This specification relates to surface cleaning apparatuses, and more particularly, to a robotic cleaning apparatus capable of cleaning beyond a periphery of the robotic cleaning apparatus.
The following is not an admission that anything discussed below is part of the prior art or part of the common general knowledge of a person skilled in the art.
A surface cleaning apparatus may be used to clean a variety of surfaces. Some surface cleaning apparatuses include a rotating agitator (e.g., brush roll). One example of a surface cleaning apparatus includes a vacuum cleaner which may include a rotating agitator as well as vacuum source. Non-limiting examples of vacuum cleaners include robotic vacuums, upright vacuum cleaners, canister vacuum cleaners, stick vacuum cleaners, and central vacuum systems. Another type of surface cleaning apparatus includes a powered broom which includes a rotating agitator (e.g., brush roll) that collects debris, but does not include a vacuum source.
Within the field of robotic and autonomous cleaning devices there are a range of form factors and features that have been developed to meet a range of cleaning needs. However, certain cleaning applications remain a challenge. For example, cleaning along running surface edges (e.g., floors, windows, walls) and within corners is important but impractical for devices primarily designed to clean horizontal surfaces, e.g., floors/rugs, and so on. Effectively cleaning such vertical/running surfaces while also being capable of reaching into corners raises numerous non-trivial design issues as well as navigational complexities to avoid robotic vacuums getting stuck/obstructed.
These and other features advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the teaching of the present specification and are not intended to limit the scope of what is taught in any way.
As discussed above, running surface edges and corners can be difficult areas to clean for robotic/autonomous vacuums. Some robotic vacuums have a relatively small form factor and are well suited for navigation (particularly in the case of random bounce), but may have a limited ability to effectively clean edges and corners based on a geometry of their respective housings and other constraints such as brush placement.
Thus, in accordance with an embodiment of the present disclosure, a robotic cleaning apparatus is disclosed that includes at least one brush assembly capable of cleaning edges and corners while eliminating or otherwise reducing the risk of getting “stuck” during cleaning operations. In accordance with another embodiment of the present disclosure there is provided a robotic cleaning apparatus having a D-shape and at least one antenna extending from a periphery of the robotic cleaning apparatus, wherein the antenna is configured to urge debris to a location under and/or that is in a moving path of the robotic cleaning apparatus.
Although the present disclosure specifically references floor-based robotic cleaning devices, this disclosure is not necessarily limited in this regard. Aspects and embodiments disclosed herein are equally applicable to wall and/or window cleaning robotic devices, wherein the robotic device travels vertically along the wall or target surface. In one specific example, a robotic cleaning device may be coupled to an inside surface of a skylight (or other window) and may utilize various details disclosed herein to clean edges and/or corners of the skylight.
As generally referred to herein, the term antenna may refer to an agitator having at least a portion that extends/projects from a body of a robotic vacuum in a manner that resembles antennae on an insect or to an agitator having at least one additional agitator coupled thereto, wherein at least a portion of the additional agitator extends/projects from a body of a robotic vacuum in a manner that resembles antennae on an insect. The term “antenna” is not intended to limit the brush assembly to a particular shape or configuration.
As generally referred to herein, the term resiliently deformable may refer to an ability of a mechanical component to repeatably transition between an un-deformed and a deformed state (e.g., transition between the un-deformed and deformed state at least 100 times, 1,000 times, 100,000 times, 1,000,000 times, or any other suitable number of times) without the component experiencing a mechanical failure (e.g., the component is no longer able to function as intended).
As generally referred to herein, the term surface to be cleaned generally refers to a surface on which a robotic cleaning apparatus travels, such as a floor. As may be appreciated, one or more side brushes and/or antennas may also clean a surface that extends transverse to the surface to be cleaned, such as a wall or obstacle.
Various apparatuses or processes will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover processes or apparatuses that differ from those described below. The claimed inventions are not limited to apparatuses or processes having all of the features of any one apparatus or process described below or to features common to multiple or all of the apparatuses described below. It is possible that an apparatus or process described below is not an embodiment of any claimed invention. Any invention disclosed in an apparatus or process described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.
While not shown for clarity, the robotic cleaning apparatus 1 may also include one or more controllers, motors, sensors, and/or power sources (e.g., but not limited to, one or more batteries) disposed within and/or coupled to the body 2. As is well understood, the controllers, motors, sensors (and the like) may be used to navigate the robotic cleaning apparatus 1 such that the primary cleaning device 4 picks-up (e.g., sweeps up) and collects dust and debris (for example, optionally using suction airflow).
