Robust short-time fourier transform acoustic echo cancellation during audio playback

Information

  • Patent Grant
  • 11646045
  • Patent Number
    11,646,045
  • Date Filed
    Monday, May 24, 2021
    3 years ago
  • Date Issued
    Tuesday, May 9, 2023
    a year ago
Abstract
Example techniques involve noise-robust acoustic echo cancellation. An example implementation may involve causing one or more speakers of the playback device to play back audio content and while the audio content is playing back, capturing, via the one or more microphones, audio within an acoustic environment that includes the audio playback. The example implementation may involve determining measured and reference signals in the STFT domain. During each nth iteration of an acoustic echo canceller (AEC): the implementation may involve determining a frame of an output signal by generating a frame of a model signal by passing a frame of the reference signal through an instance of an adaptive filter and then redacting the nth frame of the model signal from an nth frame of the measured signal. The implementation may further involve determining an instance of the adaptive filter for a next iteration of the AEC.
Description
FIELD OF THE DISCLOSURE

The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.


BACKGROUND

Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.


Given the ever-growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 shows a media playback system configuration in which certain embodiments may be practiced;



FIG. 2 is a functional block diagram of an example playback device;



FIG. 3 is a functional block diagram of an example controller device;



FIGS. 4A and 4B are controller interfaces;



FIG. 5A is a functional block diagram of an example network microphone device in accordance with aspects of the disclosure;



FIG. 5B is a diagram of an example voice input in accordance with aspects of the disclosure;



FIG. 6 is a functional block diagram of example remote computing device(s) in accordance with aspects of the disclosure;



FIG. 7 is a schematic diagram of an example network system in accordance with aspects of the disclosure;



FIG. 8A is a functional block diagram of an example acoustic echo cancellation pipeline;



FIG. 8B is a functional block diagram of an example acoustic echo cancellation pipeline;



FIG. 9 is a flow diagram of a method of performing acoustic echo cancellation.





The drawings are for purposes of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. In the drawings, identical reference numbers identify at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 110 is first introduced and discussed with reference to FIG. 1.


DETAILED DESCRIPTION
I. Overview

Networked microphone devices may be used to control a household using voice control. Voice control can be beneficial for a “smart” home having a system of smart devices, such as playback devices, wireless illumination devices, thermostats, door locks, home-automation devices, as well as other examples. In some implementations, the system of smart devices includes a networked microphone device configured to detect voice inputs. A voice assistant service facilitates processing of the voice inputs. Traditionally, the voice assistant service includes remote servers that receive and process voice inputs. The voice service may return responses to voice inputs, which might include control of various smart devices or audio or video information (e.g., a weather report), among other examples.


A voice input typically includes an utterance with a wake word followed by an utterance containing a user request. A wake word, when uttered, may invoke a particular voice assistance service. For instance, in querying the AMAZON® voice assistant service, a user might speak a wake word “Alexa.” Other examples include “Ok, Google” for invoking the GOOGLE® voice assistant service and “Hey, Siri” for invoking the APPLE® voice assistant service.


Upon detecting a wake word, a networked microphone device may listen for the user request in the voice utterance following the wake word. In some instances, the user request may include a command to control a third party device, such as a smart illumination device (e.g., a PHILIPS HUE® lighting device), a thermostat (e.g., NEST® thermostat), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the wake word “Alexa” followed by the utterance “turn on the living room” to turn on illumination devices. A user might speak the same wake word followed by the utterance “set the thermostat to 68 degrees.” The user may also utter a request for a playback device to play a particular song, an album, or a playlist of music.


When a playback device is playing audio in the same acoustic environment as a networked microphone device, sound captured by the microphone(s) of the networked microphone device might include the sound of the audio playback as well as an uttered voice input. Since the sound of the audio playback might interfere with processing of the voice input by a voice assistant service (e.g., if the audio playback drowns out the voice input), an Acoustic Echo Canceller (“AEC”) may be used to remove the sound of the audio playback from the signal captured by microphone(s) of the networked microphone device. This removal is intended to improve the signal-to-noise ratio of a voice input to other sound within the acoustic environment, which includes the sound produced by the one or more speakers in playing back the audio content, so as to provide a less noisy signal to the voice assistant service.


In example implementations, an AEC is implemented within the audio processing pipeline of an audio playback device or a networked microphone device. Inputs to an AEC may include the signal captured by the microphone(s) of a networked microphone device, and a reference signal. To represent the audio playback as closely as practical, the reference signal may be taken from a point in the audio playback pipeline that closely represents the analog audio expected to be output by the transducers. Given these inputs, the AEC attempts to find a transfer function (i.e., a ‘filter’) that transforms the reference signal into the captured microphone signal with minimal error. Inverting the resulting AEC output and mixing it with the microphone signal causes a redaction of the audio output signal from the signal captured by the microphone(s).


As those of ordinary skill in the art will appreciate, one issue with conventional AEC techniques is ‘double-talk’. Double-talk can occur, for example, when two people talk concurrently in the same acoustic environment being captured by the microphones. A conventional AEC may treat one ‘voice’ as an input while the other voice is treated as changing room effect. In this condition, the conventional AEC may attempt to adapt to the changing “room effect” but cannot keep up with the pace of advancement of the speech. In such conditions, the AEC may de-stabilize and introduce more noise into the system than it was supposed to remove. Yet, the capture of multiple concurrent voices is expected to be a common condition in many environments, such as a home with multiple users and possibly multiple networked microphone devices.


To avoid this condition, some systems have implemented a double-talk detector, which is designed to detect when two or more users are talking in the same acoustic environment and suspending the AEC during the double-talk condition. Using a double-talk detector may help to avoid destabilization of the AEC during double-talk conditions. But by suspending the AEC during the double-talk condition, the AEC no longer cancels echoes within the acoustic environment, which ultimately results in a “noisier” voice input to the voice assistant service. Moreover, utilizing a double-talk detector requires additional processing capability.


Example implementations described herein may improve acoustic echo cancellation though a combination of techniques. Such techniques may include processing in the Short-Time Fourier Transform (“STFT”) instead of the Frequency-Dependent Adaptive Filter (“FDAF”) domain). The techniques may also include using a mathematical processing model that keeps the AEC robust in face of double-talk conditions and in noisy environments. The techniques can further include applying a sparsity criterion that improves converge rate of the adaptive filter by focusing adaptation of the filter on only those areas of the impulse response which are in greatest error. Inactive portions of the filter are deactivated, so as to allow use of a high order multi delay filter where only the partitions that correspond to the actual model are active, thereby increasing stability and hastening convergence.


These techniques can result in tolerance for frequent double-talk conditions without compromising AEC performance during audio playback.


Example techniques described herein may involve acoustic echo cancellation. An example implementation may involve causing, via an audio stage, the one or more speakers to play back audio content and while the audio content is playing back via the one or more speakers, capturing, via the one or more microphones, audio within an acoustic environment, wherein the captured audio comprises audio signals representing sound produced by the one or more speakers in playing back the audio content. The example implementation may further involve receiving an output signal from the audio stage representing the audio content being played back by the one or more speakers, determining a measured signal comprising a series of frames representing the captured audio within the acoustic environment by transforming into a short time Fourier transform (STFT) domain the captured audio within the acoustic environment, and determining a reference signal comprising a series of frames representing the audio content being played back via the one or more speakers by transforming into the STFT domain the received output signal from the audio stage.


During each nth iteration of an acoustic echo canceller (AEC), the implementation may involve determining an nth frame of an output signal. Determining the nth frame of the output signal may involve generating an nth frame of a model signal by passing an nth frame of the reference signal through an nth instance of an adaptive filter, wherein the first instance of the adaptive filter is an initial filter; and generating the nth frame of the output signal by redacting the nth frame of the model signal from an nth frame of the measured signal. The example implementation may also involve sending the output signal as a voice input to one or more voice services for processing of the voice input


The implementation may further involve, during each nth iteration of the acoustic echo canceller (AEC), determining a n+1th instance of the adaptive filter for a next iteration of the AEC. Determining the n+1th instance of the adaptive filter for the next iteration of the AEC may involve determining an nth frame of an error signal, the nth frame of the error signal representing a difference between the nth frame of the model signal and the nth frame of the reference signal less audio signals representing sound from sources other than an nth frame of the audio signals representing sound produced by the one or more speakers in playing back the nth frame of the reference signal, determining a normalized least mean square (NMLS) of the nth frame of the error signal, determining a sparse NMLS of the nth frame of the error signal by applying to the NMLS of the nth frame of the error signal, a sparse partition criterion that zeroes out frequency bands of the NMLS having less than a threshold energy, converting the sparse NMLS of the nth frame of the error signal to an nth update filter, and generating the n+1th instance of the adaptive filter for the next iteration of the AEC by summing the nth instance of the adaptive filter with the nth update filter.


This example implementation may be embodied as a method, a device configured to carry out the implementation, a system of devices configured to carry out the implementation, or a non-transitory computer-readable medium containing instructions that are executable by one or more processors to carry out the implementation, among other examples. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments, including combinations of the example features described herein. Further, any example operation described as being performed by a given device to illustrate a technique may be performed by any suitable devices, including the devices described herein. Yet further, any device may cause another device to perform any of the operations described herein.


While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.


II. Example Operating Environment


FIG. 1 illustrates an example configuration of a media playback system 100 in which one or more embodiments disclosed herein may be implemented. The media playback system 100 as shown is associated with an example home environment having several rooms and spaces, such as for example, an office, a dining room, and a living room. Within these rooms and spaces, the media playback system 100 includes playback devices 102 (identified individually as playback devices 102a-1021), network microphone devices 103 (identified individually as “NMD(s)” 103a-103g), and controller devices 104a and 104b (collectively “controller devices 104”). The home environment may include other network devices, such as one or more smart illumination devices 108 and a smart thermostat 110.


The various playback, network microphone, and controller devices 102-104 and/or other network devices of the media playback system 100 may be coupled to one another via point-to-point and/or over other connections, which may be wired and/or wireless, via a local area network (LAN) via a network router 106. For example, the playback device 102j (designated as “LEFT”) may have a point-to-point connection with the playback device 102a (designated as “RIGHT”). In one embodiment, the LEFT playback device 102j may communicate over the point-to-point connection with the RIGHT playback device 102a. In a related embodiment, the LEFT playback device 102j may communicate with other network devices via the point-to-point connection and/or other connections via the LAN.


The network router 106 may be coupled to one or more remote computing device(s) 105 via a wide area network (WAN) 107. In some embodiments, the remote computing device(s) may be cloud servers. The remote computing device(s) 105 may be configured to interact with the media playback system 100 in various ways. For example, the remote computing device(s) may be configured to facilitate streaming and controlling playback of media content, such as audio, in the home environment. In one aspect of the technology described in greater detail below, the remote computing device(s) 105 are configured to provide an enhanced VAS 160 for the media playback system 100.


