embodiments browser 113 may take the form of a mobile application stored on the device 111. The control room 108 establishes a user session 118.2 for the user 112.2 while interacting with the control room 108 and the corresponding user session 118.2 operates as described above for user session 118.1, with user session manager 124 as described above in connection with device 110.
In certain embodiments, the user session manager 124 provides five functions. First is a health service 138 that maintains and provides a detailed logging of bot execution including monitoring memory and CPU usage by the bot and other parameters such as number of file handles employed. The bots 104 employ the health service 138 as a resource to pass logging information to the control room 108. Execution of the bot is separately monitored by the user session manager 124 to track memory, CPU and other system information. The second function provided by the user session manager 124 is a message queue 140 for exchange of data between bots executed within the same user session 118. Third is a deployment service 142 that connects to the control room 108 to request execution of a requested bot 104. The deployment service 142 also ensures that the environment is ready for bot execution such as by making available dependent libraries. Fourth is a bot launcher 144 which reads metadata associated with a requested bot 104 and launches an appropriate container and begins execution of the requested bot. Fifth is a debugger service 146 that can be used to debug bot code.
The bot player 126 executes, or plays back, the sequence of instructions encoded in a bot. The sequence of instructions is captured by way of a recorder when a human performs those actions, or alternatively the instructions are explicitly coded into the bot. These instructions enable the bot player 126, to perform the same actions as a human would do in their absence. The instructions are composed of a command (action) followed by set of parameters, for example: Open Browser is a command, and a URL would be the parameter for it to launch the site. Proxy service 128 enables the integration of external software or applications with the bot to provide specialized services. For example, an externally hosted artificial intelligence system could enable the bot to understand the meaning of a “sentence”
The user 112 interacts with node manager 114 via a conventional browser 113 which employs the node manager 114 to communicate with the control room 108. When for the first time 112 user logs from client device 110 onto the control room 108, they are prompted to download and install the node manager 114 on the device 110, if one is not already present. The node manager 114 establishes a web socket connection to the user session manager 124, deployed by the control room 108 that lets the user 112 subsequently create, edit and deploy the bots 104.
The node manager 114 which is provided to the device 110 by the control room 108, in certain embodiments provides three functions, as illustrated in
Operation of the message queue 140 is illustrated in
Initiation of execution of a bot 104 is illustrated in
Operation of the debugger 146 is seen in
In the embodiment of
Turning to the bots Bot 1 and Bot 2, each bot may contain instructions encoded in one or more programming languages. In the example shown in
In one embodiment, seen in
The code in a bot 104 that is encoded in a language other than Java® may be converted by the control room 108 to Java®, or another language, in the manner set shown in
Turning to
The class loaders employ the following rules for delegation. The platform class loader 902 has a hardcoded list of what packages should be shared with the bot and command packages from either the bot launcher 144 or the bot-runtime. For the bot class loader 904, all the command and bot-related contracts are attempted to load from the bot JAR first but all the other classes are delegated to load from the parent first. As will be appreciated by those skilled in the art, a contract employed by a bot is an agreement that the class will expose certain methods, certain properties, and certain behaviors. All commands associated with this bot will be fed from a local map that gets populated with command classes that are loaded by its own class loader. All other classes except the bot-related classes will check the parent first. All JARs in the local class path of this loader will be checked. For the command class loader 906, all classes are delegated to load from the parent first. If a requested class is in a package that must be shared, the request will be passed on to the bot launcher 144 class loader, which may be a default class loader provided by Java to run the bot launcher class loader. Otherwise, it is passed directly to the bootstrap classloader which is provided by the JVM and is typically part of the core JVM and serves as the parent for all class loaders in the system. This means that no classes loaded by the bootstrap classloader, launcher or any transitive dependencies will be made available to the bot or command package unless explicitly added to a shared package list maintained by the platform class loader 902. Requests to load bot runtime classes are satisfied from a jar file that must be supplied when the class loader is instantiated. In one embodiment, the platform classloader 902 has a hardcoded list of what packages should be shared with the bot and command packages from either the engine or the bot-runtime. As will be appreciated by those skilled in the art, a bootstrap class loader is a portion of machine code that loads the system class loader upon startup of the JVM. The bootstrap classloader also takes care of loading all of the code needed to support the basic Java Runtime Environment (JRE), including classes in the java.util and the java.lang packages. Other than the bootstrap class loader, all classes in one embodiment are implemented as Java classes.