Each of the antenna brushes 5-1 and 5-2 may include a first portion 10 to couple to the body 2 and a second portion 11, which is shown more clearly in
In an embodiment, each of the antenna brushes 5-1 and 5-2 extend from the body 2 at a predetermined angle relative to the body 2. As shown, the body 2 includes a longitudinal axis 7. Note that body 2 may not necessarily include a longitudinal axis (e.g., the body 2 may have a circular shape). The agitator chamber 6 may also define a longitudinal axis 8. Thus, the antenna brush 5-1 includes a longitudinal axis 12 that extends from the body 2 at an angle of θ2 relative to the longitudinal axis 7 of the body 2, with angle θ2 being about 45 degrees although other angles are within the scope of this disclosure. For example, angle θ2 may include a range of angles between 30 and 60 degrees. However, each of the antenna brushes 5-1 and 5-2 may have a relatively wide range of angles and may extend beyond 30 to 60 degrees, e.g., as shown in
Likewise, the longitudinal axis 12 of the antenna brush 5-1 may also extend at an angle θ1 relative to the longitudinal axis 8 of the agitator chamber 6, with angle θ2 also being about 45 degrees. However, each of the angles θ1 and θ2 may not necessarily be equal depending on the configuration of the robotic cleaning apparatus 1.
Each of the antenna brushes 5-1 and 5-2 may be fixed at a particular angle, e.g., at angles θ1 and θ2, respectively. For example, each of the antenna brushes may generally resist movement along direction F1 and may “flex” or bend to some degree before returning to their respective fixed positions. In other cases, each of antenna brushes 5-1 and 5-2 may be rotatably coupled to the body 2 and may allow for rotational movement along path F1. For example, each of the antenna brushes 5-1 and 5-2 may have a retracted position, such as shown in
The antenna brushes 5-1 and 5-2 may be configured to “lock” at one or more of the retracted positions, intermediate positions, and/or an extended position to target a particular edge or corner surface, for instance. The antenna brushes 5-1 and 5-2 may be configured to move automatically based on gears or other suitable mechanisms, or may be moved manually through a user-applied force.
In any event, each of the antenna brushes 5-1 and 5-2 may be configured to rotate about the body 2 in a manner independent of each other. In other cases, each of the antenna brushes 5-1 and 5-2 may be configured to mechanically move together, which is to say rotational movement of one results in a proportional movement of the other.
Continuing with
Likewise, the antenna brush 5-2 may also have an axis of rotation which is substantially parallel with the surface to be cleaned to sweep/direct dirt and debris towards the agitator chamber 6. However, the antenna brush 5-2 may rotate in a direction opposite of that of the antenna brush 5-1, e.g., counter clockwise, to ensure that dirt and debris is properly directed into the path of the robotic cleaning apparatus 1. In a general sense, the cleaning element/bristles of each of the brushes 5-2 and 5-3 may allow for corkscrew-like movement to direct dirt from edge/corner surface(s) towards a suction chamber, e.g., the agitator chamber 6.
Each of the antenna brushes 5-1 and 5-2 may extend a distance D1 and D2, respectively, away from the body 2 when in the extended position. The distance D1 and D2 may be equal, or may be different. The distance D1 and/or D2 relative to the overall length L of the body 2 may be a predefined ratio. For instance, if the ratio of D1/D2 to L may be 1:3, 1:4, 1:6, although other ratios are within the scope of this disclosure.
The second portion 11 of each antenna brush 5-1 and 5-2 may be flexible, e.g., may be configured to bend at least 90 degrees back towards the first portion 10, and preferably, 180 degrees back towards the first portion 10.
Thus, the antenna brushes 5-1 and 5-2 may include a first axis of rotation that allows movement relative to the body 2 to target edge and/or corner surface(s). The antenna brushes 5-1 and 5-2 may also have a second axis of rotation, which may extend substantially in parallel with a surface to be cleaned, to allow each brush portion to “spin” and direct dust/debris towards the primary cleaning device 4.
Turning to
In an embodiment, sensory may be disposed at one or more locations along each of the antenna brushes 5-1 and 5-2. For example, a sensor 16 may be disposed at a distal end of the antenna brush 5-1 and/or at an end proximal to the body 2. The sensor 16 may be a proximity sensor or other sensor that provides environmental and/or physical information that may be utilized to make navigational decisions.
In an embodiment, each of the antenna brushes 5-1 and 5-2 may be configured to move up and down along path F3 (see
Thus, the antenna brushes 5-1 and 5-2 may form an integrated cleaning device with the primary cleaning device 4 to increase air flow along direction F6, dislodge dust and debris, and guide the same into a dust cup within the body 2. Additional details of the primary cleaning device 4 working in combination with a secondary brush, e.g., the antenna brushes 5-1 and 5-2 in the retracted position, is discussed in greater detail in Application Ser. No. 62/469,853 filed Mar. 10, 2017, and application Ser. No. 15/492,320 filed Apr. 20, 2017, and each are fully incorporated herein by reference.
In an embodiment, the body 2 may further include a plurality of drop sensors 25 disposed around a perimeter of the same to detect, for example, stairs and ledges.
