The present invention relates to the field of robotic arms, for gripping and movement of items, the handling of a tool for manufacturing tasks, in restricted spaces, for example in deep racks or shelves leaving little space between the superficial layer of items and a shelf or a surface situated above the item container.
It relates to object gripping applications in particular, but not exclusively, logistics and warehouses or storage racks or racks for storing industrial components or palettising/depalettising, etc.
It is reminded that a warehouse is a logistics building intended for the storage of products before their shipping to a client. The main processes implemented within a warehouse are receiving orders, stocking up, preparing orders, shipping and managing stock. Generally, the invention relates to situations where products must be recovered and placed in another point, with an available space which can be very restricted or constrained, both in height and in width, and where the depth can, on the contrary, be significant.
For logistics applications, the incoming flows of a warehouse generally consist of goods delivered on pallets by lorries putting them on a platform.
Operators unload the pallets from the lorries, then store them on racks where they will be on standby. The outgoing flows consist of homogenous pallets (one single reference per pallet) or heterogenic pallets in which different types of referenced products are aggregated. Thus, the different products must be recovered, an operation termed “picking”, from pallets in use generally disposed in a place on the ground under a rack. When the pallet is empty, a resupplying request is launched and an operator manoeuvres a forklift to recover a pallet at height and place it in the place on the ground under a rack.
The present invention more specifically relates to an assembly comprising a station for preparing orders (also termed “picking station”), in particular but not exclusively in the case where this forms part of an automated storage system comprising a storage rack and one or more stations for preparing orders.
The present invention can be applied to all types of order preparation, and in particular:
Generally, two types of stations for preparing orders are distinguished: moving stations and fixed stations.
The moving stations implement the “man to goods” principle, according to which the preparer is moved to the place of sampling and takes the number of products ordered there.
The fixed stations implement the “goods to man” principle, according to which the storage containers (for example, boxes or plates), each containing products of a given type, are automatically taken out of a storage magazine (on transfer devices termed carriages or shuttles) and arrive in front of or in the proximity of the preparer who must take, the number of products ordered from each.
This distinction between moving stations and fixed stations also applies in the case of palettisation: either the preparer is moved to go and look for the storage containers to be unloaded on the pallet to be shipped, or these storage containers are automatically brought to the preparer (for example, by an automated storage and retrieval system).
The present invention can be used just as well in the case of a fixed station for preparing orders when the frame of the robotic arm is fixed to the ground, as in the case of a moving station when the main frame of the robotic arm is fixed on a carriage or mobile robot.
In the present description, by elevator, is meant any system for taking one or more loads (storage or shipping container(s)) to a given level and to deposit it/them at another level.
Storage warehouses are generally structured by rows of racks where items are stored.
The lower row of racks on the ground is intended for the removal of the items according to the order of management. This operation termed “picking” is done manually, or more and more by using a robotic arm mounted on a mobile carriage.
The invention also relates to other fields of application, such as the movement of a tool for manufacturing tasks in restricted spaces where the introduction and the positioning of the tool do not allow a large amplitude of movements in one of the directions, while requiring a larger amplitude of movements in the plane perpendicular to the limited direction. This is, for example, an intervention between two surfaces, for example on the lower surface of the chassis of a vehicle placed on the ground, an intervention between two plates close to one another, etc.
Manufacturing tasks are, for example, painting, screwing, welding, trimming, riveting, machining, 3D printing (additive manufacture), etching, laser cutting, electro-erosion, etc.
A mobile robot is known from the state of the art of patent application WO2018086748 describing a robotic arm, comprising an undercarriage and a robotic arm mounted on the undercarriage, as well as a logistical system comprising a goods support, which is designed for the transitional storage of goods, and comprising a self-guided vehicle, which is designed to transport the goods support, as well as a corresponding mobile robot.
Chinese patent application CN106112952A discloses a robotic loading and transfer double-arm intended for the rapid loading of parcels during air transport. The robotic arm comprises a clamping module composed of mechanical arms, a disk mechanism and a guide rail mechanism and a conveyor belt module used for the transfer.
The solutions of the prior art have different disadvantages.
First, the robotic arm must be capable of operating in an often very restricted space: the height between the top of the container or item to be gripped and the following shelf can be only a few centimetres. The arm must also be able to be positioned laterally between stacks of items of unequal heights, limiting the lateral articulation.