In some embodiments, one or more of the playback devices 102 may include an on-board (e.g., integrated) network microphone device. For example, the playback devices 102a-e include corresponding NMDs 103a-e, respectively. Playback devices that include network devices may be referred to herein interchangeably as a playback device or a network microphone device unless expressly stated otherwise.


In some embodiments, one or more of the NMDs 103 may be a stand-alone device. For example, the NMDs 103f and 103g may be stand-alone network microphone devices. A stand-alone network microphone device may omit components typically included in a playback device, such as a speaker or related electronics. In such cases, a stand-alone network microphone device might not produce audio output or may produce limited audio output (e.g., relatively low-quality output relative to quality of output by a playback device).


In some embodiments, one or more network microphone devices can be assigned to a playback device or a group of playback devices. In some embodiments, a network microphone device can be assigned to a playback device that does not include an onboard network microphone device. For example, the NMD 103f may be assigned to one or more of the playback devices 102 in its vicinity, such as one or both of the playback devices 102i and 102l in the kitchen and dining room spaces, respectively. In such a case, the NMD 103f may output audio through the playback device(s) to which it is assigned. Further details regarding assignment of network microphone devices are described, for example, in U.S. application Ser. No. 15/098,867 filed on Apr. 14, 2016, and titled “Default Playback Device Designation,” and U.S. application Ser. No. 15/098,892 filed on Apr. 14, 2016 and titled “Default Playback Devices.” Each of these applications is incorporated herein by reference in its entirety.


In some embodiments, a network microphone device may be configured such that it is dedicated exclusively to a particular VAS. In one example, the NMD 103a in the living room space may be dedicated exclusively to the enhanced VAS 160. In such case, the NMD 102a might not invoke any other VAS except the enhanced VAS 160. In a related example, other ones of the NMDs 103 may be configured to invoke the enhanced 160 VAS and one or more other VASes, such as a traditional VAS. Other examples of bonding and assigning network microphone devices to playback devices and/or VASes are possible. In some embodiments, the NMDs 103 might not be bonded or assigned in a particular manner.


Further aspects relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in FIG. 1. For instance, the technologies described herein may be useful in other home environment configurations comprising more or fewer of any of the playback, network microphone, and/or controller devices 102-104. Additionally, the technologies described herein may be useful in environments where multi-zone audio may be desired, such as, for example, a commercial setting like a restaurant, mall or airport, a vehicle like a sports utility vehicle (SUV), bus or car, a ship or boat, an airplane, and so on.


a. Example Playback Devices


FIG. 2 is a functional block diagram illustrating certain aspects of a selected one of the playback devices 102 shown in FIG. 1. As shown, such a playback device may include a processor 212, software components 214, memory 216, audio processing components 218, audio amplifier(s) 220, speaker(s) 222, and a network interface 230 including wireless interface(s) 232 and wired interface(s) 234. In some embodiments, a playback device might not include the speaker(s) 222, but rather a speaker interface for connecting the playback device to external speakers. In certain embodiments, the playback device includes neither the speaker(s) 222 nor the audio amplifier(s) 222, but rather an audio interface for connecting a playback device to an external audio amplifier or audio-visual receiver.


A playback device may further include a user interface 236. The user interface 236 may facilitate user interactions independent of or in conjunction with one or more of the controller devices 104. In various embodiments, the user interface 236 includes one or more of physical buttons and/or graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input. The user interface 236 may further include one or more of lights and the speaker(s) to provide visual and/or audio feedback to a user.


In some embodiments, the processor 212 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 216. The memory 216 may be a tangible computer-readable medium configured to store instructions executable by the processor 212. For example, the memory 216 may be data storage that can be loaded with one or more of the software components 214 executable by the processor 212 to achieve certain functions. In one example, the functions may involve a playback device retrieving audio data from an audio source or another playback device. In another example, the functions may involve a playback device sending audio data to another device on a network. In yet another example, the functions may involve pairing of a playback device with one or more other playback devices to create a multi-channel audio environment.


Certain functions may involve a playback device synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener should not perceive time-delay differences between playback of the audio content by the synchronized playback devices. U.S. Pat. No. 8,234,395 filed Apr. 4, 2004, and titled “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference in its entirety, provides in more detail some examples for audio playback synchronization among playback devices.


The memory 216 may be further configured to store data associated with a playback device. For example, the memory may store data corresponding to one or more zones and/or zone groups a playback device is a part of One or more of the zones and/or zone groups may be named according to the room or space in which device(s) are located. For example, the playback and network microphone devices in the living room space shown in FIG. 1 may be referred to as a zone group named Living Room. As another example, the playback device 102l in the dining room space may be named as a zone “Dining Room.” The zones and/or zone groups may also have uniquely assigned names, such as “Nick's Room,” as shown in FIG. 1.


The memory 216 may be further configured to store other data. Such data may pertain to audio sources accessible by a playback device or a playback queue that the playback device (or some other playback device(s)) may be associated with. The data stored in the memory 216 may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device. The memory 216 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.


The audio processing components 218 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In some embodiments, one or more of the audio processing components 218 may be a subcomponent of the processor 212. In one example, audio content may be processed and/or intentionally altered by the audio processing components 218 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.


Audio content to be processed and/or played back by a playback device may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 230.


The network interface 230 may be configured to facilitate a data flow between a playback device and one or more other devices on a data network. As such, a playback device may be configured to receive audio content over the data network from one or more other playback devices in communication with a playback device, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by a playback device may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 230 may be configured to parse the digital packet data such that the data destined for a playback device is properly received and processed by the playback device.


As shown, the network interface 230 may include wireless interface(s) 232 and wired interface(s) 234. The wireless interface(s) 232 may provide network interface functions for a playback device to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 234 may provide network interface functions for a playback device to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 230 shown in FIG. 2 includes both wireless interface(s) 232 and wired interface(s) 234, the network interface 230 may in some embodiments include only wireless interface(s) or only wired interface(s).


In some embodiments, a playback device and one other playback device may be paired to play two separate audio components of audio content. For example, the LEFT playback device 102j in the Living Room may be configured to play a left channel audio component, while the RIGHT playback device 102a may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. Similarly, the playback device 102l designated to the Dining Room may be configured to play a left channel audio component, while the playback device 102i designated to the Kitchen may be configured to play a right channel audio component. Paired playback devices may further play audio content in synchrony with other playback devices. Paired playback device may also be referred to as “bonded playback devices.


In some embodiments, one or more of the playback devices may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may include separate playback devices each having additional or different speaker drivers through which audio content may be rendered. For example, a playback device designed to render low frequency range audio content (e.g., the playback device 102k designated as a subwoofer or “SUB”) may be consolidated with a full-frequency playback device (e.g., the playback device 102b designated as “FRONT”) to render the lower frequency range of the consolidated device. In such a case, the full frequency playback device, when consolidated with the low frequency playback device, may be configured to render only the mid and high frequency components of audio content, while the low-frequency playback device renders the low frequency component of the audio content. The consolidated playback device may be paired or consolidated with one or more other playback devices. For example, FIG. 1 shows the SUB playback device 102k consolidated with the FRONT playback device 102b to form subwoofer and center channels, and further consolidated with the RIGHT playback device 102a and the LEFT playback device 102j.


As discussed above, a playback device may include a network microphone device, such as one of the NMDs 103, as show in FIG. 2. A network microphone device may share some or all the components of a playback device, such as the processor 212, the memory 216, the microphone(s) 224, etc. In other examples, a network microphone device includes components that are dedicated exclusively to operational aspects of the network microphone device. For example, a network microphone device may include far-field microphones and/or voice processing components, which in some instances a playback device may not include. In another example, a network microphone device may include a touch-sensitive button for enabling/disabling a microphone. In yet another example, a network microphone device can be a stand-alone device, as discussed above.


By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in FIG. 2 or to the SONOS product offerings. For example, a playback device may include a wired or wireless headphone. In another example, a playback device may include or interact with a docking station for personal mobile media playback devices. In yet another example, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use.


b. Example Playback Zone Configurations

Referring back to the media playback system 100 of FIG. 1, the media playback system 100 may be established with one or more playback zones, after which one or more of the playback and/or network devices 102-103 may be added or removed to arrive at the example configuration shown in FIG. 1. As discussed above, zones and zone groups may be given a unique name and/or a name corresponding to the space in which device(s) are located.


In one example, one or more playback zones in the environment of FIG. 1 may each be playing different audio content. For instance, the user may be grilling in the Balcony zone and listening to hip hop music being played by the playback device 102c while another user is preparing food in the Kitchen zone and listening to classical music being played by the playback device 102i. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the Office zone where the playback device 102d is playing the same hip-hop music that is being playing by playback device 102c in the Balcony zone. In such a case, playback devices 102c and 102d may be playing the hip-hop in synchrony such that the user may seamlessly (or at least substantially seamlessly) enjoy the audio content that is being played out-loud while moving between different playback zones. Synchronization among playback zones may be achieved in a manner similar to that of synchronization among playback devices, as described in previously referenced U.S. Pat. No. 8,234,395.


A network microphone device may receive voice inputs from a user in its vicinity. A network microphone device may capture a voice input upon detection of the user speaking the input. For instance, in the example shown in FIG. 1, the NMD 103a may capture the voice input of a user in the vicinity of the Living Room, Dining Room, and/or Kitchen zones. In some instances, other network microphone devices in the home environment, such as the NMD 104f in the Kitchen and/or the other NMD 104b in the Living Room may capture the same voice input. In such instances, network devices that detect the voice input may be configured to arbitrate between one another so that fewer or only the most proximate one of the NMDs 103 process the user's voice input. Other examples for selecting network microphone devices for processing voice input can be found, for example, in U.S. patent application Ser. No. 15/171,180 fled Jun. 9, 2016, and titled “Dynamic Player Selection for Audio Signal Processing” and U.S. patent application Ser. No. 15/211,748 filed Jul. 15, 2016, and titled “Voice Detection by Multiple Devices.” Each of these references is incorporated herein by reference in its entirety. A network microphone device may control selected playback and/or network microphone devices 102-103 in response to voice inputs, as described in greater detail below.


As suggested above, the zone configurations of the media playback system 100 may be dynamically modified. As such, the media playback system 100 may support numerous configurations. For example, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102c from the Balcony zone to the Office zone, the Office zone may now include both the playback devices 102c and 102d. In some cases, the use may pair or group the moved playback device 102c with the Office zone and/or rename the players in the Office zone using, e.g., one of the controller devices 104 and/or voice input. As another example, if one or more playback devices 102 are moved to a particular area in the home environment that is not already a playback zone, the moved playback device(s) may be renamed or associated with a playback zone for the particular area.


Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For example, the Dining Room zone and the Kitchen zone may be combined into a zone group for a dinner party such that playback devices 102i and 102l may render audio content in synchrony. As another example, playback devices 102 consolidated in the Living Room zone for the previously described consolidated TV arrangement may be split into (i) a television zone and (ii) a separate listening zone. The television zone may include the FRONT playback device 102b. The listening zone may include the RIGHT, LEFT, and SUB playback devices 102a, 102j, and 102k, which may be grouped, paired, or consolidated, as described above. Splitting the Living Room zone in such a manner may allow one user to listen to music in the listening zone in one area of the living room space, and another user to watch the television in another area of the living room space. In a related example, a user may implement either of the NMD 103a or 103b to control the Living Room zone before it is separated into the television zone and the listening zone. Once separated, the listening zone may be controlled by a user in the vicinity of the NMD 103a, and the television zone may be controlled by a user in the vicinity of the NMD 103b. As described above, however, any of the NMDs 103 may be configured to control the various playback and other devices of the media playback system 100.


c. Example Controller Devices


FIG. 3 is a functional block diagram illustrating certain aspects of a selected one of the controller devices 104 of the media playback system 100 of FIG. 1. Such controller devices may also be referred to as a controller. The controller device shown in FIG. 3 may include components that are generally similar to certain components of the network devices described above, such as a processor 312, memory 316, microphone(s) 324, and a network interface 330. In one example, a controller device may be a dedicated controller for the media playback system 100. In another example, a controller device may be a network device on which media playback system controller application software may be installed, such as for example, an iPhone™ iPad™ or any other smart phone, tablet or network device (e.g., a networked computer such as a PC or Mac™).


The memory 316 of a controller device may be configured to store controller application software and other data associated with the media playback system 100 and a user of the system 100. The memory 316 may be loaded with one or more software components 314 executable by the processor 312 to achieve certain functions, such as facilitating user access, control, and configuration of the media playback system 100. A controller device communicates with other network devices over the network interface 330, such as a wireless interface, as described above.


In one example, data and information (e.g., such as a state variable) may be communicated between a controller device and other devices via the network interface 330. For instance, playback zone and zone group configurations in the media playback system 100 may be received by a controller device from a playback device, a network microphone device, or another network device, or transmitted by the controller device to another playback device or network device via the network interface 306. In some cases, the other network device may be another controller device.


Playback device control commands such as volume control and audio playback control may also be communicated from a controller device to a playback device via the network interface 330. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the controller device. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others.


The user interface(s) 340 of a controller device may be configured to facilitate user access and control of the media playback system 100, by providing controller interface(s) such as the controller interfaces 400a and 400b (collectively “controller interface 440”) shown in FIGS. 4A and 4B, respectively. Referring to FIGS. 4A and 4B together, the controller interface 440 includes a playback control region 442, a playback zone region 443, a playback status region 444, a playback queue region 446, and a sources region 448. The user interface 400 as shown is just one example of a user interface that may be provided on a network device such as the controller device shown in FIG. 3 and accessed by users to control a media playback system such as the media playback system 100. Other user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.


The playback control region 442 (FIG. 4A) may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 442 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.


The playback zone region 443 (FIG. 4B) may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.


For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 443 (FIG. 4B) may be dynamically updated as playback zone or zone group configurations are modified.


The playback status region 444 (FIG. 4A) may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 443 and/or the playback status region 444. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 440.


The playback queue region 446 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.


In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.


When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.


With reference still to FIGS. 4A and 4B, the graphical representations of audio content in the playback queue region 446 (FIG. 4B) may include track titles, artist names, track lengths, and other relevant information associated with the audio content in the playback queue. In one example, graphical representations of audio content may be selectable to bring up additional selectable icons to manage and/or manipulate the playback queue and/or audio content represented in the playback queue. For instance, a represented audio content may be removed from the playback queue, moved to a different position within the playback queue, or selected to be played immediately, or after any currently playing audio content, among other possibilities. A playback queue associated with a playback zone or zone group may be stored in a memory on one or more playback devices in the playback zone or zone group, on a playback device that is not in the playback zone or zone group, and/or some other designated device. Playback of such a playback queue may involve one or more playback devices playing back media items of the queue, perhaps in sequential or random order.


The sources region 448 may include graphical representations of selectable audio content sources and selectable voice assistants associated with a corresponding VAS. The VASes may be selectively assigned. In some examples, multiple VASes, such as AMAZON's ALEXA® and another voice service, may be invokable by the same network microphone device. In some embodiments, a user may assign a VAS exclusively to one or more network microphone devices, as discussed above. For example, a user may assign first VAS to one or both of the NMDs 102a and 102b in the living room space shown in FIG. 1, and a second VAS to the NMD 103f in the kitchen space. Other examples are possible.


d. Example Audio Content Sources

The audio sources in the sources region 448 may be audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. One or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.


Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of FIG. 1, local music libraries on one or more network devices (such as a controller device, a network-enabled personal computer, or a networked-attached storage (NAS), for example), streaming audio services providing audio content via the Internet (e.g., the cloud), or audio sources connected to the media playback system via a line-in input connection on a playback device or network devise, among other possibilities.


In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of FIG. 1. In one example, an indexing of audio items may be performed whenever one or more audio content sources are added, removed or updated. Indexing of audio items may involve scanning for identifiable audio items in all folders/directory shared over a network accessible by playback devices in the media playback system, and generating or updating an audio content database containing metadata (e.g., title, artist, album, track length, among others) and other associated information, such as a URI or URL for each identifiable audio item found. Other examples for managing and maintaining audio content sources may also be possible.


e. Example Network Microphone Devices


FIG. 5A is a functional block diagram showing additional features of one or more of the NMDs 103 in accordance with aspects of the disclosure. The network microphone device shown in FIG. 5A may include components that are generally similar to certain components of network microphone devices described above, such as the processor 212 (FIG. 2), network interface 230 (FIG. 2), microphone(s) 224, and the memory 216. Although not shown for purposes of clarity, a network microphone device may include other components, such as speakers, amplifiers, signal processors, as discussed above.


The microphone(s) 224 may be a plurality of microphones arranged to detect sound in the environment of the network microphone device. In one example, the microphone(s) 224 may be arranged to detect audio from one or more directions relative to the network microphone device. The microphone(s) 224 may be sensitive to a portion of a frequency range. In one example, a first subset of the microphone(s) 224 may be sensitive to a first frequency range, while a second subset of the microphone (2) 224 may be sensitive to a second frequency range. The microphone(s) 224 may further be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise. Notably, in some embodiments the microphone(s) 224 may have a single microphone rather than a plurality of microphones.


A network microphone device may further include wake-word detector 552, beam former 553, acoustic echo canceller (AEC) 554, and speech/text conversion 555 (e.g., voice-to-text and text-to-voice). In various embodiments, one or more of the wake-word detector 552, beam former 553, AEC 554, and speech/text conversion 555 may be a subcomponent of the processor 212, or implemented in software stored in memory 216 which is executable by the processor 212.


The wake-word detector 552 is configured to monitor and analyze received audio to determine if any wake words are present in the audio. The wake-word detector 552 may analyze the received audio using a wake word detection algorithm. If the wake-word detector 552 detects a wake word, a network microphone device may process voice input contained in the received audio. Example wake word detection algorithms accept audio as input and provide an indication of whether a wake word is present in the audio. Many first- and third-party wake word detection algorithms are known and commercially available. For instance, operators of a voice service may make their algorithm available for use in third-party devices. Alternatively, an algorithm may be trained to detect certain wake-words.


In some embodiments, the wake-word detector 552 runs multiple wake word detections algorithms on the received audio simultaneously (or substantially simultaneously). As noted above, different voice services (e.g. AMAZON's ALEXA®, APPLE's SIRI®, or MICROSOFT's CORTANA®) each use a different wake word for invoking their respective voice service. To support multiple services, the wake word detector 552 may run the received audio through the wake word detection algorithm for each supported voice service in parallel.


The beam former 553 and AEC 554 are configured to detect an audio signal and determine aspects of voice input within the detect audio, such as the direction, amplitude, frequency spectrum, etc. For example, the beam former 553 and AEC 554 may be used in a process to determine an approximate distance between a network microphone device and a user speaking to the network microphone device. In another example, a network microphone device may detective a relative proximity of a user to another network microphone device in a media playback system.



FIG. 5B is a diagram of an example voice input in accordance with aspects of the disclosure. The voice input may be captured by a network microphone device, such as by one or more of the NMDs 103 shown in FIG. 1. The voice input may include a wake word portion 557a and a voice utterance portion 557b (collectively “voice input 557”). In some embodiments, the wake word 557a can be a known wake word, such as “Alexa,” which is associated with AMAZON's ALEXA®).


In some embodiments, a network microphone device may output an audible and/or visible response upon detection of the wake word portion 557a. In addition or alternately, a network microphone device may output an audible and/or visible response after processing a voice input and/or a series of voice inputs (e.g., in the case of a multi-turn request).


The voice utterance portion 557b may include, for example, one or more spoken commands 558 (identified individually as a first command 558a and a second command 558b) and one or more spoken keywords 559 (identified individually as a first keyword 559a and a second keyword 559b). In one example, the first command 557a can be a command to play music, such as a specific song, album, playlist, etc. In this example, the keywords 559 may be one or words identifying one or more zones in which the music is to be played, such as the Living Room and the Dining Room shown in FIG. 1. In some examples, the voice utterance portion 557b can include other information, such as detected pauses (e.g., periods of non-speech) between words spoken by a user, as shown in FIG. 5B. The pauses may demarcate the locations of separate commands, keywords, or other information spoke by the user within the voice utterance portion 557b.


In some embodiments, the media playback system 100 is configured to temporarily reduce the volume of audio content that it is playing while detecting the wake word portion 557a. The media playback system 100 may restore the volume after processing the voice input 557, as shown in FIG. 5B. Such a process can be referred to as ducking, examples of which are disclosed in U.S. patent application Ser. No. 15/277,810 filed Sep. 27, 2016 and titled “Audio Playback Settings for Voice Interaction,” which is incorporated herein by reference in its entirety.


f. Example Network System


FIG. 6 is a functional block diagram showing additional details of the remote computing device(s) 105 in FIG. 1. In various embodiments, the remote computing device(s) 105 may receive voice inputs from one or more of the NMDs 103 over the WAN 107 shown in FIG. 1. For purposes of illustration, selected communication paths of the voice input 557 (FIG. 5B) are represented by arrows in FIG. 6. In one embodiment, the voice input 557 processed by the remote computing device(s) 105 may include the voice utterance portion 557b (FIG. 5B). In another embodiment, the processed voice input 557 may include both the voice utterance portion 557b and the wake word 557a (FIG. 5B)


The remote computing device(s) 105 include a system controller 612 comprising one or more processors, an intent engine 602, and a memory 616. The memory 616 may be a tangible computer-readable medium configured to store instructions executable by the system controller 612 and/or one or more of the playback, network microphone, and/or controller devices 102-104.