The antenna brushes 5′-1 and 5′-2 can form an angle α with an axis 403 of the body 2′ that extends through a caster wheel 405 and a receptacle 407 for receiving a dust cup. In other words, the axis 403 extends generally parallel to a forward direction of movement of the robotic cleaning apparatus 1′. For example, when the antenna brushes 5′-1 and 5′-2 are in the retracted position, the angle α may measure approximately 90° (e.g., in a range of 85° to 95°). By way of further example, when the antenna brushes 5′-1 and 5′-2 are in the extended position, angle α may measure approximately 45° (e.g., in a range of 40° to 50°). By way of still further example, when the antenna brushes 5′-1 and 5′-2 are in the wall cleaning position, angle α may measure approximately 135° (e.g., in a range of 130° to 140°).
When the antenna brushes 5′-1 and 5′-2 are in the extended position at least a portion of the antenna brushes 5′-1 and 5′-2 can be configured to engage an edge of an obstacle or a corner. When the antenna brushes 5′-1 and 5′-2 are in the retracted position, the antenna brushes 5′-1 and 5′-2 are configured such that the antenna brushes 5′-1 and 5′-2 do not substantially obstruct forward movement of the robotic cleaning apparatus 1′. Regardless of orientation, the antenna brushes 5′-1 and 5′-2 are configured to rotate such that debris are urged in a direction of a movement path of the robotic cleaning apparatus 1′.
At least a portion of the antennas 204-1 and 204-2 can extend from the forward surface 208 of the body 202 such that the antennas 204-1 and 204-2 urge debris from beyond a periphery of the body 202 towards an underside 214 of the body 202 and/or in a direction of a movement path of the robotic cleaning apparatus 200. In other words, the antennas 204-1 and 204-2 are configured to rotate about a respective rotation axis 203-1 and 203-2 that extends generally parallel to a surface to be cleaned. For example, the antennas 204-1 and 204-2 can extend from the body 202 such that the antennas 204-1 and 204-2 are positioned between the forward surface 208 and a respective one of the side surfaces 212-1 and 212-2. In other words, a portion of each of the antennas 204-1 and 204-2 extends from the forward surface 208 and a portion of each of the antennas 204-1 and 204-2 extends from a respective one of the side surfaces 212-1 and 212-2.
The body 202 can include a displaceable bumper 216 that is slideably coupled thereto. As shown, the displaceable bumper 216 defines at least a portion of the forward surface 208. The displaceable bumper 216 can be displaced, relative to a portion of the body 202, in response to the displaceable bumper 216 engaging (e.g., contacting) an obstacle. The displaceable bumper 216 can be configured to actuate one or more switches (e.g., mechanical, optical, and/or any other switch) when the displaceable bumper 216 is displaced in response to engaging an obstacle.
As shown, the displaceable bumper 216 can define an opening 218 such that an optical navigation system 220 can be disposed behind the displaceable bumper 216. The optical navigation system 220 can generate data capable of being used to generate one or more maps of an environment and/or to detect obstacles within an environment. A window 222 can be disposed within the opening 218 and be configured such that the window 222 does not substantially interfere with the optical navigation system 220. For example, the window 222 can be configured to be transparent to at least those wavelengths of light used by the optical navigation system 220. The optical navigation system 220 can include, for example, one or more cameras (e.g., a stereo camera), one or more laser range finders, and/or any other system for optical navigation. In some instances, the optical navigation system 220 can include a light emission system configured to emit structured light into an environment. Additionally, or alternatively, the robotic cleaning apparatus 200 can include one or more acoustic navigation components (e.g., sound emitters and detectors) for navigation.
While the robotic cleaning apparatus 200 is shown as including an optical navigation system, other systems are contemplated and within the scope of the present disclosure. For example, the robotic cleaning apparatus 200 can utilize a random bounce navigation algorithm (e.g., the robotic cleaning apparatus 200 detects obstacles in response to contacting the obstacle). In some instances, a random bounce robotic cleaning apparatus 200 can include one or more optical navigation components (e.g., infrared emitters and detectors) and/or acoustic navigation components (e.g., sound emitters and detectors) configured to detect the presence of obstacles without the generation of an image and/or map. As such, the random bounce robotic cleaning apparatus 200 can be configured to detect obstacles without contacting the obstacle.
The first agitator 232 can be different from the second agitator 234. For example, the first agitator 232 can include one or more strips of bristles 240 and/or resiliently deformable flaps 242 extending along an exterior surface of a body 243 of the first agitator 232 and the second agitator 234 can include a plurality of fibers extending from an exterior surface of a body 245 of the second agitator 234 such that the exterior surface is substantially covered in the fibers. The fibers covering the second agitator 234 can be more flexible (e.g., softer) than the bristles 240 and/or deformable flaps 242 extending around the first agitator 232. As such, the second agitator 234 may generally be described as a soft brush and the first agitator 232 may generally be described as a brush roll.