Moreover, the series type robotic arms generally require motorised articulations, extending over the length of the arm. This is conveyed by a significant mobile mass, involving a robust and bulky architecture.
Finally, most of the series type holding arms carry generally quite low useful loads with respect to their total moving mass. As the loads to be transported can be relatively significant, of a few tens of kilograms, this involves using powerful and heavy motors, and leads to a significant energy cost.
In order to overcome these disadvantages, the invention relates to, according to its most general sense, a robotic system, comprising an articulated arm, characterised in that said articulated arm has a deformable assembly consisting of a plurality of bars connected by parallel pivot axes to form at least one deformable structure, the distal end of said deformable assembly supporting a mechanical interface, said system further comprising two actuators which rotate two of said bars, said system further comprising a third actuator controlling the translational movement of said deformable assembly in a direction parallel to said pivot axes.
By “mechanical interface”, is meant, in the sense of the present patent, a means moved by the robotic system and provided for the coupling of a tool such as a clamp or a gripping mechanism of an object to be moved, or a tool to carry out manufacturing operations.
By “bar”, is meant, in the sense of the present patent, a long and rigid part, of low thickness with respect to its length, of any transversal cross-section.
The deformable assembly consists of deformable quadrilaterals which are preferably deformable parallelograms and even more preferably, deformable diamonds.
According to variants of embodiments, independent or combined together, the invention is also characterised by the following features:
The present invention will be better understood upon reading the following description, referring to the appended drawings illustrating non-limiting examples of implementations, where:
The robotic manipulator according to the invention has 3 degrees of freedom, with:
The robotic manipulator according to the invention has an architecture offering the following advantages:
In particular, this device is very advantageous for carrying out palettising/depalettising operations, due to the fact that its working space is extended and that it can be deployed in zones with a reduced free space to carry out the pick and place tasks.
In particular, the arm is very advantageous for carrying out “pick and place” operations needing to be performed from a mobile robot due to a large working space, its handling and the low energy consumption.
This device according to the invention is also particularly suitable for movement in a restricted space of a tool fixed to the distal end of the arm (100), for interventions in difficult contexts, for example with a low available height and the need for a positioning of the tool precisely and reproducibly on a significant surface.
The tool supported by the arm (100) can be a spray nozzle for painting applications, an additive printhead, or a machining or assembling tool.
Simplified Examples
The pantograph consists of four rigid bodies or “bars” (1 to 4) connected by pivot articulations (10 to 13) perpendicular to said plane defined by the pantograph, to form a deformable flat quadrilateral.
In the present description, “pantograph” means an articulated assembly of bars defining a succession of deformable flat quadrilaterals or an assembly of consecutive coplanar deformable quadrilaterals assembled by pivot connections of axis perpendicular to said plane. In the latter case, two consecutive quadrilaterals have a common peak and share two common bars pivoting with respect to this common peak.
By “proximal”, means the portion of the arm (100) closest to the support (200) and by “distal” or “terminal”, is meant the portion the farthest away, where the mechanical interface (20) is located, of which the movement is controlled.
The three pivot articulations (11 to 13) are passive and the pivot articulation (10) is motorised and integrates two actuators independently controlling the angular movement of each of the proximal bars respectively (1, 2). The proximal end of the deformable quadrilateral is translationally moved along the axis (7) perpendicular to the plane allowing the positioning of the distal end of the deformable quadrilateral at height, along the axis z. The arm (100) has, at its distal end, a gripping means (20), for example a suction cup or a tool.
The two proximal bars (1, 2) are independently rotated by actuators. In the present description, “actuator” means a device ensuring a movement, generally angularly less than 360°, controlled by an electric signal transmitted by wire or by radiofrequency.
In a non-limiting manner, a rotating or linear electric motor will be considered as an actuator in the sense of the present patent, in particular of the electromagnetic, hydraulic, pneumatic, piezoelectric type, an electromagnetic actuator, a geared motor.
When the quadrilateral forms a diamond and when the two bars (1, 2) are moved by one same angle, in opposite directions, the distal end (20) is moved over a rectilinear trajectory connecting the intersection point of the axes (10) and (12) with the horizontal plane which makes it possible to position the gripping means (20) above the item to be gripped.