The intent engine 662 is configured to process a voice input and determine an intent of the input. In some embodiments, the intent engine 662 may be a subcomponent of the system controller 612. The intent engine 662 may interact with one or more database(s), such as one or more VAS database(s) 664, to process voice inputs. The VAS database(s) 664 may reside in the memory 616 or elsewhere, such as in memory of one or more of the playback, network microphone, and/or controller devices 102-104. In some embodiments, the VAS database(s) 664 may be updated for adaptive learning and feedback based on the voice input processing. The VAS database(s) 664 may store various user data, analytics, catalogs, and other information for NLU-related and/or other processing.


The remote computing device(s) 105 may exchange various feedback, information, instructions, and/or related data with the various playback, network microphone, and/or controller devices 102-104 of the media playback system 100. Such exchanges may be related to or independent of transmitted messages containing voice inputs. In some embodiments, the remote computing device(s) 105 and the media playback system 100 may exchange data via communication paths as described herein and/or using a metadata exchange channel as described in U.S. application Ser. No. 15/131,244 filed Apr. 18, 2016, and titled “Metadata exchange involving a networked playback system and a networked microphone system, which is incorporated by reference in its entirety.


Processing of a voice input by devices of the media playback system 100 may be carried out at least partially in parallel with processing of the voice input by the remote computing device(s) 105. Additionally, the speech/text conversion components 555 of a network microphone device may convert responses from the remote computing device(s) 105 to speech for audible output via one or more speakers.


III. Example Acoustic Echo Cancellation Techniques

As discussed above, some embodiments described herein involve acoustic echo cancellation. FIG. 8A is a functional block diagram of an acoustic echo cancellation pipeline 800a configured to be implemented within a playback device that includes a NMD, such as NMDs 103a-e. By way of example, the acoustic echo cancellation pipeline 800a is described as being implemented within the playback device 102 of FIG. 2. However, in other implementations, acoustic echo cancellation pipeline 800a may be implemented in an NMD that is not necessarily a playback device (e.g., a device that doesn't include speakers, or includes relatively low-output speakers configured to provide audio feedback to voice inputs), such as NMDs 103f-g.


In operation, acoustic echo cancellation pipeline 800a may be activated when the playback device 102 is playing back audio content. As noted above, acoustic echo cancellation can be used to remove acoustic echo (i.e., the sound of the audio playback and reflections and/or other acoustic artifacts from the acoustic environment) from the signal captured by microphone(s) of the networked microphone device. When effective, acoustic echo cancellation improves the signal-to-noise ratio of a voice input with respect to other sound within the acoustic environment. In some implementations, when audio playback is paused or otherwise idle, the acoustic echo cancellation pipeline 800a is bypassed or otherwise disabled.


As shown in FIG. 8A, the microphone array 224 (FIG. 2) is configured to capture a “measured signal,” which is an input to the acoustic echo cancellation pipeline 800a. As described above in reference to FIGS. 2 and 5, the microphone array 224 can be configured to capture audio within an acoustic environment in an attempt to detect voice inputs (e.g., wake-words and/or utterances) from one or more users. When the playback device 102 plays back audio content via speakers 222 (FIG. 2), the microphone array 224 can capture audio that also includes audio signals representing sound produced by speakers 222 in playing back the audio content, as well as other sound being produced within the acoustic environment.


At block 870a, the measured signal is pre-processed in advance of acoustic echo cancellation. Pre-processing of the measured signal may involve analog-to-digital conversion of the microphone array signals. Other pre-processing may include sample rate conversion, de-jittering, de-interleaving, or filtering, among other examples. The term “measured signal” is generally used to refer to the signal captured by the microphone array 224 before and after any pre-processing.


As shown in FIG. 8A, another input to the acoustic echo cancellation pipeline 800a is a “reference signal.” The reference signal can represent the audio content being played back by the speakers 222 (FIG. 2). As shown, the reference signal is routed from the audio processing components 218. In an effort to more closely represent the audio content being played back by the speakers 222, the reference signal may be taken from a point in an audio processing pipeline of the audio processing components 218 that closely represents the expected analog audio output of speakers 222. Since each stage of an audio processing pipeline may introduce artifacts, the point in the audio processing pipeline of the audio processing components 218 that closely represents the expected analog audio output of the speakers 222 is typically near the end of the pipeline.


As noted above, although the acoustic echo cancellation pipeline 800a is shown by way of example as being illustrated within the playback device 102, the acoustic echo cancellation pipeline 800a may alternatively be implemented within a dedicated NMD such as NMD 103f-g of FIG. 1. In such examples, the reference signal may sent from the playback device(s) that are playing back audio content to the NMD, perhaps via a network interface or other communications interface, such as a line-in interface.


At block 870b, the reference signal is pre-processed in advance of acoustic echo cancellation. Pre-processing of the reference signal may involve sample rate conversion, de-jittering, de-interleaving, time-delay, or filtering, among other examples. The term “measured signal” is generally used to refer to the signal captured by the microphone array 224 before and after any pre-processing.


Pre-processing the measured signal and the reference signals readies the signals for mixing during acoustic echo cancellation. For instance, since audio content is output by the speakers 222 before the microphone array 224 captures a representation of that same content, time-delay may be introduced to the reference signal to time-align the measured and reference signals. Similarly, since the respective sample rates of analog-to-digital conversation of the analog microphone signals and the reference signal from the audio processing components 218 may be different, sample rate conversation of one or both of the signals may convert the signal(s) into the same or otherwise compatible sample rates. Other similar pre-processing may be performed in blocks 870a and 870b to render the measured signals and reference signals compatible.


At block 871a, the measured and reference signals are converted into the short-time Fourier transform domain. Acoustic echo cancellation in the STFT domain may lessen the processing requirements of acoustic echo cancellation as compared with acoustic echo cancellation in other domains, such as the Frequency-Dependent Adaptive Filter (“FDAF”) domain. As such, by processing in the STFT domain, additional techniques for acoustic echo cancellation may become practical.


As those of ordinary skill in the art will appreciate, a STFT is a transform used to determine the sinusoidal frequency and phase content of local sections (referred to as “frames” or “blocks”) of a signal as it changes over time. To compute a STFTs of the measured and reference signals, each signal is divided into a plurality of frames. In an example implementation, each frame is 16 milliseconds (ms) long. The number of samples in a 16 ms frame may vary based on the sample rate of the measured and reference signals.


Given a signal x(n), the signal is transformed to the STFT domain by:

Xk[m]=Σn=0N-1x[n+mR]wA[nNkn,

where k is the frequency index, m is the frame index, N is the frame size, R is the frame shift size, wA [n] is an analysis window of size N, and








ω
N

=

exp

(


-
j




2

π

N


)


.




Referring now to AEC 554 (FIG. 5A), after being converted into the STFT domain, the measured and reference signals are provided as input to the AEC 554, as shown in FIG. 8A. The acoustic echo cancellation performed by the AEC 554 on the measured signal is an iterative process. Each iteration of the AEC 554 processes a respective frame of the measured signal using a respective frame of the reference signal. Such processing includes passing a frame of the reference signal through the adaptive filter 872 to yield a frame of a model signal. The adaptive filter 872 is intended to transform the reference signal into the measured signal with minimal error. In other words, the model signal is an estimate of the acoustic echo.


To cancel the acoustic echo from the measured signal, the measured signal and the model signal are provided to a redaction function 873. Redaction function 873 redacts the model signal from the measured signal, thereby cancelling the estimated acoustic echo from the measured signal yielding an output signal. In some examples, the redaction function 873 redacts the model signal from the measured signal by inverting the model signal via inverter 874 and mixing the inverted model signal with a frame of the measured signal with mixer 875. In effect, this mixing removes the audio playback (the reference signal) from the measured signal, thereby cancelling the echo (i.e., the audio playback and associated acoustic effects) from the measured signal. Alternate implementations may use other techniques for redaction.


At block 871b, the output signal of AEC 554 is transformed back by applying the inverse STFT. The inverse STFT is applied by:

x[n]=ΣmΣk=0N-1Xk[m]wS[n−mRN−k(n−mR)

where ws [n] is a synthesis window.


After block 871b, the output signal is provided to a voice input processing pipeline at block 880. Voice input processing may involve wake-word detection, voice/speech conversion, and/or sending one or more voice utterances to a voice assistant service, among other examples.


Turning now in more detail to internal aspects of the AEC 554, at block 872, the reference signal in the STFT domain is passed through the adaptive filter 872. As noted above, the adaptive filter 872 is a transfer function that adapts during each iteration of the AEC 554 in an attempt to transform the reference signal into the measured signal with diminishing error. Passing a frame of the reference signal through adaptive filter 872 yields a frame of a model signal. The model signal is an estimate of the acoustic echo of the reference signal (i.e., the audio that is being cancelled).


Within examples, adaptive filter 872 implements multi-delay adaptive filtering. To illustrate example multi-delay adaptive filtering, let N be the multi-delay filter (MDF) block size, K be the number of blocks and F2N denote the 2N×2N Fourier transform matrix, and the frequency-domain signals for frame m are:

e(m)=F2N[01×N,e(mN), . . . ,e(mN+N−1)]T,
Xk(m)=diag{F2N[x((m−k−1)N−1), . . . x((m−k+1)N−1)]T},
d(m)=F2N[O1×N,d(mN), . . . ,d(mN+N−1)]T,

where d(m) is the modeled signal, e(m) is the modeling error, and Xk(m) is the measured signal. The MDF algorithm then becomes:

e(m)=d(m)−ŷ(m),
ŷ(m)=Σk=0k−1G1Xk(m)ĥk(m−1),

with model update:

k: ĥk(m)=ĥk(m−1)+G2μm(m)∇ĥk(m), and
ĥk(m)=PXkXk−1(m)XkH(m)e(m),

where G1 and G2 are matrices which select certain time-domain parts of the signal in the frequency domain,









G
1

=



F

2

N


[




0

N
×
N





0

N
×
N







0

N
×
N





I

N
×
N





]



F

2

N


-
1




,

and





G
2

=



F

2

N


[




1

N
×
N





0

N
×
N







0

N
×
N





0

N
×
N





]




F

2

N


-
1


.








The matrix PXkXk(m)=XkH(m)Xk(m) is a diagonal approximation of the input power spectral density matrix. To reduce the variance of the power spectrum estimate, the instantaneous power estimate may be substituted by its smoothed version,

PXkXk(m)=βPXkXk(m−1)+(1−β)XkH(m)Xk(m),

where β is the smoothing term. This example also assumes a fixed step-size (how much the filter is adapted during each iteration) for each partition μ(m)=μ0I, however the step size may be varied in some implementations.


Example implementations of adaptive filter 872 implement cross-band filtering. To illustrate such filtering, let y[n] be the near-end measured signal, which includes the near-end speech and/or noise v[n] mixed with the acoustic echo d[n]=h[n]*x[n], where h[n] is the impulse response of the system, x[n] is the far-end reference signal, and * is the convolution operator. Let x[m]=[x[mR], . . . x[mR+N−1]]T be the mth reference signal vector, wA=[wA[0], . . . , wA[N−1]]T be the analysis window vector, (F)k+1,n+1=wNkn, k, n=0 . . . , N−1 be the N×N discrete Fourier transform matrix, and x[m]=F(wA∘x[m])=[X0[m], . . . , XN-1[m]]T be the DFT of the windowed reference signal vector, where ∘ is the Hadamard (element-wise) product operator and {·}T is the transpose operator.