While the agitator assembly 230 is shown as having a plurality of agitators, other configurations are contemplated and within the scope of the present disclosure. For example, the agitator assembly 230 may include only one agitator. By way of further example, the agitator assembly 230 may include at least three agitators. Further, while the agitator assembly 230 is shown as being centrally disposed between the driven wheels 228-1 and 228-2 and closer to the dust cup 238 than the displaceable bumper 216, other configurations are contemplated and within the scope of the present disclosure. For example, the agitator assembly 230 may be disposed closer to one of the driven wheels 228-1 or 228-2 than the other of the driven wheels 228-1 or 228-2. By way of further example, the agitator assembly 230 may be disposed rearward or forward of the driven wheels 228-1 and 228-2. In other words, the number of agitators and the location of the agitator assembly 230 is shown for purposes of illustration only and other configurations are contemplated and within the scope of the present disclosure.
As shown, an agitator cover 244 extends around a chamber 246 for receiving the first and second agitators 232 and 234. The agitator cover 244 can be configured to be removable such that the first and second agitators 232 and 234 can be removed from the chamber 246 (e.g., for replacement and/or cleaning). The agitator cover 244 can also include a plurality of teeth 248 extending along a longitudinal axis 250 of the agitator assembly 230 and disposed between the first and second agitators 232 and 234 such that the plurality of teeth 248 are configured to engage the second agitator 234. The plurality of teeth 248 are configured to remove fibrous debris, such as hair, that has wrapped around the second agitator 234 from the second agitator 234. Additionally, or alternatively, a second plurality of teeth can be provided that are configured to engage the first agitator 232.
As also shown, the agitator cover 244 includes a first flexible strip 252 (e.g., a bristle strip, a resiliently deformable flap, or any other flexible strip). The first flexible strip 252 extends substantially parallel to the longitudinal axis 250 at a location adjacent the first agitator 232. The first flexible strip 252 is configured to engage a surface to be cleaned and urge debris on the surface to be cleaned in a direction of the first and second agitators 232 and 234. The agitator cover 244 can also include a plurality of second flexible strips 254-1 and 254-2 extending transverse (e.g., substantially perpendicular) to the longitudinal axis 250. As shown, the plurality of second flexible strips 254-1 and 254-2 are disposed on opposing sides of the agitator cover 244 at location between the driven wheels 228-1 and 228-2. The second plurality of flexible strips 254-1 and 254-2 are configured to urge debris in a direction of the first and second agitators 232 and 234. The second flexible strips 254-1 and 254-2 may include bristles, a resiliently deformable material (e.g., a natural or synthetic rubber), and/or any other flexible material.
Each of the antenna agitators 236-1 and 236-2 are configured to extend along a respective channel 256-1 and 256-2 and engage a surface to be cleaned. The antenna agitators 236-1 and 236-2 are arranged such that a longitudinal axis (and/or rotational axis) 258-1 of the first antenna agitator 236-1 extends transverse to a longitudinal axis (and/or rotational axis) 258-2 of the second antenna agitator 236-2, wherein the longitudinal axes 258-1 and 258-2 extend generally parallel to a surface to be cleaned. For example, the antenna agitators 236-1 and 236-2 can be arranged such that a separation distance 260 between the antenna agitators 236-1 and 236-2 decreases as the antenna agitators 236-1 and 236-2 approach the agitator assembly 230. In other words, the antenna agitators 236-1 and 236-2 may generally be described as defining a V-shaped debris channel 262 that extends from a forward portion of the body 202 towards the agitator assembly 230.
An angle β defined between the longitudinal axes 258-1 and 258-2 can measure, for example, in a range of 45° to 135°. By way of further example, the angle β can measure in a range of 60° to 120°. By way of still further example, the angle β can measure in a range of 75° to 105°. By way of further example, the angle β can measure 90°.
Each of the antenna agitators 236-1 and 236-2 are configured to rotate in a direction that urges debris towards the debris channel 262 defined between the antenna agitators 236-1 and 236-2. As such, the antenna agitators 236-1 and 236-2 can generally be described as counter rotating (e.g., the first antenna agitator 236-1 can be configured to rotate in a first direction and the second antenna agitator 236-2 can be configured to rotate in a second direction, the first direction being opposite the second). A plurality of third flexible strips 229-1 and 229-2 can extend between a respective antenna agitator 236-1 and 236-2 and the agitator assembly 230. The third flexible strips 229-1 and 229-2 can be configured to urge debris in a direction of the debris channel 262. The third flexible strips 229-1 and 229-2 may include bristles, a resiliently deformable material (e.g., a natural or synthetic rubber), and/or any other flexible material.