The hierarchical arrangement of class loaders shown in
The common functions implemented by the platform class loader 902 include the bot and command contract, security functions, logging, Java Native Interface (JNI), Java Native Access (JNA), Java FX, metrics, and the message interface. A contract in a Java class is an agreement that the class will expose certain methods, certain properties, and certain behaviors. The Java Native Interface (JNI) is a foreign function interface programming framework that enables Java code running in a JVM to call and be called by native applications (those programs specific to a hardware and operating system platform) and libraries written in other languages such as C, C++ and assembly. Java Native Access (JNA) is a community-developed library that provides Java programs easy access to native shared libraries without using the JNI. JNA's design aims to provide native access in a natural way with a minimum of effort. No boilerplate or generated glue code is required. Java FX are libraries provided by Java to render U/I components. Metrics provide information on performance, such as how fast is a command being processed, how often is a command being used, etc. The message interface provides a language independent common messaging interface, independent of a particular language.
The embodiments herein can be implemented in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing system on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The program modules may be obtained from another computer system, such as via the Internet, by downloading the program modules from the other computer system for execution on one or more different computer systems. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computing system. The computer-executable instructions, which may include data, instructions, and configuration parameters, may be provided via an article of manufacture including a computer readable medium, which provides content that represents instructions that can be executed. A computer readable medium may also include a storage or database from which content can be downloaded. A computer readable medium may also include a device or product having content stored thereon at a time of sale or delivery. Thus, delivering a device with stored content, or offering content for download over a communication medium may be understood as providing an article of manufacture with such content described herein.
Computing system 1000 may have additional features such as for example, storage 1010, one or more input devices 1014, one or more output devices 1012, and one or more communication connections 1016. An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing system 1000. Typically, operating system software (not shown) provides an operating system for other software executing in the computing system 1000, and coordinates activities of the components of the computing system 1000.
The tangible storage 1010 may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which can be used to store information in a non-transitory way, and which can be accessed within the computing system 1000. The storage 1010 stores instructions for the software implementing one or more innovations described herein.
The input device(s) 1014 may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing system 1000. For video encoding, the input device(s) 1014 may be a camera, video card, TV tuner card, or similar device that accepts video input in analog or digital form, or a CD-ROM or CD-RW that reads video samples into the computing system 1000. The output device(s) 1012 may be a display, printer, speaker, CD-writer, or another device that provides output from the computing system 1000.
The communication connection(s) 1016 enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, audio or video input or output, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media can use an electrical, optical, RF, or other carrier.