As noted above, passing a frame of the reference signal through the adaptive filter 872 yields a frame of a model signal. Given a transfer function H, the acoustic echo can be represented in the STFT domain as

d[m]=Σi=0M-1Hi[m−1]x[m−i],

where d[m] is the DFT of the mth frame echo signal, Hi is the ith impulse response matrix (i.e., the filter for the mth iteration of the AEC 554), and M is the filter length in the STFT domain.


Given the foregoing, acoustic echo cancellation by the AEC 554 can be expressed in the STFT domain as:

    • x[m]=F(wA∘[x[mR], . . . , x[mR+N−1]]T, where x[m] is the reference signal,
    • y[m]=F(wA∘[y[mR], . . . , y[mR+N−1]]T), where y[m] is the measured signal, and
    • e[m]=y[m]−{circumflex over (d)}[m]=y[m]−Σi=0M-1Ĥi[m−1]x[m−i], where e[m] is the output signal. As noted above, the redaction function 808 redacts the model signal {circumflex over (d)}[m] from the measured signal.


When noise and/or speech are present in the measured signal, the error signal vector is given by

e[m]=v[m]+d[m]−{circumflex over (d)}[m]=v[m]+b[m],

where v[m] and b[m] is the noise vector and the noise-free error signal vector (a.k.a., the true error signal), respectively, in the STFT domain. Since the error signal e[m] deviates from the true, noise-free, echo signal vector b[m], the adaptive filter may diverge from the optimal solution due to near-end interference (e.g., one or more second voices in a double-talk condition). Some implementations may halt or otherwise disable adaptation of the filter during such conditions to avoid introducing noise into the signal, possibly using a double-talk detector. However, such implementations have the disadvantage that acoustic echo is not effectively cancelled from the measured signal while the AEC filter is disabled (or not adapting). To tolerate significant near-end interference v[m] (e.g., double-talk), one or more robustness constraints are introduced to stabilize the filter update.


Namely, at block 876, the AEC 554 estimates the true error signal. The true error signal b[m] is the difference between the actual acoustic echo d[m] and the estimated acoustic echo {circumflex over (d)}[m] produced by the adaptive filter 872. The output signal, renamed as the error signal, which includes the audio in the room other than the acoustic echo (e.g., one or more voices) as well as the true error signal, is provided as input to block 876. Ultimately, the true error signal is used in determining an update filter at block 878, which is summed with the adaptive filter 872 to yield the adaptive filter for the next iteration.


In some examples, estimating the true error signal may involve limiting the error if it exceeds a certain magnitude threshold. Such limiting may prevent unwanted divergence in noise conditions (e.g., double talk). Limiting the error may involve error recovery non-linearity (ERN) which can express the estimated true error signal ϕ(Ek(m)) as a non-linear clipping function:







ϕ

(


E
k

(
m
)

)

=

{








T
k




"\[LeftBracketingBar]"


E
k



"\[RightBracketingBar]"






E
k

[
m
]


,







"\[LeftBracketingBar]"



E
k

[
m
]



"\[RightBracketingBar]"





T
k

[
m
]









E
k

[
m
]

,



otherwise



,






This non-linear clipping function limits the error signal when its magnitude is above a certain threshold Tk[m]. This threshold is estimated based on the near-end (measured) signal statistics and is approximated by Tk[m]=√{square root over (See,k[m])} with

See,k[m]≡E{|Ek[m]|2}≈βSee,k[m−1]+(1−β)|Ek[m]|2,

where See,k[m] is the power spectral density (PSD) of the error signal, E{⋅} is the expectation operator, and 0<<β<<1 is a forgetting factor. This non-linear clipping function is provided by way of example. Other functions may be implemented as well to estimate the true error signal.


Given the foregoing, the true error signal ϕ(Ek(m)) can be determined as follows:










s
_

xx

[
m
]

=


β





s
_


xx

[

m
-
1

]


+


(

1
-
β

)



(




x
_

[
m
]



x
_


*

[
m
]


)




,





s
_

ee

[
m
]

=


β





s
_


ee

[

m
-
1

]


+


(

1
-
β

)



(




e
_

[
m
]



e
_


*

[
m
]


)




,



ϕ

(


E
k

(
m
)

)

=

{










S

ee
,
k


[
m
]





"\[LeftBracketingBar]"


E
k



"\[RightBracketingBar]"






E
k

[
m
]


,







"\[LeftBracketingBar]"



E
k

[
m
]



"\[RightBracketingBar]"






S

ee
,
k


[
m
]










E
k

[
m
]

,



otherwise



.








Recall that x[m] represents the reference signal and e[m] represents the error signal, which is the measured signal with the model signal redacted.


At block 877, the normalized least mean square of the true error signal is determined. In the normalized least square algorithm, the least mean square of the error is normalized with the power of the input (e.g., the reference signal). This has the effect of varying the step size of the algorithm to make it more noise-robust.


Normalization with respect to the power of the input can be expressed as

nxx[m]=(sxx[m]+δ1N×1)∘(−1),

where {⋅}∘(−1) is the Hadamard (element-wise) inverse operator, 1N×1=[1, . . . , 1]T, δ is a regularization term and sxx[m]=E{x[m]∘x*[m]}≡[Sxx,0[m], . . . , Sxx,N-1[m]]T is the PSD vector of the reference signal with {⋅}* being the element-wise complex conjugate operator.


In some cases, noise robustness may be further improved by applying a frequency dependent regularization term. For instance, such a term may be expressed as:








δ
k

[
m
]

=

γ





S

ee
,
k

2

[
m
]



S

xx
,
k


[
m
]


.







This term scales down the step-size automatically when the near-end (measured) signal is large, helping to keep adaption of the filter robust.


At block 878, an update filter is determined. As noted above, ultimately, the update filter is summed with the filter used in the current iteration of the AEC 554 to yield the filter for the next iteration of the AEC 554. Generally, during the first iterations of the AEC 554, some error exists in the cancellation of the echo from the measured signal. However, over successive iterations of the AEC 554, this error is diminished. In particular, during each iteration of the AEC 554, the adaptive filter 872 is updated for the next iteration based on error from the current iteration. In this way, during successive iterations of the AEC 554, the AEC 554 mathematically converges to a cancellation of the audio playback by the speakers 222 (FIG. 2). In this way, the filter adapts during a successive iteration of the AEC based on error from the previous iteration.


In the first iteration of the AEC 554, an initial filter is utilized, as no adaptation has yet occurred. In some implementations, the initial filter is a transfer function representing the acoustic coupling between speakers 222 and microphones 224. In some embodiments, the initial filter comprises a transfer function generated using measurements performed in an anechoic chamber. The generated transfer function can represent an acoustic coupling between the speakers 222 and the microphones 224 without any room effect. Such an initial filter could be used in any acoustic environment. Alternatively, in an effort to start the adaptive filter in a state that more closely matches the actual acoustic environment in which the playback device is located, a transfer function representing an acoustic coupling between the speakers 222 and the microphones 224 may be determined during a calibration procedure that involves microphones 224 recording audio output by speakers 222 in a quiet room (e.g., with minimal noise). Other initial filters may be used as well, although a filter that poorly represents the acoustic coupling between the speakers 222 and the microphones 224 may provide a less optimal starting point for the AEC 554 and result in convergence requiring additional iterations of the AEC 554.


In subsequent iterations of the AEC, the adaptive filter 872 can continue to adapt. During each nth iteration of the AEC, an n+1th instance of the adaptive filter 806 is determined for the next iteration of the AEC. In particular, during the nth iteration of the AEC 554, the nth instance of the adaptive filter 872 is summed with an nth update filter to yield the n+1th instance of the adaptive filter 872. The nth update filter is based on the modelling error of the filter during the nth iteration.


To illustrate, let Ĥ be an adaptive filter matrix. For a filter having K blocks, to improve the modeling accuracy, 2K cross-terms, or 2K off-diagonal bands are added around the main diagonal terms of H without increasing the computational complexity to an impractical extent. Recall that K In this example, Ĥ has 2K+1 diagonal bands. The model signal (i.e., the estimated acoustic echo) can be written as

{circumflex over (d)}[m]=Σi=0M-1Ĥi[m−1]x[m−i],

and the adaptive filter matrix can be updated from iteration to iteration using

Ĥi[m]=Ĥi[m−1]+G∘ΔĤi[m],i=0, . . . M−1,

where ΔĤi[m] is an update matrix for the filter coefficients matrix and G=Σk=−KKPk is a matrix that selects the 2K+1 diagonal bands. P is a permutation matrix defined as






P



[



0








0


1




1








0


0




0

























0


0




0





0


1


0



]

.





The matrix G limits the number of crossband filters that are useful for system identification in the STFT domain since increasing the number of crossband filters does not necessarily lead to a lower steady-state error.


As noted above, the nth update filter is based on the modelling error of the filter during the nth iteration. Using a least mean squares algorithm, the update filter is given by

ĤiLMS[m]=μe[m]xH[m−i],

where e[m]=y[m]−{circumflex over (d)}[m] is the error signal vector in the STFT domain, μ>0 is a step-size, and {⋅}H is the Hermitian transpose operator. As compared with FDAD-type algorithms, this update filter takes into account the contribution of the cross-frequency components of the reference signal without relying on the DFT and IDFT for cancelling the aliased components, which allows for a simplified processing pipeline with less complexity.


As noted above, as an alternative to the least mean squares, a normalized least mean squares algorithm may be implemented to improve noise-robustness. Using the NMLS from block 818, the update filter is given by:

ΔĤiNLMS[m]=μe[m](n[m]∘x[m−1])H,

where the reference signal is normalized by its signal power before being multiplied by the error signal in block 818. Note that each element of the NLMS update matrix is given as:








(

Δ




H
^

i
NLMS

[
m
]


)



k
+
1

,

l
+
1



=

μ




ϕ

(


E
k

[
m
]

)




X
l
*

[

m
-
1

]





S

xx
,
l


[
m
]

+
δ








In implementations in which the cross-frequency dependent regularization term is utilized, then then the NMLS update matrix is given by:








(

Δ




H
^

i
NLMS

[
m
]


)



k
+
1

,

l
+
1



=

μ





ϕ

(


E
k

[
m
]

)




X
l
*

[

m
-
1

]





S

xx
,
l


[
m
]

+


δ

k
,
l


[
m
]



.






Given the foregoing, a noise-robust adaptive step size for the AEC can be expressed in matrix form as:








(

M
[
m
]

)



k
+
1

,

l
+
1



=




S

xx
,
l


[
m
]




S

xx
,
l

2

[
m
]

+

γ



S

ee
,
k

2

[
m
]




.