The antenna agitators 236-1 and 236-2 each include a plurality resiliently deformable flaps 269-1 and 269-2 extending along an exterior surface of a body 271-1 and 271-2 of the antenna agitators 236-1 and 236-2. Additionally, or alternatively, the antenna agitators 236-1 and 236-1 can include one or more strips of bristles extending along the exterior surface of the body 271-1 and 271-2. In some instances, the plurality of deformable flaps 269-1 and 269-2 can be configured to urge fibrous debris, such as hair, towards a common point along the antenna agitators 236-1 and 236-2. For example, the plurality of deformable flaps 269-1 and 269-2 can be configured to urge fibrous debris, such as hair, to a location where it is easily removable by a user and/or in a direction of a cutter or grinder.
As shown, a plurality of teeth 264-1 and 264-2 extend along each of the channels 256-1 and 256-2. The plurality of teeth 264-1 and 264-2 are configured to engage a respective one of the antenna agitators 236-1 and 236-2 (e.g., the resiliently deformable flaps 269-1 and 269-2). The plurality of teeth 264-1 and 264-2 may remove fibrous debris, such as hair, that has become wrapped around the antenna agitators 236-1 and 236-2. Additionally, or alternatively, a cutter or grinder may be disposed proximate a first and/or second distal end 266-1 and 266-2 and 268-1 and 268-2 of a respective antenna agitator 236-1 and 236-2 (e.g., in an end region having a length measuring 5%, 10%, 25%, or 35% of an overall length of the antenna agitators 236-1 and 236-2). In these instances, the antenna agitators 236-1 and 236-2 can be configured such that fibrous debris, such as hair, is urged towards the cutter or grinder. As such, fibrous debris, such as hair, can be broken in to smaller pieces that are more easily suctioned into the dust cup 238 without becoming entangled on one or more of the antenna agitators 236-1 and 236-2 and/or the first and second agitators 232 and 234.
For example,
Referring again to
The antennas 204-1 and 204-2 can be configured such that, in response to engaging (e.g., contacting) an obstacle, the portion of the antennas 204-1 and 204-2 extending beyond the body 202 are urged under a portion of the body 202 (e.g., under the displaceable bumper 216). In other words, the antennas 204-1 and 204-2 are configured to deform in response to engaging (e.g., contacting) an obstacle such that, for example, the displaceable bumper 216 can engage the obstacle. As such, the antennas 204-1 and 204-2 may not include an obstacle detection sensor for detecting contact between the antennas 204-1 and 204-2 and an obstacle.
The antennas 204-1 and 204-2 can be made of a resiliently deformable material (e.g., natural rubber, synthetic rubber, and/or any other resiliently deformable material). For example, and as shown, the antennas 204-1 and 204-2 can include resiliently deformable fins 274-1 and 274-2 extending from a respective hub 276-1 and 276-2. Additionally, or alternatively, the antennas 204-1 and 204-2 include resiliently deformable bristles extending from a respective hub 276-1 and 276-2. For example, and as shown in
As shown, the coupling 284-1 includes a projection 286-1 having a ball 288-1 disposed on a distal end 290-1 of the projection 286-1. The ball 288-1 can be configured to be received in a corresponding receptacle 292-1 (e.g., as shown in
The retractable side brushes 300-1 and 300-2 include hubs 306-1 and 306-2 having at least one bristle 308-1 and 308-2 extending therefrom. The hubs 306-1 and 306-2 are configured to rotate such that the bristles 308-1 and 308-2 rotate through a sweeping area. The size of the sweeping area may be based on a measure of a length 309 the bristles 308-1 and 308-2. For example, one or more of the hubs 306-1 and 306-2 can include at least two groups of the bristles 308-1 and 308-2, wherein at least one group of the bristles 308-1 and 308-2 has a length 309 that measures differently than a length 309 of at least one other group of the bristles 308-1 and 308-2. As shown, each hub 306-1 and 306-2 includes three groups of the bristles 308-1 and 308-2, each group having a length 309 that measures substantially the same.
The retractable side brushes 300-1 and 300-2 are configured to move inwards in a direction towards the body 304 when the robotic cleaning apparatus 298 engages (e.g., contacts) an obstacle. For example, the retractable side brushes 300-1 and 300-2 can be configured to retract within the body 304 a sufficient distance such that the hubs 306-1 and 306-2 do not extend substantially beyond the displaceable bumper 302. As such, the retractable side brushes 300-1 and 300-2 do not substantially interfere with the performance of the displaceable bumper 302.
As shown, the retractable side brush 300-1 includes a pivot arm 312-1 pivotally coupled at a pivot point 314-1. The pivot arm 312-1 is configured to pivot about the pivot point 314-1 such that the side brush 300-1 transitions between the retracted and extended positions. A biasing mechanism can be provided that biases the side brush 300-1 towards the extended position. As such, when the retractable side brush 300-1 engages (e.g., contacts) an obstacle, the retractable side brush 300-1 is urged towards the retracted position (overcoming the biasing force). However, when the retractable side brush 300-1 comes out of engagement with the obstacle, the biasing mechanism urges the retractable side brush 300-1 towards the extended position. For example, the biasing mechanism may include a torsion spring positioned at the pivot point 314-1.
