The present disclosure relates to a novel Robotic Strong Arm (RSA) and device to aid in the transfer of people with disabilities to and from their wheelchairs or electric powered wheelchair onto other surfaces.
There are approximately 1.5 million people in the United States who have disabilities that require them to use a wheelchair. One study found that 60% of people reported shoulder pain since beginning their wheelchair use. In comparison, only about 4.7% of the general population report regular shoulder pain. Sitting pivot transfers (SPTs) are ranked among the most strenuous daily tasks of wheelchair users. Repetitions of this task over time can be detrimental for the shoulder and elbow joints of wheelchair users.
Biomechanics
There are variations in wheelchair users' movements when transferring themselves depending on their level of injury. When a patient transfers him/herself from a wheelchair to another surface, most of their weight is initially supported by their trailing upper extremity (U/E).
As they lose contact with the seat, weight is shifted to the leading U/E. During wheelchair transfers, large forces are placed on the shoulder and elbow joints. The leading shoulder encounters higher displacement and velocities than the trailing one. This can cause damage in the leading arm to be accelerated and the onset of pain in this arm to occur sooner.
When wheelchair users are transferred by other people, the biomechanics of the transfer take on a different form. Strain is still placed on the wheelchair-users shoulder joints, although it is more evenly distributed across the sagittal plane. There is also an additional factor of strain placed on the lower back of the person assisting with the transfer. One study found that a pivot transfer puts 112 lbs of force onto the clinician assisting with the transfer and raises their risk of developing a lower back disorder to 38.8%.
Injuries
Between 1973 and 1987, 770 wheelchair-related accidents that led to death were reported to the U.S. Consumer Products Safety Commission. 8.1% of these accidents were caused by falls during transfers. Between 1986 and 1990, there were an estimated 36,000 wheelchair-related accidents in the U.S. that resulted in a visit to the emergency department. 17% of these accidents were due to falls during transfers. In 2003, more than 100,000 wheelchair related injuries were treated in U.S. emergency departments, showing an upward trend in the number of injuries over time.
When wheelchair users are transferred by other people, there is an additional risk of injury to the caretaker. In one study, of the 48 accidents reported by the 174 participants, 15.5% involved attendants. There were more than 1,325,000 home care workers or clinicians in the United States in 2004. This group is expected to grow by 56% from 2004 to 2014. Lower back injuries are a major risk for this group, and one estimate found that 10.5% of back injuries in the United States are associated with transferring patients. In one study investigating bed to chair transfers, it was found that healthcare workers experience up to 3500N of compressive forces during a single transfer. In another study where lifts were implemented in a hospital to assist with patient transfers, it was found that over a 3 year period, there was a 70% decrease in claims cost at the intervention facility. The cost of compensation for injuries at this facility also decreased, with a 241% increase in the comparison facility.
Lifts
One technique that is used in many healthcare facilities is to move patients around using ceiling-lifts. In one study where lifts were added to an extended care unit, 71.4% of care staff reported that it became their preferred method of transferring patients and 96% believed that the ceiling lifts made lifting residents easier. While these lifts effectively transfer people without placing as much strain on the caretaker, they are often not used because they are time-consuming. In many cases, legislation concerning the implementation of lifts is focused on the caretakers' comfort and safety as opposed to the patients'. In rare cases, these lifts can even subject the patient to bruising or skin tearing. Another major concern when transferring patients using a lift system is that the patient may feel that being moved around in such a manner is undignified.
High-Tech Devices
Few high tech devices are report in the literature. One such device is the Home Lift, Position, and Rehabilitation chair (HLPR) is currently being developed and will be able to lift a patient, rotate, and place him/her on a toilet, chair, or bed. However, this chair is meant for home use only and an incline of 10 degrees can cause tipping.
The transfer device market is populated by well-established players with products that have been available for a long time. Patient lifts are the most common type of lift that are characterized by having 4 caster wheels, 2 long legs, and a lift arm that is operated using a manual or powered hydraulic jack. The person is placed in a sling, hoisted vertically with the lift arm. Two well-known manufactures of this type of device are Hoyer and Invacare. Another type, more typical of institutional settings (and some highly modified homes), is the overhead lift. This type of lift system utilizes a track or gantry rail system mounted to the ceiling over a strategic area, such as a bed or bathroom, which a winch unit travels on. The person is placed in a sling, they are hoisted by the winch, and the care giver moves them about on the track or gantry.