Then the update matrix is given as:

ΔĤi[m]=μM[m]∘(ϕ(e[m])xH[m−1]),i=0, . . . ,M−1

where ϕ(e[m])≡[ϕ(E0[m]), . . . , ϕ(EN-1[m−1])]T is the estimate of the true error signal vector after applying ERN.


As noted above, particular, during the nth iteration of the AEC 554, the nth instance of the adaptive filter 872 is summed with an nth update filter to yield the n+1th instance of the adaptive filter 872. Given the example above, the adaptive filter is represented as:

Ĥi[m]=Ĥi[m−1]+G∘ΔĤi[m],i=0, . . . ,M−1


At block 879, a sparsity criterion is applied to the output of the update filter 878. A sparsity criterion may deactivate inactive portions of the filter. This allows use of a high order multi delay filter where only the partitions that correspond to the actual model are active, thereby reducing computation requirements. Although FIG. 8A suggests that the sparsity criterion is applied after determination of the update filter 879, the sparsity criterion may be applied either before or after the update filter.


The sparsity criterion may implemented as a thresholding operator:








T
ε

(

h
j

)

=

{





0
,








h
j



1



ε
j








h
j

,








h
j



1

>

ε
j





,







which distinguishes between active and inactive partitions. Within examples, εj is in the order of the estimated noise level normalized for the block length. Tε(hj) attempts to solve











min







h
j

(
m
)






B
j


N












e
j

(
m
)



2
2


+


γ
j







h
j

(
m
)



1



,





where γj controls the sparsity of the jth filter. In some examples, the thresholding operator can be applied to the filter update step of the NMLS algorithm, which then becomes:

j: ĥj(m)=Tε(ĥj(m−1)+G2jμ0(m)∇ĥj(m)).

Applying the sparsity constraint during each iteration of the AEC results in a Landweber iteration with thresholding, which contributes to the noise robustness of the AEC.


In example implementations, acoustic echo cancellation pipeline 800a may be integrated into an audio processing pipeline that includes additional audio processing of microphone-captured audio such as beam forming, blind source separation, and frequency gating before the microphone-captured audio is processed as a voice input to a voice service.



FIG. 8B is a functional block diagram of an audio processing pipeline 800b that integrates acoustic echo cancellation pipeline 800a. As shown in FIG. 8B, other voice processing functions such as beamforming (via the beam former 553), blind signal separation (via the blind signal separator 882), and frequency gating (via the frequency gating component 881) are performed in the STFT domain using the AEC signals. By performing these functions in conjunction with AEC in the STFT domain, the overall audio processing pipeline can be less complex than conventional AEC approaches as fewer applications of the DFT and inverse DFT are involved, reducing the overall computational complexity of the audio processing pipeline.


IV. Example Acoustic Echo Cancellation

As discussed above, embodiments described herein may involve acoustic echo cancellation. FIG. 9 is a flow diagram of an example implementation 900 by which a system (e.g., the playback device 102, the NMD 103, and/or the control device 104,) may perform noise-robust acoustic echo cancellation in the STFT domain. In some embodiments, the implementation 900 can comprise instructions stored on a memory (e.g., the memory 216 and/or the memory 316) and executable by one or more processors (e.g., the processor 212 and/or the processor 312).


a. Causing One or More Speakers to Play Back Audio Content

At block 902, the implementation 900 causes one or more speakers to play back audio content. For instance, the implementation 900 can be configured to cause a playback device (e.g., the playback device 102 of FIG. 2) to play back audio content via one or more speakers (e.g., the speakers 222). Example audio content includes audio tracks, audio with video (e.g., home theatre), streaming audio content, and many others. Prior to playback, the playback device may process and/or amplify the audio content via an audio stage, which may include audio processing components (e.g., the audio processing components 218 of FIG. 2) and/or one or more audio amplifiers (e.g., the audio amplifiers 220 of FIG. 2).


As noted above, the audio content may be designed for playback by the playback device 102 by another device. For instance, a controller device (e.g., the controller devices 103a and/or 103b of FIG. 1, the control device 104 of FIG. 3) may instruct a playback device to play back certain audio content by causing that content to be placed in a playback queue of the playback device. Placing an audio track or other audio content into such a queue can cause the playback device to retrieve the audio content after playback is initiated via a control on the controller device 104 and/or on the playback device 102 itself (e.g., via a Play/Pause button).


b. Capture Audio within Acoustic Environment

At block 904, the implementation 900 captures audio within the acoustic environment. For instance, the implementation 900 can be configures to capture audio within an acoustic environment via an NMD (e.g., the NMD 103 of FIG. 2) having one or more microphones (e.g., two or more microphones of microphone array 224). Capturing audio may involve recording audio within an acoustic environment and/or processing of the recorded audio (e.g., analog-to-digital conversation).


In some embodiments, the implementation 900 is configured to capture audio within an acoustic environment while one or more playback devices are also playing back audio content within the acoustic environment. The captured audio can include, for example, audio signals representing acoustic echoes caused by playback of the audio content in the acoustic environment. The captured audio may also include audio signals representing speech (e.g., voice input to a voice assistant service or other speech such as conversation) as well as other sounds or noise present in the acoustic environment.


c. Receive Output Signal from Audio Stage

At block 906, the implementation 900 receives an output signal from the audio stage. For instance, the implementation 900 can be configured to receive an output signal from the audio stage of the playback device 200. As described above in reference to FIG. 8A, the output signal can represent audio content played back by the playback device 200. Ultimately, the output signal becomes a reference signal for acoustic echo cancellation. Accordingly, within examples, the output signal is routed from a point in the audio pipeline of the playback device that closely represents the actual output produced by the speakers 224 of the playback device 200. Since each stage of an audio processing pipeline may introduce its own artifacts, the point in the audio processing pipeline that closely represents the expected analog audio output of the speakers is typically near the end of the pipeline.


In some embodiments, the implementation 900 is configured to receive the output signal internally from the audio pipeline such as, for example, when an NMD in is consolidated in a playback device (e.g., as with NMD 103 of playback device 102 shown in FIG. 2). In other embodiments, however, the implementation 900 is configured to receive the output signal via an input interface, such as a network interface (e.g., network interface 230) or a line-in interface, among other examples.


d. Determine Measured and Referenced Signals in STFT Domain

At block 908, the implementation 900 is configured to determine measured and reference signals in an STFT domain. For instance, the system may determine a measured signal based on the captured audio and a reference signal based on the output signal from the audio stage of the playback device.


Determining the measured signal may involve processing and/or conditioning of the captured audio prior to acoustic echo cancellation. As described above in reference to FIGS. 8A and 8B, acoustic echo cancellation in the STFT domain may occur on a frame-by-frame basis, with each frame including a series of samples (e.g., 16 ms of samples). As such the measured signal may include a series of frames representing the captured audio within the acoustic environment. Frames of the captured audio may be pre-processed (e.g., as described with respect to block 870a of FIG. 8A) and then converted into the STFT domain (e.g., as described with respect to block 871a of FIG. 8A) to yield a measured signal for input to an AEC (e.g., AEC 554).


Determining the reference signal may involve similarly involve processing and/or conditioning prior to AEC. Like the measured signal, the output signal from the audio stage may be divided into a series of frames representing portions of a reference signal. Frames of the output signal may be pre-processed (e.g., as described with respect to block 870b of FIG. 8A) and then converted into the STFT domain (e.g., as described with respect to block 871a of FIG. 8A) to yield a reference signal for input to an AEC (e.g., AEC 554).


e. Determine Frames of Output Signal

At block 910, the implementation 900 is configured to determine frames of an output signal from an AEC. In some embodiments, for example, the implementation 900 comprises an AEC (such as the AEC 554 of FIGS. 8A and 8B) configured to determine frames of an output signal during each iteration of the AEC. As described above with respect to FIG. 8A, during each nth iteration of AEC 554, an nth frame of the reference signal through an nth instance of adaptive filter 872 yielding an nth frame of a model signal. Then the nth frame of the output signal is generated by redacting the nth frame of the model signal from the nth frame of the measured signal (e.g., using redaction function 808).


As further described above, an output signal e[m] can be defined in example implementations as

e[m]=y[m]−{circumflex over (d)}[m]=y[m]−Σi=0M-1Ĥi[m−1]x[m−i],

where the reference signal x[m]=F(wA ∘[x[mR], . . . , x[mR+N−1]]T) and the measured signal y[m]=F(wA∘[y[mR], . . . , y[mR+N−1]]T.


f. Update Adaptive Filter During Each Iteration of AEC

At block 912, the implementation 900 is configured to update the adaptive filter during one or more iterations of the AEC as described, for example, with reference to AEC 554 in FIG. 8A. Recall that, during each nth iteration, an nth update matrix is determined based on a “true” error signal representing a difference between the nth frame of the model signal and the nth frame of the reference signal less audio signals representing sound from sources other than an nth frame of the audio signals representing sound produced by the one or more speakers in playing back the nth frame of the reference signal. This error signal can be referred to as the true error signal and can be determined using an ERN function that limits the error signal to a threshold magnitude, as described with respect to block 876 in FIG. 8A. The n+1th instance of the adaptive filter for the next iteration of the AEC 554 is generated by summing the nth instance of the adaptive filter with the nth update filter.


In an effort to increase robustness of the AEC 554 in view of significant noise, the adaptive filter may adapt according to a NMLS algorithm. Under such an algorithm, the true error signal may be normalized according to the power of the input (e.g., the reference signal), as described in block 877 of FIG. 8A. Further, AEC 554 may apply a sparse partition criterion that deactivates inactive portions of the adaptive filter (e.g., zeroes out frequency bands of the NMLS having less than a threshold energy), as described in block 879 for instance. Further, AEC 554 may apply a frequency-dependent regularization parameter to adapt an NMLS learning rate of change between AEC iterations according to a magnitude of the measured signal, as described in block 878 of FIG. 8A.


Given such features, the AEC may convert the sparse NMLS of the nth frame of the error signal to the nth update filter. Such conversion may involve converting the sparse NMLS of the nth frame to a matrix of filter coefficients and cross-band filtering the matrix of filter coefficients to generate the nth update filter, as described with respect to block 878 of FIG. 8A.


g. Send Output Signal as Voice Input to Voice Service(s) for Processing

At block 914, the implementation 900 is configured to send the output signal as a voice input to one or more voice services for processing of the voice input. In some embodiments, the implementation 900 processes the output signal as a voice input as described with respect to FIGS. 5A and 5B. Such processing may involve detecting one or more wake words and one or more utterances. Further, such processing may involve voice-to-speech conversion of the voice utterances, and transmitting the voice utterances to a voice assistant services with a respect to process the utterance as a voice input. Such transmitting may occur via a network interface, such as network interface 230.


V. Conclusion

The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. In one embodiment, for example, a playback device (playback device 102) and/or a network microphone device (network microphone device 103) is configured to perform acoustic echo cancellation in an acoustic environment (e.g., via implementation 900). It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.