As also shown, when the retractable side brush 300-1 is in the retracted position, the hub 306-1 and pivot arm 312-1 are positioned behind an obstacle contacting surface 316 of the displaceable bumper 302. As such, the hub 306-1 and pivot arm 312-1 are prevented from substantially interfering with the performance of the displaceable bumper 302.
When the retractable side brush 300-1 is in the extended position a sweeping area 318-1 of the retractable side brush 300-1 that extends beyond the contacting surface 316 of the displaceable bumper 302 is greater than when the retractable side brush 300-1 is in the retracted position. As such, the retractable side brush 300-1 may be able to reach further into, for example, a corner defined by two or more obstacles (e.g., walls) when in the extended position. However, as shown, when the retractable side brush 300-1 is in the retracted position a portion of the sweeping area 318-1 can still extend beyond the contacting surface 316 of the displaceable bumper 302.
A pivot limiter 324-1 can slideably engage at least a portion of the pivot arm 312-1. The pivot limiter 324-1 can be configured to limit the pivotal motion of the pivot arm 312-1 about the pivot point 314-1. For example, and as shown, a portion of the pivot limiter 324-1 can extend at least partially into an opening 326-1 that extends into the motor cavity 320-1. Distal ends of the opening 326-1 can be configured to engage a portion of the pivot limiter 324-1 such that further pivotal movement of the pivot arm 312-1 beyond a predetermined position can be substantially prevented.
As shown, the pivot arm 312-1 includes a protrusion 328-1 extending therefrom at the pivot point 314-1. The protrusion 328-1 may be configured such that a torsion spring can extend therearound such that the torsion spring biases the pivot arm 312-1 towards the extended position.
The position of brush housing 142 may be fixed. Alternatively, the brush housing 142 may retract and extend along path F8. The resting position of the brush housing 142 may bring the brush 141 substantially in parallel with a fixed brush 144. Thus, the brush 141 and the fixed brush 144 may form, essentially, a single cleaning element. The single cleaning element may form an integrated cleaning element with the primary cleaning device 4, as discussed above.
In one aspect of the present disclosure, there is provided a robotic cleaning apparatus. The robotic cleaning apparatus can include a body and at least one antenna extending from a periphery of the body. The at least one antenna can be configured to rotate about an axis that extends substantially parallel to a surface to be cleaned.
In some instances, the robotic cleaning apparatus can include at least one antenna agitator. The antenna agitator can be coupled to the antenna such that the antenna agitator and the antenna are configured to rotate together. In some instances, the robotic cleaning apparatus can include at least two antennas and at least two antenna agitators. A rotational axis of one of the antenna agitators can extend transverse to a rotational axis of another of the antenna agitators. In some instances, the at least two antenna agitators and the at least two antennas can be configured to be counter rotating. In some instances, the at least one antenna can be resiliently deformable. In some instances, the robotic cleaning apparatus can include an agitator assembly comprising a first agitator and a second agitator. In some instances, the agitator assembly can include an agitator cover having a plurality of teeth configured to engage the second agitator. In some instances, the agitator cover can further include a first flexible strip and a second flexible strip. The first and second flexible strips can be disposed on opposing sides of the agitator cover.
In another aspect of the present disclosure, there is provided a robotic cleaning apparatus. The robotic cleaning apparatus can include a body, an agitator assembly, a first antenna assembly, and a second antenna assembly. The first antenna assembly can be removably coupled to the body. The first antenna assembly can include a first antenna agitator and a first antenna configured to rotate about a first rotation axis. The second antenna assembly can be removably coupled to the body. The second antenna assembly can include a second antenna agitator and a second antenna configured to rotate about a second rotation axis. The first rotation axis can extend transverse to the second rotation axis such that the first and second antenna assemblies are configured to cooperate to urge debris towards a movement path of the robotic cleaning apparatus.