Numerous other types of devices, ranging from low tech to high tech, exist for aiding with transfers. On the low tech side, transfer boards which are a short piece of smooth laminated wood that can be placed between person's chair and the surface they are transferring to or from. The caregiver then slides (often more like dragging) the person across board and onto the destination surface. Some devices are highly specialized. The Hover Jack (Hover Tech International) is an inflatable cushion that is specifically designed to aid a caregiver in lifting people off the floor and into a bed. There are many styles of chairs that specifically designed to help lower people in an out of bath tubs. On the high tech side is Panasonic's transfer assist robot (http://www.youtube.com/watch?v=LBMJCI-FzrM), which acts much like a forklift for moving people.
In a preferred aspect, the present disclosure is directed to a robotic strong arm (RSA) for assisting in the transfer of a person from a first surface to a second surface, comprising: first and second members, wherein each member comprises a prismatic joint having first and second ends and comprising inner and outer shells and a motor for powered linear movement of the outer shell with respect to the inner shell; a first powered joint interconnecting the second end of the first member with the first end of the second member, wherein the first powered joint provides movement of the second member with respect to the first member; wherein the first end of the first member is attached to a rotatable base and wherein the rotatable base is movably attached for powered movement along a component associated with, and extending around at least a portion of a periphery about, the first surface; and a computer controller for controlling movements of the outer shells, first powered joint, rotation of the base and movement of the base and RSA along the component.
In an additional preferred aspect, the present disclosure is more specifically directed to a robotic strong arm wherein the first surface comprises a seat of a wheelchair; wherein the seat has a front, a back and first and second sides.
In yet another preferred aspect, the present disclosure is directed to a robotic strong arm wherein the component comprises a track, rod or other structure along which the RSA may be moved to position the RSA adjacent to or near the back, first side or second side of the seat or any point along the periphery between the first and second sides.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm further comprising a sensor associated with each outer shell for sensing a relative position of the outer shell.
In another preferred aspect, the present disclosure is directed to a robotic strong aim wherein the movement of the second member with respect to the first member comprises rotational or angular movement of the second member with respect to the first member.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein each of the inner and outer shells of each of the first and second members comprises a double-walled construction.
In an additional preferred aspect, the present disclosure is more specifically directed to a robotic strong arm wherein each of the inner and outer shells of each of the first and second members comprises a double-walled construction made of plastic or reinforced plastic.
In an additional preferred aspect, the present disclosure is more specifically directed to a robotic strong arm wherein each of the inner and outer shells of each of the first and second members comprises a double-walled construction made of plastic reinforced with metal or stainless steel rods.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein each of the inner and outer shells of each of the first and second members defines a polygonal cross-section.
In another preferred aspect, the present disclosure is directed to a robotic strong arm further comprising a motor for powering reversible rotation of the base and first member so that the second member may be moved toward and/or away from the first surface.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein the robotic strong arm may be used for both stand-pivot transfers, where a person on the first surface has some ability to stand and place some weight on the ground and/or for fully dependent transfers, where the person being transferred to or from the first surface is in a sling and the person's weight is fully on the robotic strong arm.
In another preferred aspect, the present disclosure is directed to a robotic strong arm further comprising an effector attached to the second end of the second member wherein the effector may be used for grasping or manipulating objects located out of reach of a person sitting on the first surface.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein the second surface is defined by a bed, bench, toilet, chair or the like.
In another preferred aspect, the present disclosure is directed to a robotic strong arm (RSA) for assisting in the transfer of a person from a first surface defined by a seat of a wheelchair to a second surface, comprising: first and second members, wherein each member comprises a prismatic joint having first and second ends and comprising inner and outer shells and a motor for powered linear movement of the outer shell with respect to the inner shell; a first powered joint interconnecting the second end of the first member with the first end of the second member, wherein the first powered joint provides movement of the second member with respect to the first member; wherein the first end of the first member is attached to a powered rotating base and wherein the powered rotating base is movably attached to a component of the wheelchair for powered movement along the component extending around at least a portion of a periphery about the first surface; and a computer controller for controlling movements of the outer shells, first powered joint, rotation of the base and movement of the base and RSA along the component.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein the second surface is defined by a bed, bench, toilet, chair or the like.
In another preferred aspect, the present disclosure is directed to a robotic strong aim wherein each of the inner and outer shells of each of the first and second members defines a polygonal cross-section and comprises a double-walled construction made of plastic, reinforced plastic or plastic reinforced with metal or stainless steel rods.
In a further preferred aspect, the present disclosure is directed to a robotic strong arm wherein reversible rotation of the powered rotating base and attached first member allows the second member to be moved toward and/or away from the first surface.