When the movement angle of a proximal bar (1) differs from the movement angle of the other proximal bar (2), the distal end (20) is moved according to a curved movement with a lateral component.
It is thus possible to scan a working surface with the gripping means or with the tool by adjusting the angles of the proximal bars (1, 2) in a reduced space and at a low height.
The assembly is deformed according to two identical diamonds, the deformation being controlled by mechanical control of the angles 61 and 82 that the bars (1) and (2) make with respect to the longitudinal axis X of the main frame.
Of course, the number of quadrilateral units of the pantograph can be increased.
In an alternative version of the flat mechanism, the folding of the kinetic chain of the pantograph can be obtained by associating a rotation mechanism on the axis (7) and a translation mechanism inserted between any two points of the kinetic chain of the pantograph carefully selected for example by control of the distance between the pivots (11, 13) obtained by motor mechanism and screw and screw/nut system. It is possible even to remove the two proximal bars (1 and 2), as will be detailed in a subsequent variant.
Operation of the invention The robotic manipulator arm consists of a kinetic chain and a control system.
The kinetic chain ensures two functionalities:
1) positioning of a mechanical interface according to the 3 degrees of freedom of the space in translation referenced xyz;
2) orientation of a mechanical interface according to the 3 degrees of freedom of the space in rotation for the objects when a motorised wrist supporting this mechanical interface is added to the end of the kinetic chain.
By mechanical interface, is meant a tool, a wrist, a gripper or an effector.
The first functionality is obtained using the following principles:
a) the translation along an axis z of a flat pantograph-type mechanism allowing positioning in z, the distal end of the kinetic chain;
b) a flat pantograph-type mechanism allowing positioning in the plane xy, the terminal end, thanks to the control in rotation of the two first bars 1 and 2 and a kinetic chain consisting of 4 bars in its simplest version, of 6 bars in its usual version and 2 N bars in more developed versions.
Embodiment Variant
The height of the arm (100) is adjusted by a plate (26) actuated by a threaded rod (27) driven by a first geared motor (28) thanks to a screw/nut mechanism. Due to the fact that the plate (26) slides freely on the shaft (30) and is constrained by the threaded rod (27), its orientation in the plane xy is constant and provides a longitudinal axis.
The first bar (1) is driven by a second geared motor (29) by way of a shaft (30). In the example described, this shaft (30) is integral with the first bar (1) to drive its angular movement with respect to the reference point attached to the frame (25). The support of the arm (100) can slide along the shaft (30) by slide connection (30) due to the fact that the mechanical connection is constrained by a slot or a pin/groove device or by using a non-circular cross-section for the shaft (30) or any other equivalent device. The shaft (30) extends to the slotted flange (40), ensuring the positioning of the end of the plate (26), supports the second bar (2) and a set of hollow shafts (41 to 42), free to freely slide on this shaft (30).
The second bar (2) is driven angularly by a third geared motor (32) by way of a second shaft (31). This second shaft (31) is integral in rotation with the bar (2) thanks to a series of hollow shafts (40 to 42) free to slide axially between them in the limit of a maximum axial articulation limited by an abutment system, the relative rotations of said hollow shafts being prevented by pin/groove systems, slots, the use of non-circular cross-sections or other equivalent devices allowing translation without rotation. The last hollow shaft (42) is fixed on the second bar (2) by screws or other equivalent mechanical device. The sum of the cumulative axial articulations of the different hollow shafts is calculated such that the terminal end (20) can be moved on the vertical axis according to the desired distance.
Embodiment Variant with Two Non-Coaxial Proximal Axes of Rotation
The geared motor (29) rotates the shaft (17). The bar (1) is integral in rotation with the shaft (17) which is a slotted or grooved shaft.
The geared motor (32) rotates the shaft (18). The bar (2) is integral in rotation with the shaft (18) which is a slotted or grooved shaft.
The geared motor (28) rotates the shaft (7) by way, for example, of a screw/nut system, causing a vertical movement of the plate (26). The plate (26) can slide freely in translation with respect to the shafts (17) and (18) without being constrained in rotation with respect to these two shafts. In this variant, the mechanical implementation is simplified and does not require the assembly of hollow shafts. However, the direct and inverse geometric models which link the articular coordinates θ1, θ2, z and the operational coordinates x, y, z of the robot are more difficult to obtain, and the working space is reduced with respect to the first variant.
