The present invention relates to current mirror circuits generally and, more particularly, to a method and/or apparatus for implementing a robust current mirror with improved input voltage headroom.
Referring to
To simplify the analysis in this context, if the MOSFETs M1 and M2 are considered to have the same dimensions, then Io=Iin.
The term “saturation” refers to an operating condition which applies to the following equation EQ1:
V
ds
>V
gs
−V
th
=V
ov (EQ1)
where:
Vds is a drain to source voltage,
Vgs is a gate to source voltage (control voltage),
Vth is a threshold voltage, and
Vov is an overdrive voltage necessary to establish current flow through the channel.
The input voltage headroom is defined by the following equation EQ2:
V
vh
=V
vdda
−V
gs,M1
=V
vdda−(Vth,M1+Vov,M1) (EQ2)
where:
Vvh represents input voltage headroom, and
Vvdda is the positive supply voltage minus ground supply voltage.
Referring to
The input voltage headroom of the circuit 20 is defined by the following equation EQ3:
V
vh
=V
vdda
−V
gs,M1
+V
gs,M3
=V
vdda−(Vth,M1+Vov,M1)+Vgs,M3 (EQ3)
The following equation EQ4 ensures the MOSFET M1 works in saturation mode:
V
ds,M1
=V
vdda
−V
vh
=V
th,M1
+V
ov,M1
−V
gs,M3
>V
ov,M1 (EQ4)
The threshold voltage of the MOSFET M1 minus the gate to source voltage of the MOSFET M3 should be greater than zero.
The circuit 20 implements the MOSFET M1 and the MOSFET M3 as different types of MOSFETs, having different threshold voltages and different values. The gate to source voltage of the MOSFET M3 must be adjusted to satisfy the saturation condition. For the circuit 20, the bulk of the N-type MOSFET M3 is connected to a bias voltage Vb. The bulk bias voltage Vb is adjusted by a voltage bias generator circuit to a value higher than ground potential to help reduce the gate to source voltage of the MOSFET M3. Such an implementation has very limited headroom and has problems when the PN junction of the MOSFET M3 is turned on.
Even when adjusting the bias voltage Vb, the circuit 20 faces other problems. Since the MOSFET M1 and the MOSFET M3 use different types of transistors, different process variations, temperature changes and trends will occur, even if the MOSFET M1 and the MOSFET M3 have the same trends but have different velocities. By using the circuit 20, the value of the gate to source voltage of the transistor M3 should be a small value which gives an enough margin for the MOSFET M1 to operate in saturation. A small gate to source voltage on the transistor M3 ultimately deteriorates the efficiency of the circuit 20.
It would be desirable to implement a current mirror with sufficient headroom when operating in a low voltage application.
The present invention concerns an apparatus comprising an input current source device, a first transistor, a second transistor and a level shifter device. The input current source device may provide a input current source. The first transistor may be configured to operate in saturation for mirroring the input current source to an output current source. The first transistor may have (i) a source node connected to a supply, and (ii) a drain connected to the input current source. The second transistor may also be configured to operate in saturation. The second transistor may have (i) a gate connected to a gate of the first transistor, (ii) a source connected to the supply, and (iii) a drain configured as an output current node. The level shifter device may comprise a third transistor, a first bias current source and a second bias current source.
The objects, features and advantages of the present invention include providing an integrated current mirror circuit that may (i) overcome one or more disadvantages of conventional designs, (ii) improve input voltage headroom, (iii) provide a simple design to implement, (iv) maintain performance over process variations, and/or (v) be feasible to implement in low voltage supply applications.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:
With technology scaling, transistors and supply voltages are continuing to get smaller. Circuit designs relating to low voltage supply applications are becoming more important. One embodiment of the present invention concerns Integrated Circuits (ICs) and more particularly to low voltage analog applications that use current mirror circuits. One embodiment of the present invention concerns an integrated current mirror circuit that overcomes the disadvantages of conventional designs while improving input voltage headroom.
Referring to
In one example, the transistor M3 may be implemented as a P-type MOSFET. The transistor M3 may have a diode connected type. The current source Ib1 and the current source Ib2 may have the same or similar current values. The current source Ib1 and the current source Ib2 may channel current of the transistor M3.
The input voltage headroom for the circuit 100 may be defined by the following equation EQ5:
V
vh
=V
vdda
−V
gs,M1
+V
gs,M3
=V
vdda−(Vth,M1+Vov,M1)+Vgs,M3 (EQ5)
Equation EQ5 looks similar to equation EQ3, which was derived from
To make sure the transistor M1 works in saturation mode, the following equation EQ6 may be satisfied:
V
ds,M1
=V
vdda
−V
vh
=V
th,M1
+V
ov,M1
−V
gs,M3
>V
ov,M1 (EQ6)
A condition that the drain to source voltage of the transistor M1 minus the gate to source voltage of the transistor M3 is greater than zero may be satisfied.
To satisfy the saturation condition, the working condition of the transistor M3 may be set to a sub-threshold region (or deep sub-threshold region). With this, the transistor M3 may meet the criteria that the gate to source voltage of the transistor M3 minus the threshold voltage of the transistor M3 is less than or equal to −50 mV. If the transistor M1 and the transistor M3 have the same threshold voltage, which approximates to real conditions. Then the following equation EQ7 may be deduced from EQ6:
V
ds,M1
=V
th,M1
+V
ov,M1
−V
gs,M3
≧V
ov,M1+50 mV (EQ7)
Equation EQ7 satisfies the condition described. Compared with circuit 20, the circuit 100 may have the bulk of transistor M3 tied to supply. Such an implementation may eliminate the need for a bulk bias generation circuit and/or the design work of carefully adjusting the voltage bias Vb.
Unlike conventional designs, the circuit 100 may be implemented using all of the same type of MOSFET devices for the current mirror. The parameters of the transistor M1, the transistor M2 and the transistor M3 may all have the same trends and close velocities with regard to process variations, temperature changes and supply voltage ripples. For the parameters indicated, across all PVT (process variation, voltage supply, temperature) the circuit 100 may have a small value variance for the difference between the threshold of transistor M1 and the gate to source transistor of M3. Referring back to EQ6, the difference between the drain to source voltage M1 and overdrive voltage of M1 has a small variance as well. The transistor M1 may work in the saturation region across all PVT. The circuit 100 may have a large gate to source voltage of transistor M3, as shown in equation EQ5. The circuit 100 may improve upon the input voltage headroom compared with convention approaches.
The circuit 100 may have a mismatch between current sources Ib1 and Ib2. The difference between the current source Ib1 and the current source Ib2 (Ib1−Ib2) may be added to the input current Iin. The output current may be a ratio of (Iin+Ib1−Ib2) instead of Iin. To weaken or remove this drawback, the value of the currents Ib1 and Ib2 may be designed to be less than the value of the current Iin, since the mismatch between the current Ib1 and the current Ib2 (e.g., Ib1−Ib2) is far less than either the current Ib1 or the current Ib2. This mismatch may induce an error for the current mirror that may be ignored compared with the current mirror systematic error (e.g., the Vds mismatch between the transistor M1 and the transistor M2 induced error).
Referring to
Referring to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the scope of the invention.