The present invention generally relates to medical imaging; and more particularly, to an imaging arm constructed for positioning on the distal end of an automotive style robotic arm constructed to track movements of the patient for image repeatability.
Fluoroscopy machines are often used in hospital emergency rooms and trauma centers. These machines have an arm which supports an x-ray source spaced apart from an x-ray detector. The arm, generally a C-shaped arm, is utilized to locate the x-ray source with respect to the x-ray detection; and can be manipulated to place the x-ray source on one side of a patient and the x-ray detector on the other side of the patient. A series of joints permit the arm to be manually moved to a pose which will provide a desired x-ray image. A monitor displays the x-ray image in real time. C-arm fluoroscopy machines may, for example, be used to image the locations at which pins or screws will be inserted to hold bones in position.
One issue with the use of C-arm fluoroscopy machines is limiting the amount of x-rays to which physicians and other medical personnel are exposed. In many procedures, a physician's hands will be in the field irradiated by x-rays. Although modern x-ray machines can acquire acceptable images with a lower dose than was formerly possible, there is a limit to the dose reduction that can be achieved by this route.
Another approach to reducing x-ray exposure to medical personnel is reducing the amount of time required to obtain desired images by providing a system to track the position of the x-ray arm with respect to the patient's anatomy to reduce the time taken to obtain desired images.
Optical localizers have been proposed for tracking the position of the arms of C-arm fluoroscopy machines. Such localizers use cameras to track the position of targets mounted on the C-arm. Optical trackers have a number of deficiencies. For example, the camera requires an unobstructed line of sight to the targets. This constrains the use of valuable operating room space. This problem is made worse because a C-arm is relatively large and must be able to be moved through a large range of motion.
An additional drawback to these prior art systems relates to an inability to track the patient for movement. Even if the C-arm is moved to the position of a previous x-ray, positioning the device in the same position at a later point in a surgical procedure will unlikely result in the same x-ray due to movement of the patient.
Finally, there are ergonomic needs that an x-ray system must satisfy in order to achieve acceptance by the end user. The system must be easily and quickly positioned using minimal hardware and requiring a minimal number of tools. Further, the system should not require excessive strength to maneuver or include heavy component parts. Moreover, the system must assemble together in such a way so as not to detract from the ability of the surgical team to accomplish their desired task.
Thus, the present invention provides a robotically positioned x-ray device which may include a C-arm that overcomes the disadvantages of prior art x-ray systems. The x-ray system of the present invention provides for relative ease in the positioning by attaching the x-ray device to the distal end of a multi-axis automotive style robot. The system also permits tracking the patient's movements, and can therefore duplicate previous x-ray illustrations by positioning the x-ray equipment according to the patient and not a set of previous angular measurements. The present system also provides the X-ray system as part of a set of tools that can be attached to a robot as needed, or detached and stored for the next use.
Briefly, the invention involves a system and method for taking x-rays in a surgical setting. In at least one embodiment, the system includes a multi-axis robot having an automatic tool change system. The robot can therefore go to the tools and pick up the x-ray apparatus, which may be in the form of a C-arm. The x-ray apparatus can then be manipulated about the patient to obtain the desired x-rays, which are viewable in real time. The x-ray apparatus can then be repositioned in the tool rack and the robot utilized for other parts of the surgery. Should additional x-rays be needed, the robot can reattach the x-ray apparatus and position the apparatus according to a new location; or the robot can track any movements of the patient via an electromagnetic or radio frequency sensor system, whereby the x-ray apparatus can be positioned exactly as it was with respect to the patient from a previous x-ray. The system can be operated with one or more robots that are in communication with each other electronically so that each robot knows the position and movements of the other in order to prevent interference or collusion between the robots.
Accordingly, it is an objective of the present invention to provide a robotically manipulated x-ray system for surgical procedures.
It is a further objective of the present invention to provide a robotically manipulated x-ray system that is connected to an automotive style robot.
It is yet a further objective of the present invention to provide a robotically manipulated x-ray system that is quickly attached and detached from the robot so that the robot can complete portions of the surgical procedure.
It is another objective of the instant invention to provide a robotically manipulated x-ray system that tracks the patient for movement to position and reposition the x-ray equipment.
Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification, include exemplary embodiments of the present invention, and illustrate various objects and features thereof.
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Referring generally to
Still referring to the Figures, the robotically controlled x-ray system 100 also preferably includes a tracking system 34 for tracking movements of the patient during the procedure. Patients often move during a procedure from coughing, manipulating the body for the procedure, etc. The present system, therefore, preferably includes an electromagnetic, radio frequency or optic sensor system which can be connected to the patient, particularly the skeletal system, and in electrical communication and monitored by the robotically controlled x-ray system 100 to monitor these movements so that the x-ray system can duplicate previous images taken or position the x-ray system in any predetermined position determined by the surgeon. The monitoring system receiver 38 preferably monitors all three axes of movement to provide feedback from at least one sensor 36 to the receiver 38 in a wireless or wired manner. The X-ray system 100 can then compensate for these movements, even if the patient is moved several inches or rolled over. In some embodiments, more than one sensor and receiver can be utilized to prevent blind spots caused by equipment or persons in the operating room. Sensor and receiver systems suitable for use with the present system are disclosed in co-pending patent application Ser. No. 16/246,291, filed Jan. 11, 2019 entitled, “SURGICAL SENSOR ANCHOR SYSTEM”, the contents of which are incorporated herein by reference.
Referring to the Figures, and more particularly to
It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification.
One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. Any compounds, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary, and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
In accordance with 37 C.F.R 1.76, a claim of priority is included in an Application Data Sheet filed concurrently herewith. Accordingly, the present invention claims priority to U.S. Provisional Patent Application No. 62/864,269, filed Jun. 20, 2019, entitled, “Robotically Positioned X-Ray and C-Arm”, the contents of which are incorporated herein by reference. This application is also related to co-pending U.S. patent application Ser. No. 16/246,291, filed Jan. 11, 2019, entitled “Surgical Sensor Anchor System”, which is a continuation-in-part of U.S. patent application Ser. No. 15/816,861, filed Nov. 17, 2017, entitled “Robotic Surgical System,” which claims priority to U.S. Provisional Patent Application No. 62/423,677, filed Nov. 17, 2016, entitled “Robotic Surgical System”.
Number | Date | Country | |
---|---|---|---|
62864269 | Jun 2019 | US |