(Feature 1) A method to be performed by a system, the method comprising causing, via an audio stage, the one or more speakers to play back audio content; while audio content is playing back via the one or more speakers, capturing, via the one or more microphones, audio within an acoustic environment, wherein the captured audio comprises audio signals representing sound produced by the one or more speakers in playing back the audio content; receiving an output signal from the audio stage representing the audio content being played back by the one or more speakers; determining a measured signal comprising a series of frames representing the captured audio within the acoustic environment by transforming into a short time Fourier transform (STFT) domain the captured audio within the acoustic environment; determining a reference signal comprising a series of frames representing the audio content being played back via the one or more speakers by transforming into the STFT domain the received output signal from the audio stage; during each nth iteration of an acoustic echo canceller (AEC): determining an nth frame of an output signal, wherein determining the nth frame of the output signal comprises: generating an nth frame of a model signal by passing an nth frame of the reference signal through an nth instance of an adaptive filter, wherein the first instance of the adaptive filter is an initial filter; and generating the nth frame of the output signal by redacting the nth frame of the model signal from an nth frame of the measured signal; determining a n+1th instance of the adaptive filter for a next iteration of the AEC, wherein determining the n+1th instance of the adaptive filter for the next iteration of the AEC comprises: determining an nth frame of an error signal, the nth frame of the error signal representing a difference between the nth frame of the model signal and the nth frame of the reference signal less audio signals representing sound from sources other than an nth frame of the audio signals representing sound produced by the one or more speakers in playing back the nth frame of the reference signal; determining a normalized least mean square (NMLS) of the nth frame of the error signal; determining a sparse NMLS of the nth frame of the error signal by applying to the NMLS of the nth frame of the error signal, a sparse partition criterion that zeroes out frequency bands of the NMLS having less than a threshold energy; converting the sparse NMLS of the nth frame of the error signal to an nth update filter; and generating the n+1th instance of the adaptive filter for the next iteration of the AEC by summing the nth instance of the adaptive filter with the nth update filter; and sending the output signal as a voice input to one or more voice services for processing of the voice input.


(Feature 2) The method of feature 1, further comprising before determining the NMLS of the nth frame of the error signal, applying an error recovery non-linearity function to the error signal to limit the error signal to a threshold magnitude, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises determining the NMLS of the nth frame of the limited error signal.


(Feature 3) The method of feature 2, wherein the error recovery non-linearity function comprises a non-linear clipping function that limits portions of the error signal that are above the threshold magnitude to the threshold magnitude.


(Feature 4) The method of feature 1, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises: applying a frequency-dependent regularization parameter to adapt an NMLS learning rate of change between AEC iterations according to a magnitude of the measured signal.


(Feature 5) The method of feature 1, wherein converting the sparse NMLS of the nth frame of the error signal to the nth update filter comprises: converting the sparse NMLS of the nth frame to a matrix of filter coefficients; and cross-band filtering the matrix of filter coefficients to generate the nth update filter.


(Feature 6) The method of feature 1, wherein the system excludes a double-talk detector that disables the AEC when a double-talk condition is detected, wherein capturing audio within the acoustic environment comprises capturing audio signals representing sound produced by two or more voices.


(Feature 7) The method of feature 1, wherein the system comprises a playback device comprising a first network interface and the one or more speakers; and a networked-microphone device comprising a second network interface, the one or more microphones, the one or more processors, and the data storage storing instructions executable by the one or more processors, wherein the first network interface and the second network interface are configured to communicatively couple the playback device and the networked-microphone device.


(Feature 8) The method of feature 1, wherein the system comprises a playback device comprising a housing configured to house the one or more speakers and the one or more microphones.


(Feature 9) A tangible, non-transitory computer-readable medium having stored therein instructions executable by one or more processors to cause a device to perform the method of any of features 1-8.


(Feature 10) A device configured to perform the method of any of features 1-8.


(Feature 11) A media playback system configured to perform the method of any of features 1-8.


The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.


When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.

Claims
  • 1. A playback device comprising: an audio input interface;an audio stage comprising an audio processor and an audio amplifier;one or more speakers;one or more microphones;at least one processor; anddata storage storing program instructions that are executable by the at least one processor to cause the playback device to perform functions comprising: receiving, via the audio input interface, one or more audio signals;playing back at least one audio signal of the one or more audio signals via the one or more speakers and the audio stage;while playing back the at least one audio signal, capturing, via the one or more microphones, audio within an acoustic environment, wherein at least a portion of the captured audio represents sound produced by the one or more speakers in playing back the at least one audio signal via the one or more speakers;receiving at least one playback signal from the audio stage representing the at least one audio signal being played back by the one or more speakers and the audio stage;transforming into a short time Fourier transform (STFT) domain the captured audio within the acoustic environment to generate a measured signal representing actual acoustic echo;transforming into the STFT domain the received playback signal from the audio stage to generate a reference signal;during each nth iteration of an acoustic echo canceller (AEC): determining an nth frame of an output signal, wherein determining the nth frame of the output signal comprises: (i) generating an nth frame of a model signal representing estimated acoustic echo by passing an nth frame of the reference signal through an nth instance of an adaptive filter; and(ii) generating the nth frame of the output signal by differencing the nth frame of the model signal and an nth frame of the measured signal;determining a n+1th instance of the adaptive filter for a next iteration of the AEC, wherein determining the n+1th instance of the adaptive filter for the next iteration of the AEC comprises: (i) estimating an nth frame of an error signal, the nth frame of the error signal representing a difference between the nth frame of the measured signal and the nth frame of the model signal;(ii) converting the nth frame of an error signal to an nth update filter;(iii) deactivating inactive portions of the nth update filter, the inactive portions having less than a threshold energy;(iv) generating the n+1th instance of the adaptive filter for the next iteration of the AEC by summing the nth instance of the adaptive filter with the nth update filter; andsending the output signal as a voice input to one or more voice assistants for processing of the voice input.
  • 2. The playback device of claim 1, wherein the at least one audio signal of the one or more audio signals comprises one or more first channels of multi-channel audio content, wherein the one or more audio signals comprises one or more second channels of the multi-channel audio content, wherein the playback device comprises a network interface, wherein the playback device is a group coordinator of a bonded zone that includes one or more additional playback devices, and wherein the data storage further comprises program instructions that are executable by the at least one processor such that the playback device is configured to perform functions further comprising: sending, via the network interface, data representing the one or more second channels of the multi-channel audio content to the one or more additional playback devices; and wherein playing back the at least one audio signal comprises playing back the one or more first channels of the multi-channel audio content in synchrony with playback of the one or more second channels of the multi-channel audio content by the one or more additional playback devices.
  • 3. The playback device of claim 1, wherein playing back the at least one audio signal comprises program instructions that are executable by the at least one processor such that the playback device is configured to: receive, via the audio input interface, the one or more audio signals from a television.
  • 4. The playback device of claim 1, wherein converting the nth frame of an error signal to the nth update filter comprises determining a normalized least mean square (NMLS) of the nth frame of the error signal, and wherein deactivating inactive portions of the nth update filter comprises determining a sparse NMLS of the nth frame of the error signal by applying to the NMLS of the nth frame of the error signal, a sparse partition criterion that zeroes out frequency bands of the NMLS having less than the threshold energy.
  • 5. The playback device of claim 4, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises applying a frequency-dependent regularization parameter to adapt an NMLS learning rate of change between AEC iterations according to a magnitude of the measured signal.
  • 6. The playback device of claim 4, wherein converting the sparse NMLS of the nth frame of the error signal to the nth update filter comprises: converting the sparse NMLS of the nth frame to a matrix of filter coefficients; andcross-band filtering the matrix of filter coefficients to generate the nth update filter.
  • 7. The playback device of claim 4, wherein the data storage further comprises program instructions that are executable by the at least one processor such that the playback device is configured to perform functions further comprising: before determining the NMLS of the nth frame of the error signal, applying an error recovery non-linearity function to the error signal to limit the error signal to a threshold magnitude, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises determining the NMLS of the nth frame of the limited error signal.
  • 8. The playback device of claim 7, wherein the error recovery non-linearity function comprises a non-linear clipping function that limits portions of the error signal that are above the threshold magnitude to the threshold magnitude.
  • 9. The playback device of claim 1, excluding a double-talk detector that disables the AEC when a double-talk condition is detected, wherein capturing audio within the acoustic environment comprises capturing audio signals representing sound produced by two or more voices.
  • 10. A system comprising: a playback device comprising an audio input interface, one or more speakers, and an audio stage comprising an audio processor and an audio amplifier;one or more microphones;at least one processor; anddata storage storing program instructions that are executable by the at least one processor to cause the system to perform functions comprising: receiving, via the audio input interface, one or more audio signals;playing back at least one audio signal of the one or more audio signals via the one or more speakers and the audio stage;while playing back the at least one audio signal, capturing, via the one or more microphones, audio within an acoustic environment, wherein at least a portion of the captured audio represents sound produced by the one or more speakers in playing back the at least one audio signal via the one or more speakers;receiving at least one playback signal from the audio stage representing the at least one audio signal being played back by the one or more speakers and the audio stage;transforming into a short time Fourier transform (STFT) domain the captured audio within the acoustic environment to generate a measured signal representing actual acoustic echo;transforming into the STFT domain the received playback signal from the audio stage to generate a reference signal;during each nth iteration of an acoustic echo canceller (AEC): determining an nth frame of an output signal, wherein determining the nth frame of the output signal comprises: (i) generating an nth frame of a model signal representing estimated acoustic echo by passing an nth frame of the reference signal through an nth instance of an adaptive filter; and(ii) generating the nth frame of the output signal by differencing the nth frame of the model signal and an nth frame of the measured signal;determining a n+1th instance of the adaptive filter for a next iteration of the AEC, wherein determining the n+1th instance of the adaptive filter for the next iteration of the AEC comprises: (i) estimating an nth frame of an error signal, the nth frame of the error signal representing a difference between the nth frame of the measured signal and the nth frame of the model signal;(ii) converting the nth frame of an error signal to an nth update filter;(iii) deactivating inactive portions of the nth update filter, the inactive portions having less than a threshold energy;(iv) generating the n+1th instance of the adaptive filter for the next iteration of the AEC by summing the nth instance of the adaptive filter with the nth update filter; andsending the output signal as a voice input to one or more voice assistants for processing of the voice input.
  • 11. The system of claim 10, wherein the at least one audio signal of the one or more audio signals comprises one or more first channels of multi-channel audio content, wherein the one or more audio signals comprises one or more second channels of the multi-channel audio content, wherein the system comprises a network interface, wherein the system is a group coordinator of a bonded zone that includes one or more additional playback devices, and wherein the data storage further comprises program instructions that are executable by the at least one processor such that the system is configured to perform functions further comprising: sending, via the network interface, data representing the one or more second channels of the multi-channel audio content to the one or more additional playback devices wherein playing back the at least one audio signal comprises playing back the one or more first channels of multi-channel audio content in synchrony with playback of the one or more second channels of the multi-channel audio content by the one or more additional playback devices.
  • 12. The system of claim 10, wherein playing back the at least one audio signal comprises: receiving, via the audio input interface, the one or more audio signals from a television.
  • 13. The system of claim 10, wherein converting the nth frame of an error signal to the nth update filter comprises determining a normalized least mean square (NMLS) of the nth frame of the error signal, and wherein deactivating inactive portions of the nth update filter comprises determining a sparse NMLS of the nth frame of the error signal by applying to the NMLS of the nth frame of the error signal, a sparse partition criterion that zeroes out frequency bands of the NMLS having less than the threshold energy.
  • 14. The system of claim 13, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises applying a frequency-dependent regularization parameter to adapt an NMLS learning rate of change between AEC iterations according to a magnitude of the measured signal.
  • 15. The system of claim 13, wherein converting the sparse NMLS of the nth frame of the error signal to the nth update filter comprises: converting the sparse NMLS of the nth frame to a matrix of filter coefficients; andcross-band filtering the matrix of filter coefficients to generate the nth update filter.
  • 16. The system of claim 13, wherein the data storage further comprises program instructions that are executable by the at least one processor such that the system is configured to perform functions further comprising: before determination of the NMLS of the nth frame of the error signal, applying an error recovery non-linearity function to the error signal to limit the error signal to a threshold magnitude, wherein determining the normalized least mean square (NMLS) of the nth frame of the error signal comprises determining the NMLS of the nth frame of the limited error signal.
  • 17. The system of claim 16, wherein the error recovery non-linearity function comprises a non-linear clipping function that limits portions of the error signal that are above the threshold magnitude to the threshold magnitude.
  • 18. The system of claim 13, excluding a double-talk detector that disables the AEC when a double-talk condition is detected, wherein capturing audio within the acoustic environment comprises capturing audio signals representing sound produced by two or more voices.
  • 19. The system of claim 10, wherein the playback device comprises a first network interface, wherein the system further comprises a networked-microphone device comprising a second network interface, the one or more microphones, the at least one processor, and the at least one non-transitory computer-readable medium, and wherein the first network interface and the second network interface are configured to communicatively couple the playback device and the networked-microphone device.
  • 20. A method comprising: receiving, via an audio input interface of a playback device, one or more audio signals;playing back at least one audio signal of the one or more audio signals via one or more speakers and an audio stage comprising an audio processor and an audio amplifier;while playing back the at least one audio signal, capturing, via one or more microphones, audio within an acoustic environment, wherein at least a portion of the captured audio represents sound produced by the one or more speakers in playing back the at least one audio signal via the one or more speakers;receiving at least one playback signal from the audio stage representing the at least one audio signal being played back by the one or more speakers and the audio stage;transforming into a short time Fourier transform (STFT) domain the captured audio within the acoustic environment to generate a measured signal representing actual acoustic echo;transforming into the STFT domain the received playback signal from the audio stage to generate a reference signal;during each nth iteration of an acoustic echo canceller (AEC): determining an nth frame of an output signal, wherein determining the nth frame of the output signal comprises: (i) generating an nth frame of a model signal representing estimated acoustic echo by passing an nth frame of the reference signal through an nth instance of an adaptive filter; and(ii) generating the nth frame of the output signal by differencing the nth frame of the model signal and an nth frame of the measured signal;determining a n+1th instance of the adaptive filter for a next iteration of the AEC, wherein determining the n+1th instance of the adaptive filter for the next iteration of the AEC comprises: (i) estimating an nth frame of an error signal, the nth frame of the error signal representing a difference between the nth frame of the measured signal and the nth frame of the model signal;(ii) converting the nth frame of an error signal to an nth update filter;(iii) deactivating inactive portions of the nth update filter, the inactive portions having less than a threshold energy;(iv) generating the n+1th instance of the adaptive filter for the next iteration of the AEC by summing the nth instance of the adaptive filter with the nth update filter; andsending the output signal as a voice input to one or more voice assistants for processing of the voice input.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 16/600,644, filed on Oct. 14, 2019, entitled “Robust Short-Time Fourier Transform Acoustic Echo Cancellation During Audio Playback,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 16/600,644 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/717,621, filed on Sep. 27, 2017, entitled “Robust Short-Time Fourier Transform Acoustic Echo Cancellation During Audio Playback,” and issued as U.S. Pat. No. 10,466,165 on Oct. 15, 2019, which is incorporated herein by reference in its entirety.