In some instances, the first and second antennas are configured to extend beyond a periphery of the body. In some instances, the first rotation axis and the second rotation axis can extend substantially parallel to a surface to be cleaned and the first antenna and the first antenna agitator can be configured to rotate in a first direction about the first rotation axis and the second antenna and the second antenna agitator can be configured to rotate in a second direction about the second rotation axis, the first direction being opposite the second direction. In some instances, the first and second antennas can be resiliently deformable. In some instances, the agitator assembly can include a first assembly agitator and a second assembly agitator. In some instances, the agitator assembly can include an agitator cover having a plurality of teeth configured to engage the second assembly agitator. In some instances, the agitator cover can include a first flexible strip and a second flexible strip, the first and second flexible strips being disposed on opposing sides of the agitator cover. In some instances, the first and second agitator assemblies can each include a coupling for removably coupling the first and second agitator assemblies to the body. In some instances, each coupling can be configured such that the first and second antennas and antenna agitators rotate relative to the coupling. In some instances, each coupling can include a ball that is configured to be received within a receptacle within the body. In some instances, the robotic cleaning apparatus can include a first flexible strip extending between the first antenna assembly and the agitator assembly and a second flexible strip extending between the second antenna assembly and the agitator assembly. In some instances, the body can be substantially D-shaped.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. It will be appreciated by a person skilled in the art that a surface cleaning apparatus may embody any one or more of the features contained herein and that the features may be used in any particular combination or sub-combination. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/546,520, filed on Aug. 16, 2017, entitled Robotic Vacuum with Antenna Brush, which is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1706039 | Owen | Mar 1929 | A |
2241775 | Forsberg | May 1941 | A |
3319278 | Frazer | May 1967 | A |
3744077 | Smyth | Jul 1973 | A |
3748679 | Rosendall | Jul 1973 | A |
3750215 | Liebscher | Aug 1973 | A |
3978539 | Yonkers | Sep 1976 | A |
4403372 | Keane et al. | Sep 1983 | A |
5208521 | Aoyama | May 1993 | A |
5272785 | Stegens | Dec 1993 | A |
5309601 | Hampton et al. | May 1994 | A |
5341540 | Soupert et al. | Aug 1994 | A |
5347678 | Williams et al. | Sep 1994 | A |
5373603 | Stegens | Oct 1994 | A |
5452490 | Brundula et al. | Sep 1995 | A |
5465451 | Stegens | Nov 1995 | A |
5481515 | Kando et al. | Jan 1996 | A |
5890250 | Lange et al. | Apr 1999 | A |
6226832 | McCormick | May 2001 | B1 |
6314611 | Sauers | Nov 2001 | B1 |
6324714 | Walz et al. | Dec 2001 | B1 |
6591441 | Stegens et al. | Jul 2003 | B2 |
6810559 | Mertes et al. | Nov 2004 | B2 |
6848147 | Syverson et al. | Feb 2005 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6971140 | Kim | Dec 2005 | B2 |
7152267 | Kaleta | Dec 2006 | B2 |
7185396 | Im et al. | Mar 2007 | B2 |
7243393 | Matusz et al. | Jul 2007 | B2 |
7343221 | Ann | Mar 2008 | B2 |
7448113 | Jones et al. | Nov 2008 | B2 |
7571511 | Jones et al. | Aug 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7673367 | Kim et al. | Mar 2010 | B2 |
7827653 | Liu et al. | Nov 2010 | B1 |
8011050 | Knopow | Sep 2011 | B2 |
8032985 | Seo | Oct 2011 | B2 |
8087117 | Kapoor et al. | Jan 2012 | B2 |
8117714 | Nguyen et al. | Feb 2012 | B2 |
8239992 | Schnittman et al. | Aug 2012 | B2 |
8250704 | Yoo | Aug 2012 | B2 |
8347444 | Schnittman et al. | Jan 2013 | B2 |
8370985 | Schnittman et al. | Feb 2013 | B2 |
8402601 | Fahlström | Mar 2013 | B2 |
8418303 | Kapoor et al. | Apr 2013 | B2 |
8438695 | Gilbert, Jr. et al. | May 2013 | B2 |
8443477 | Jang et al. | May 2013 | B2 |
8474090 | Jones et al. | Jul 2013 | B2 |
8646984 | Gagnon | Feb 2014 | B2 |
8656544 | Anderson | Feb 2014 | B1 |
8656550 | Jones et al. | Feb 2014 | B2 |
8661605 | Svendsen et al. | Mar 2014 | B2 |
8671507 | Jones et al. | Mar 2014 | B2 |
