BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
FIG. 1 is a block diagram view of a phase-locked loop having a robust phase-lock detector according to the present invention.
FIG. 2 is a schematic diagram view of the robust phase-lock detector according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the FIG. 1 a conventional analog phase-locked loop (PLL) 10 having a phase/frequency detector 12 in the form of a frequency mixer for comparing a reference signal, ω1, with a subdivided output signal, ω2, from a frequency divider 14. The mixer 12 provides an error signal as an output that is input to a loop filter 16, shown in this instance as an integrating amplifier, to produce a control signal for a voltage controlled oscillator (VCO) 18. The output signal, Nω2, from the VCO 18 is input to the frequency divider 14 to complete the phase-locked loop. The error signal is also input to a lock detector 20 to produce a lock signal when the phase-locked loop is locked.
The lock detector 20 has an input buffer amplifier 22 that passes the sum (ω1+ω2) and difference or baseband (ω1−ω2) frequency components of the error signal from the mixer 12. The output from the buffer amplifier 22 is input to a sum signal detector 24 and a windowed baseband (difference) signal detector 26. The outputs from the sum and baseband detectors 24, 26 are input to a logic gate 28 to produce a lock signal that is used to drive some visual indicator, such as a light emitting diode (LED) on the front panel of an instrument, or otherwise indicate whether the PLL 10 is locked.
As shown in FIG. 2 the error signal is initially input to an IF lowpass filter 30 to eliminate high frequencies, such as distortion products, above the sum of the reference frequency and subdivided output frequency. For the present example to assist in understanding the operation, the output signal from the oscillator 18 has a frequency of 100 MHz (Nω2), the reference signal has a frequency of 10 MHz (ω1) and the divisor of the frequency divider 14 is ten. Therefore the sum frequency component of the error signal is approximately 20 MHz (ω1+ω2) and the difference component is approximately d.c. The filtered error signal from the IF lowpass filter 30 is input to a buffer amplifier 32, and the buffered error signal from the buffer amplifier is input to a sum filter 34 and to a baseband lowpass filter 36. The sum filter 34, which is shown as a bandpass filter but also may be a highpass filter, passes the sum frequency component of the buffered error signal, i.e., 20 MHz, to an IF sum signal presence detector 38. If both the reference and output signals are present, then there is an IF signal input to the IF sum signal presence detector 38 having a significant or large detected amplitude (proportional to the amplitudes of the reference and subdivided output signals), as detected by a rectifier 40 within the IF sum signal presence detector. If either the reference or output signals are missing, then there is no sum component signal that passes the sum filter 34. Since ideally a multiplier having no input on one input produces no output, the sum filter 34 may be omitted. However practically there may be some leakage of one of the signals through the mixer 12 when the other signal is absent, although the amplitude of the leakage signal is relatively insignificant or small. If the sum filter 34 is a bandpass filter, even this leakage signal may be rejected prior to the rectifier 40. Therefore at the output of a differential amplifier 42 coupled to the output of the rectifier 40 the sum detector 24 indicates whether or not both the reference and output signals are present.
The output from the lowpass filter 36, such as one which passes the baseband component of the error signal (28 kHz cutoff in this example), is input to a window comparator 44 for comparison with both a positive voltage close to zero volts from a HI threshold circuit 46 and a negative voltage close to zero volts from a LO threshold circuit 48. If the baseband error signal component is close to zero, i.e., within +/−0.39 volts for this example to provide a noise margin, then the window comparator 44 provides a positive output. The output from the window comparator 44 and the IF signal presence detector 38 are input to the logic gate 28, such as the wired AND gate shown, so that the lock signal is generated when both reference and output signals are present and the baseband error signal component is approximately zero volts.
Although a particular embodiment is described with respect to FIGS. 1 and 2, other circuits may be used to detect from the error signal the presence of both reference and input signals for appropriate logical combination with the output from the windowed comparator
Thus the present invention provides a robust phase-lock detector for a PLL by using the sum component of the error signal to detect the presence of both the reference and output signals in addition to detecting when the baseband error voltage is approximately zero.