The terms “system” and “computing device” are used interchangeably herein. Unless the context clearly indicates otherwise, neither term implies any limitation on a type of computing system or computing device. In general, a computing system or computing device can be local or distributed and can include any combination of special-purpose hardware and/or general-purpose hardware with software implementing the functionality described herein.
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be within the spirit and scope of the invention as defined by the appended claims.
This application is a continuation-in-part of U.S. patent application entitled PLATFORM AGNOSTIC ROBOTIC PROCESS AUTOMATION, application Ser. No. 16/398,600, filed on Apr. 30, 2019, which application is related to U.S. patent application entitled ZERO FOOTPRINT ROBOTIC PROCESS AUTOMATION SYSTEM, application Ser. No. 16/398,532, filed on Apr. 30, 2019. Each of the aforementioned applications is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5949999 | Song et al. | Sep 1999 | A |
5983001 | Boughner et al. | Nov 1999 | A |
6133917 | Feigner et al. | Oct 2000 | A |
6389592 | Ayres et al. | May 2002 | B1 |
6427234 | Chambers et al. | Jul 2002 | B1 |
6473794 | Guheen et al. | Oct 2002 | B1 |
6496979 | Chen et al. | Dec 2002 | B1 |
6640244 | Bowman-Amuah | Oct 2003 | B1 |
6704873 | Underwood | Mar 2004 | B1 |
6898764 | Kemp | May 2005 | B2 |
6931544 | Kienhöfer et al. | Aug 2005 | B1 |
6954747 | Wang et al. | Oct 2005 | B1 |
7091898 | Arling et al. | Aug 2006 | B2 |
7246128 | Jordahl | Jul 2007 | B2 |
7398469 | Kisamore et al. | Jul 2008 | B2 |
7441007 | Kirkpatrick et al. | Oct 2008 | B1 |
7533096 | Rice et al. | May 2009 | B2 |
7568109 | Powell et al. | Jul 2009 | B2 |
7571427 | Wang et al. | Aug 2009 | B2 |
7765525 | Davidson et al. | Jul 2010 | B1 |
7805317 | Khan et al. | Sep 2010 | B2 |
7805710 | North | Sep 2010 | B2 |
7810070 | Nasuti et al. | Oct 2010 | B2 |
7846023 | Evans et al. | Dec 2010 | B2 |
8028269 | Bhatia et al. | Sep 2011 | B2 |
8056092 | Allen et al. | Nov 2011 | B2 |
8095910 | Nathan et al. | Jan 2012 | B2 |
8132156 | Malcolm | Mar 2012 | B2 |
8209738 | Nicol et al. | Jun 2012 | B2 |
8234622 | Meijer et al. | Jul 2012 | B2 |
8245215 | Extra | Aug 2012 | B2 |
8352464 | Fotev | Jan 2013 | B2 |
8396890 | Lim | Mar 2013 | B2 |
8438558 | Adams | May 2013 | B1 |
8443291 | Ku et al. | May 2013 | B2 |
8464240 | Fritsch et al. | Jun 2013 | B2 |
8498473 | Chong et al. | Jul 2013 | B2 |
8504803 | Shukla | Aug 2013 | B2 |
8631458 | Banerjee | Jan 2014 | B1 |
8682083 | Kumar et al. | Mar 2014 | B2 |
8713003 | Fotev | Apr 2014 | B2 |
8769482 | Batey et al. | Jul 2014 | B2 |
8819241 | Washburn | Aug 2014 | B1 |
8832048 | Lim | Sep 2014 | B2 |
8874685 | Hollis et al. | Oct 2014 | B1 |
8943493 | Schneider | Jan 2015 | B2 |
8965905 | Ashmore et al. | Feb 2015 | B2 |
9104294 | Forstall et al. | Aug 2015 | B2 |
9213625 | Schrage | Dec 2015 | B1 |
9278284 | Ruppert et al. | Mar 2016 | B2 |
9444844 | Edery et al. | Sep 2016 | B2 |
9462042 | Shukla et al. | Oct 2016 | B2 |
9571332 | Subramaniam et al. | Feb 2017 | B2 |
9621584 | Schmidt et al. | Apr 2017 | B1 |
9946233 | Brun et al. | Apr 2018 | B2 |
20020057678 | Jiang | May 2002 | A1 |
20030033590 | Leherbauer | Feb 2003 | A1 |
20030088604 | Kuck et al. | May 2003 | A1 |
20030101245 | Srinivasan et al. | May 2003 | A1 |
20030159089 | DiJoseph | Aug 2003 | A1 |
20040083472 | Rao et al. | Apr 2004 | A1 |
20040172526 | Tann et al. | Sep 2004 | A1 |
20040210885 | Wang et al. | Oct 2004 | A1 |
20040243994 | Nasu | Dec 2004 | A1 |
20050021713 | Dugan et al. | Jan 2005 | A1 |
20050188357 | Derks et al. | Aug 2005 | A1 |
20050204343 | Kisamore et al. | Sep 2005 | A1 |
20050257214 | Moshir et al. | Nov 2005 | A1 |
20060095276 | Axelrod et al. | May 2006 | A1 |
20060150188 | Roman et al. | Jul 2006 | A1 |
20070101291 | Forstall et al. | May 2007 | A1 |
20070112574 | Greene | May 2007 | A1 |
20070169025 | Moore et al. | Jul 2007 | A1 |
20070169110 | Gupta et al. | Jul 2007 | A1 |
20070261124 | Centonze | Nov 2007 | A1 |