8695144 | Jang et al. | Apr 2014 | B2 |
8720001 | Courtney et al. | May 2014 | B2 |
8741013 | Swett et al. | Jun 2014 | B2 |
8763199 | Jones et al. | Jul 2014 | B2 |
8800107 | Blouin | Aug 2014 | B2 |
8826493 | Stegens | Sep 2014 | B2 |
8832902 | Kim et al. | Sep 2014 | B2 |
8839477 | Schnittman et al. | Sep 2014 | B2 |
8855914 | Alexander et al. | Oct 2014 | B1 |
8881339 | Gilbert, Jr. et al. | Nov 2014 | B2 |
8903589 | Sofman et al. | Dec 2014 | B2 |
8910342 | Gilbert, Jr. et al. | Dec 2014 | B2 |
8955192 | Gilbert, Jr. et al. | Feb 2015 | B2 |
9010882 | Romanov et al. | Apr 2015 | B2 |
9038233 | Jones et al. | May 2015 | B2 |
9078552 | Han et al. | Jul 2015 | B2 |
9144356 | Yun | Sep 2015 | B2 |
9167946 | Jones et al. | Oct 2015 | B2 |
9211045 | Li et al. | Dec 2015 | B2 |
9320398 | Hussey et al. | Apr 2016 | B2 |
9320400 | Gilbert, Jr. et al. | Apr 2016 | B2 |
9326654 | Doughty | May 2016 | B2 |
9408514 | Alexander et al. | Aug 2016 | B1 |
9414734 | Moon et al. | Aug 2016 | B2 |
9480374 | Li et al. | Nov 2016 | B2 |
9480381 | Schnittman et al. | Nov 2016 | B2 |
9750383 | Janzen et al. | Sep 2017 | B2 |
9839335 | Eriksson | Dec 2017 | B2 |
9949605 | Isley et al. | Apr 2018 | B2 |
10130233 | Jang et al. | Nov 2018 | B2 |
20030145424 | Stephens et al. | Aug 2003 | A1 |
20040055106 | Yacobi | Mar 2004 | A1 |
20060021168 | Nishikawa | Feb 2006 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060042042 | Mertes et al. | Mar 2006 | A1 |
20060293794 | Harwig et al. | Dec 2006 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20080141485 | Kim | Jun 2008 | A1 |
20080281470 | Gilbert, Jr. et al. | Nov 2008 | A1 |
20090000057 | Yoo et al. | Jan 2009 | A1 |
20090229075 | Eriksson | Sep 2009 | A1 |
20100205768 | Oh | Aug 2010 | A1 |
20120181099 | Moon et al. | Jul 2012 | A1 |
20120291809 | Kuhe et al. | Nov 2012 | A1 |
20120311813 | Gilbert, Jr. et al. | Dec 2012 | A1 |
20130152332 | Jang | Jun 2013 | A1 |
20130204483 | Sung et al. | Aug 2013 | A1 |
20130205520 | Kapoor et al. | Aug 2013 | A1 |
20130211589 | Landry et al. | Aug 2013 | A1 |
20140130294 | Li | May 2014 | A1 |
20140156076 | Jeong et al. | Jun 2014 | A1 |
20140188325 | Johnson et al. | Jul 2014 | A1 |
20140317879 | Blouin | Oct 2014 | A1 |
20150190028 | Yan | Jul 2015 | A1 |
20150359396 | Yun | Dec 2015 | A1 |
20160058257 | Ventress et al. | Mar 2016 | A1 |
20160073839 | Janzen et al. | Mar 2016 | A1 |
20160075021 | Cohen et al. | Mar 2016 | A1 |
20160113469 | Schnittman et al. | Apr 2016 | A1 |
20160166127 | Lewis | Jun 2016 | A1 |
20160213217 | Doughty | Jul 2016 | A1 |
20160235270 | Santini | Aug 2016 | A1 |
20160320778 | Alexander | Nov 2016 | A1 |
20160345792 | Herron et al. | Dec 2016 | A1 |
20170150859 | Muir | Jun 2017 | A1 |
20170273531 | Watanabe | Sep 2017 | A1 |
20180078106 | Scholten et al. | Mar 2018 | A1 |
20180296049 | Izawa | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
104248397 | Dec 2014 | CN |
102007060750 | Jun 2009 | DE |
102007060750 | Jun 2009 | DE |
102010000577 | Aug 2011 | DE |
102010017211 | Dec 2011 | DE |
102010017258 | Dec 2011 | DE |
102012109970 | May 2014 | DE |
0424229 | Apr 1991 | EP |
1994869 | Nov 2008 | EP |
2543301 | Jan 2013 | EP |
3409168 | Dec 2018 | EP |
3440913 | Feb 2019 | EP |
2529819 | Mar 2016 | GB |
0542075 | Feb 1993 | JP |
2000166826 | Jun 2000 | JP |
2000353014 | Dec 2000 | JP |
2004222912 | Aug 2004 | JP |
2010063624 | Mar 2010 | JP |
2014087385 | May 2014 | JP |
1020030083971 | Nov 2003 | KR |
1020040013383 | Feb 2004 | KR |
1020040051345 | Jun 2004 | KR |
9210967 | Jul 1992 | WO |
2005111084 | Nov 2005 | WO |
2009117383 | Sep 2009 | WO |
2014177216 | Nov 2014 | WO |
2016034848 | Mar 2016 | WO |
Entry |
---|
US 8,272,092 B2, 09/2012, Schnittman et al. (withdrawn) |
US 8,359,703 B2, 01/2013, Svendsen et al. (withdrawn) |
DE 102007060750 A1—English machine translation (Year: 2009). |
PCT Search Report and Written Opinion dated Nov. 14, 2018, received in corresponding PCT Application No. PCT/IB18/56190, 9 pgs. |
PCT Search Report and Written Opinion dated Oct. 25, 2019, received in PCT Application No. PCT/US19/44717, 9 pgs. |
PCT Search Report and Written Opinion dated Oct. 19, 2018, received in corresponding PCT Application No. PCT/US18/46218, 10 pgs. |
Number | Date | Country | |
---|---|---|---|
20190090705 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62546520 | Aug 2017 | US |