In another preferred aspect, the present disclosure is directed to a robotic strong arm further comprising an effector attached to the second end of the second member wherein the effector may be used for grasping or manipulating objects located out of reach of a person sitting on the first surface.
In yet another preferred aspect, the present disclosure is directed to a robotic strong arm wherein the component comprises a track, rod or other structure along which the RSA may be moved to position the RSA adjacent to or near the back, first side or second side of the seat or any point along the periphery between the first and second sides.
In an additional preferred aspect, the present disclosure is directed to a robotic strong arm wherein the robotic strong arm may be used for both stand-pivot transfers, where a person on the first surface has some ability to stand and place some weight on the ground and/or for fully dependent transfers, where the person being transferred to or from the first surface is in a sling and the person's weight is fully on the robotic strong arm.
It is to be understood that the descriptions of the present disclosure have been simplified to illustrate elements that are relevant for a clear understanding of the present disclosure, while eliminating, for purposes of clarity, other elements that may be well known. Those of ordinary skill in the art will recognize that other elements are desirable and/or required in order to implement the present disclosure. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present disclosure, a discussion of such elements is not provided herein. Additionally, it is to be understood that the present disclosure is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the description and the following claims.
The purpose of the RSA 10 is to aid in the transfers of people 22 with disabilities to and from the seat 13 (having surface 11) of their wheelchairs or electric powered wheelchairs (EPW) 8 onto other surfaces 30 such as a bed, shower bench, toilet, or another chair. The RSA 10 can be used for both stand-pivot transfers, where the person 22 has some ability to stand and places some weight on the ground or it can be used for fully dependent transfers, where the person 22 being transferred is in a sling 28 and weight is fully on the RSA 10. The RSA 10 is fixed to an EPW 8 to allow for use in community settings; however, it could also be mounted on a bed or another mobile platform for use in institutional settings.
The addition of an end effector (not shown) also makes the RSA 10 suitable for manipulation applications. For example the RSA 10 with a powered prosthetic hook hand could be used to help people 22 with disabilities retrieve heavier items, such as gallon milk jugs, large pots, or suitcases. The RSA 10 has several advantages over currently available technology.
Devices such as patient lifts, overhead lifts, and standing lifts are generally limited to homes or institutional settings. Since the RSA 10 is mounted to an EPW 8 it can be used in the home as well as the community. The RSA 10 also may also have an advantage in a smaller bathroom where an EPW 8 and patient lift will not fit at the same time. Additionally, the RSA 10 may be preferable for users 22 who are traveling and wish to take only one device.
Many lifting technologies use manually operated or in some high end models use a powered mechanism, such as a hydraulic jack, to perform the vertical lifting motion. However, moving the person, left, right, or rotating them is done completely manually. The RSA 10 has 5 powered Degrees of Freedom (DOF) which may reduce the effort need to move the person 22. Since the RSA 10 has 5 DOF it may be more maneuverable in certain scenarios.
Few lifting devices (with none widely available) employ the use of sensors and computer algorithms. This attribute of the RSA 10 has potential increase safety by detecting potentially dangerous situations and warning the user 22 or correcting automatically. In addition programs that run a preprogrammed sequence could make the transferring process more uniform from lift to lift, and maybe make it cognitively simpler for the caregiver.
The RSA 10 fundamentally differs from related devices currently on the market in that is has 5 DOFs that are under powered robotic control (can be sensed and actuated by a computer 40) and can be directly attached to an EPW 8. The unique geometry of the RSA 10 gives it an advantage over other products, especially in confined spaces, such as bathrooms.
As shown in
As shown in
Fabrication
As shown in
Operation
As shown in
It should be understood that while this disclosure has been described herein in terms of specific embodiments set forth in detail, such embodiments are presented by way of illustration of the general principles of the disclosure, and the disclosure is not necessarily limited thereto. Certain modifications and variations in any given material, process step or chemical formula will be readily apparent to those skilled in the art without departing from the true spirit and scope of the present disclosure, and all such modifications and variations should be considered within the scope of the claims that follow.
This application claims priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/622,867, filed Apr. 11, 2012, the contents of which are herein incorporated by reference.
This invention was made with government support under National Science Foundation Quality of Life Technology Engineering Research Center (Grant EEC-0540865) and Department of Veterans Affairs Center of Excellence for Wheelchairs and Associated Rehabilitation (Grant B3142C). The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61622867 | Apr 2012 | US |