20080005086 | Moore | Jan 2008 | A1 |
20080028392 | Chen et al. | Jan 2008 | A1 |
20080209392 | Able et al. | Aug 2008 | A1 |
20080222454 | Kelso | Sep 2008 | A1 |
20080263024 | Landschaft et al. | Oct 2008 | A1 |
20090037509 | Parekh et al. | Feb 2009 | A1 |
20090103769 | Milov et al. | Apr 2009 | A1 |
20090172814 | Khosravi et al. | Jul 2009 | A1 |
20090199160 | Vaitheeswaran et al. | Aug 2009 | A1 |
20090217309 | Grechanik et al. | Aug 2009 | A1 |
20090222798 | Iguchi et al. | Sep 2009 | A1 |
20090249297 | Doshi et al. | Oct 2009 | A1 |
20090313229 | Fellenstein et al. | Dec 2009 | A1 |
20090320002 | Peri-Glass et al. | Dec 2009 | A1 |
20100023602 | Martone | Jan 2010 | A1 |
20100023933 | Bryant et al. | Jan 2010 | A1 |
20100100605 | Allen et al. | Apr 2010 | A1 |
20100138015 | Colombo et al. | Jun 2010 | A1 |
20100235433 | Ansari et al. | Sep 2010 | A1 |
20110022578 | Fotev | Jan 2011 | A1 |
20110145807 | Molinie et al. | Jun 2011 | A1 |
20110173239 | Sayed et al. | Jul 2011 | A1 |
20110197121 | Kletter | Aug 2011 | A1 |
20110276568 | Fotev | Nov 2011 | A1 |
20110276946 | Pletter | Nov 2011 | A1 |
20110302570 | Kurimilla et al. | Dec 2011 | A1 |
20120042281 | Green | Feb 2012 | A1 |
20120124062 | Macbeth et al. | May 2012 | A1 |
20120265976 | Spiers | Oct 2012 | A1 |
20120330940 | Caire et al. | Dec 2012 | A1 |
20130173648 | Tan et al. | Jul 2013 | A1 |
20130290318 | Shapira et al. | Oct 2013 | A1 |
20140046645 | White | Feb 2014 | A1 |
20140181705 | Hey et al. | Jun 2014 | A1 |
20150082280 | Betak et al. | Mar 2015 | A1 |
20150088982 | Johnson | Mar 2015 | A1 |
20150113528 | Kim et al. | Apr 2015 | A1 |
20150347284 | Hey et al. | Dec 2015 | A1 |
20150350048 | Sampat | Dec 2015 | A1 |
20150363224 | Argenti et al. | Dec 2015 | A1 |
20150365349 | Verma | Dec 2015 | A1 |
20160019049 | Kakhandiki et al. | Jan 2016 | A1 |
20160078368 | Kakhandiki et al. | Mar 2016 | A1 |
20160259654 | Nychis et al. | Sep 2016 | A1 |
20160379010 | Farkash et al. | Dec 2016 | A1 |
20170048170 | Smullen | Feb 2017 | A1 |
20180311815 | Shaw et al. | Nov 2018 | A1 |
20190042286 | Bailey | Feb 2019 | A1 |
20190303779 | Briggle et al. | Oct 2019 | A1 |
20200057946 | Singaraju | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2016163901 | Oct 2016 | WO |
Entry |
---|
Al Sallami, Load Balancing in Green Cloud Computation, Proceedings of the World Congress on Engineering 2013 vol. II, WCE 2013, 2013, pp. 1-5 (Year: 2013). |
B. P. Kasper “Remote: A Means of Remotely Controlling and Storing Data from a HAL Quadrupole Gas Analyzer Using an IBM-PC Compatible Computer”, Nov. 15, 1995, Space and Environment Technology Center. |
Bergen et al., RPC automation: making legacy code relevant, May 2013, 6 pages. |
Hu et al., Automating GUI testing for Android applications, May 2011, 7 pages. |
Konstantinou et al., An architecture for virtual solution composition and deployment in infrastructure clouds, 9 pages (Year: 2009). |
Nyulas et al., An Ontology-Driven Framework for Deploying JADE Agent Systems, 5 pages (Year: 2008). |
Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller, Sikuli: Using GUI Screenshots for Search and Automation, Oct. 4-7, 2009, 10 pages. |
Yu et al., Deploying and managing Web services: issues, solutions, and directions, 36 pages (Year: 2008). |
Zhifang et al., Test automation on mobile device, May 2010, 7 pages. |
U.S. Appl. No. 16/925,956, filed Jul. 10, 2020, Sunil Dabhi. |
International Search Report for PCT/US2020/030496. |
International Search Report for PCT/US2020/030506. |
Robert Nystrom, Game Programming Patterns, 2009, gameprogrammingpatterns.com/bytecode.html, pp. 1-26 (Year: 2009). |
Written Opinion of the International Searching Authority for PCT/US2020/030496. |
Written Opinion of the International Searching Authority for PCT/US2020/030506. |
Number | Date | Country | |
---|---|---|---|
20200348960 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16398532 | Apr 2019 | US |
Child | 16731044 | US | |
Parent | 16398600 | Apr 2019 | US |
Child | 16398532 | US |