Embodiment Variant Comprising a Torque Transmission on One of the Arms by Way of Toothed Pinions
The bar (1) is controlled by the geared motor (32) by way of a slotted shaft (31), while the bar (2) is controlled by the geared motor (29) by way of the slotted shaft (30) and two toothed pinions (33, 34).
Variants Comprising an Intermediate Frame Controlled in Rotation from the Fixed Frame
The geared motor (28) is integral with the intermediate frame (35) and allows through its associated threaded shaft (27), control of the position along z of the assembly of the bars (1) and (2) thanks to a screw/nut system between the bar (2) and the threaded shaft (27). The shafts (27) and (30) allow blocking the rotation of the bar (2) with respect to the intermediate frame (35) and the orientation of the bar (2) is thus controlled by the geared motor (32) due to the fact that the shafts (30) and (31) are coaxial. The shafts (30) and (31) can however, in certain variants, not be coaxial, but their axes remain parallel.
The geared motor (32) is fixed on the fixed frame (25) and ensures the control in orientation of the intermediate frame (35) thanks to the securing of its output shaft (31) to the frame (35).
The geared motor (29) integral with the fixed frame (25) makes it possible to control the absolute orientation of the bar (1) by way of the slotted or grooved shaft (30). In certain variants, this geared motor (29) which can be integral with the intermediate frame (35) allowing control of the relative orientation of the bar (1) with respect to the bar (2).
A first actuator (32) controls the orientation of the first intermediate frame (35) pivoting along the axis z with respect to the main frame (25). This first intermediate frame (35) is rotationally moved, removing a second frame (23). This second frame (23) is translationally moved with respect to the first intermediate frame (35) by way of a slide connection by way of a linear motor (24). It removes a geared motor (29) allowing control of the relative orientations of the two proximal bars (1, 2) of the pantograph.
The geared motor (29) fixed on the frame (23) makes it possible to control the relative orientation of the bar (1) with respect to the bar (2) thanks to the shaft (30) integral with the proximal bar (1), the proximal bar (2) being fixed with respect to the frame (23). The geared motor (32) controls in rotation the intermediate frame (35) by way of the shaft (31). The translational movement of the intermediate frame (23) can also be controlled by a screw/nut system, shaft (27) and geared motor (28) according to the same principle as
According to a variant (not represented) of the embodiment of the fifth variant, only described for its differences with said variant, an embodiment is provided wherein the second actuator (29) is fixed on the first intermediate frame (35) or on the main frame (25).
Generally, the screw/nut system proposed in the preceding variants is interesting from a safety standpoint as due to the irreversibility of the screw/nut system, it avoids having to implement mechanical brakes in the case where the motors would no longer be supplied with energy. Such an eventuality must be considered with caution as the arm is intended to remove significant loads, of which them falling could constitute a risk for users or the products to be moved, or the mechanical system itself.
However, another ball screw type translation system, or linear motor on slide connection can be implemented to manage the translation of the arms along z.
The favoured direction of installation of this manipulator robot is that the direction z corresponds to the vertical axis.
Thus, during the movement of heavy loads in a horizontal movement, the geared motor (28) is not requested and the geared motors (29, 32) only support low torques with respect to the torques supported by anthropomorphic type robots carrying out the same trajectory. The energy consumption is highly reduced.
The mechanical structure is designed to support significant static and dynamic forces generated during tasks of picking/placing objects of high masses.
The moments of inertia of the cross-sections of the bars (1, 2) are calculated so as to be able to support significant loads, in particular the geometry of the arms such as described schematically in
Embodiment Variants Comprising an Intermediate Frame Controlled in Translation with Respect to the Fixed Frame
The proximal bars of the pantograph (1, 2) are articulated from an intermediate frame (23).
The intermediate frame (23) driving the pantograph along z is translationally moved thanks to a slide connection (36) and a screw/nut type drive, a geared motor (32) fixed on the main frame (25) allowing control of the first proximal bar (1) of the pantograph by way of the slotted shaft (31), while a second geared motor (29) embedded on the intermediate frame (23) makes it possible to control the second bar (2) of the pantograph by way of a shaft (30) thanks to a system of gears (33) and (34).
The threaded shaft (27) driven by the geared motor (28) ensures a translational guiding along z of the frame (23) by screw/nut system.
The toothed pinion system (33) and (34) can possibly be replaced by equivalent belt, notched belt or other type systems, intended to transmit a rotational movement between two non-coaxial shafts. According to a variant (not represented) of the embodiment of the sixth variant, only described for its differences with said variant, an embodiment is provided wherein the second actuator (29) is fixed on the main frame (25).
The geared motor (29) controls the orientation of the bar (1) thanks to the slotted shaft (30) while the geared motor (32) controls the orientation of the bar (2) thanks to the slotted shaft (31). The bar (1) is moved freely in rotation with respect to the shaft (31) while the bar (2) is moved freely in rotation with respect to the shaft (30).
It is also possible that the output shafts of the geared motors are not coaxial and that the transmission of the rotational movement is obtained by way of a toothed pinion system or equivalent.
In this variant, it can be considered that the slide connection driving the intermediate frame is made in a direction different from z, for example parallel to the plane of the pantograph. Vertical mobility can also be added to the distal end.
Use of the Robotic Arm to Carry Out Works in an Congested Environment
In this case, the rotation of the latter segment makes it possible to work in very narrow and constrained spaces, both in height and in width.
In the case where the gripper or the tool is fixed directly on the geared motor (50), the terminal end (or the object gripped by the gripper fixed to the end or the tool) can carry out displacements referred to as Schoenflies in literature, namely being translationally moved along xyz and rotationally moved about the axis z. Schoenflies displacements mean movements of rigid bodies consisting of a linear movement in a three-dimensional space plus an orientation about an axis with a fixed direction. In robotic handling, this is a movement adapted to operations required to move an object or a tool from one a plane and to move it with a different orientation on another parallel plane.
Because the SCARA manipulator was one of the first manipulators to provide a similar movement, the SCARA type movement is often referred to. Today, numerous robotic manipulators, of which some with a parallel kinetic architecture, are used in the industry for applications ranging from the manufacturing of electronic products to the industry of the transformation and the packaging of food.
This version makes it possible to have a manipulator robot which can carry out pick/place, palettising/depalettising tasks with an effectiveness greater than the SCARA robots on the market.
It is also possible to add three motorised mechanical connections acting as a wrist, at the distal end (20). In this case, the manipulator arm can place an object by controlling the three degrees of freedom in xyz and the three degrees of freedom of orientation.
Other Embodiment Variant
Another embodiment variant relates to a mechanism being distinguished from preceding variants by the fact that the two first proximal bars are removed and that the opening of the pantograph is controlled by controlling the distance between two points of the remaining kinetic chain.
The pantograph is truncated from the two proximal bars (1, 2). An actuator controlling the distance between the two proximal peaks of the truncated pantograph makes it possible to control its opening.
The geared motor (32) makes it possible to control the orientation of the first intermediate frame (35) by the shaft (31).
A slide connection and a linear motor (24) allow control of the translation in z of the second intermediate frame (23).
The passive pivot articulation (13) of the bar (3) is articulated on the shafts (57) and (58) fixed on a nut (52) translationally constrained by a first shaft (59) and a second mechanical assembly consisting of a threaded shaft with thread to the right (55), a toothed pinion (54) and a threaded shaft with thread to the left (56). The nut (52) slides freely on the shaft (59) while it has an inner threading allowing a screw/nut type connection with the threaded shaft (55) to be made.
The same principle regulates the articulation of the passive connection (11) of the bar (4) on the nut (53).
A geared motor (29) integral with the frame (23) makes it possible to control the rotation of the mechanical assembly (54 to 56) thanks to the toothed pinions (60, 54). The toothed pinion (54) can only be rotationally moved and transmits this rotational movement to the two threaded shafts (55) and (56), which due to their inverted screw thread will move closer or farther away by an identical length, the articulations (11) and (13) of the bars (3) and (4).
The axis of the shaft (31) passes through the pinion (54) in a point which constitutes the middle, referenced B, of the base of the isosceles triangle formed by the projections of the articulations (11 to 13).
The angle between the direction x and the straight line (BA′) is controlled by the rotation of the geared motor (32) while the distance BA′ is controlled by the rotation of the geared motor (29).
Number | Date | Country | Kind |
---|---|---|---|
1859074 | Oct 2018 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2019/052285 | 9/26/2019 | WO | 00 |