US Referenced Citations (1105)
Number Name Date Kind
4741038 Elko et al. Apr 1988 A
4941187 Slater Jul 1990 A
4974213 Siwecki Nov 1990 A
5036538 Oken et al. Jul 1991 A
5440644 Farinelli et al. Aug 1995 A
5588065 Tanaka et al. Dec 1996 A
5717768 Laroche Feb 1998 A
5740260 Odom Apr 1998 A
5761320 Farinelli et al. Jun 1998 A
5923902 Inagaki Jul 1999 A
5949414 Namikata et al. Sep 1999 A
6032202 Lea et al. Feb 2000 A
6088459 Hobelsberger Jul 2000 A
6256554 DiLorenzo Jul 2001 B1
6301603 Maher et al. Oct 2001 B1
6311157 Strong Oct 2001 B1
6366886 Dragosh et al. Apr 2002 B1
6404811 Cvetko et al. Jun 2002 B1
6408078 Hobelsberger Jun 2002 B1
6469633 Wachter Oct 2002 B1
6522886 Youngs et al. Feb 2003 B1
6594347 Calder et al. Jul 2003 B1
6594630 Zlokarnik et al. Jul 2003 B1
6611537 Edens et al. Aug 2003 B1
6611604 Irby et al. Aug 2003 B1
6631410 Kowalski et al. Oct 2003 B1
6757517 Chang Jun 2004 B2
6778869 Champion Aug 2004 B2
6937977 Gerson Aug 2005 B2
7099821 Visser et al. Aug 2006 B2
7103542 Doyle Sep 2006 B2
7130608 Hollstrom et al. Oct 2006 B2
7130616 Janik Oct 2006 B2
7143939 Henzerling Dec 2006 B2
7174299 Fujii et al. Feb 2007 B2
7228275 Endo et al. Jun 2007 B1
7236773 Thomas Jun 2007 B2
7295548 Blank et al. Nov 2007 B2
7356471 Ito et al. Apr 2008 B2
7383297 Atsmon et al. Jun 2008 B1
7391791 Balassanian et al. Jun 2008 B2
7483538 McCarty et al. Jan 2009 B2
7571014 Lambourne et al. Aug 2009 B1
7577757 Carter et al. Aug 2009 B2
7630501 Blank et al. Dec 2009 B2
7643894 Braithwaite et al. Jan 2010 B2
7657910 McAulay et al. Feb 2010 B1
7661107 Van et al. Feb 2010 B1
7702508 Bennett Apr 2010 B2
7705565 Patino et al. Apr 2010 B2
7792311 Holmgren et al. Sep 2010 B1
7853341 McCarty et al. Dec 2010 B2
7961892 Fedigan Jun 2011 B2
7987294 Bryce et al. Jul 2011 B2
8014423 Thaler et al. Sep 2011 B2
8019076 Lambert Sep 2011 B1
8032383 Bhardwaj et al. Oct 2011 B1
8041565 Bhardwaj et al. Oct 2011 B1
8045952 Qureshey et al. Oct 2011 B2
8073125 Zhang et al. Dec 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8085947 Haulick et al. Dec 2011 B2
8103009 McCarty et al. Jan 2012 B2
8136040 Fleming Mar 2012 B2
8165867 Fish Apr 2012 B1
8233632 MacDonald et al. Jul 2012 B1
8234395 Millington Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8255224 Singleton et al. Aug 2012 B2
8284982 Bailey Oct 2012 B2
8290603 Lambourne Oct 2012 B1
8325909 Tashev Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8364481 Strope et al. Jan 2013 B2
8385557 Tashev Feb 2013 B2
8386261 Mellott et al. Feb 2013 B2
8386523 Mody et al. Feb 2013 B2
8423893 Ramsay et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8453058 Coccaro et al. May 2013 B1
8473618 Spear et al. Jun 2013 B2
8483853 Lambourne Jul 2013 B1
8484025 Moreno et al. Jul 2013 B1
8588849 Patterson et al. Nov 2013 B2
8594320 Faller Nov 2013 B2
8600443 Kawaguchi et al. Dec 2013 B2
8620232 Helsloot Dec 2013 B2
8710970 Oelrich et al. Apr 2014 B2
8719039 Sharifi May 2014 B1
8738925 Park et al. May 2014 B1
8775191 Sharifi et al. Jul 2014 B1
8831761 Kemp et al. Sep 2014 B2
8831957 Taubman et al. Sep 2014 B2
8848879 Coughlan et al. Sep 2014 B1
8861756 Zhu et al. Oct 2014 B2
8874448 Kauffmann et al. Oct 2014 B1
8938394 Faaborg et al. Jan 2015 B1
8942252 Balassanian et al. Jan 2015 B2
8983383 Haskin Mar 2015 B1
8983844 Thomas et al. Mar 2015 B1
9002024 Nakadai Apr 2015 B2
9015049 Baldwin et al. Apr 2015 B2
9042556 Kallai et al. May 2015 B2
9060224 List Jun 2015 B1
9088336 Mani Jul 2015 B2
9094539 Noble Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9124650 Maharajh et al. Sep 2015 B2
9124711 Park et al. Sep 2015 B2
9148742 Koulomzin et al. Sep 2015 B1
9190043 Krisch et al. Nov 2015 B2
9208785 Ben-David et al. Dec 2015 B2
9215545 Dublin et al. Dec 2015 B2
9245527 Lindahl Jan 2016 B2
9251793 Lebeau et al. Feb 2016 B2
9253572 Beddingfield, Sr. et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263042 Sharifi Feb 2016 B1
9275637 Salvador et al. Mar 2016 B1
9288597 Carlsson et al. Mar 2016 B2
9300266 Grokop Mar 2016 B2
9304736 Whiteley et al. Apr 2016 B1
9307321 Unruh Apr 2016 B1
9318107 Sharifi Apr 2016 B1
9319816 Narayanan Apr 2016 B1
9324322 Torok et al. Apr 2016 B1
9335819 Jaeger et al. May 2016 B1
9354687 Bansal et al. May 2016 B2
9361878 Boukadakis Jun 2016 B2
9361885 Ganong, III et al. Jun 2016 B2
9368105 Freed et al. Jun 2016 B1
9373329 Strope et al. Jun 2016 B2
9374634 Macours Jun 2016 B2
9386154 Baciu et al. Jul 2016 B2
9390708 Hoffmeister Jul 2016 B1
9401058 De La Fuente et al. Jul 2016 B2
9412392 Lindahl et al. Aug 2016 B2
9426567 Lee et al. Aug 2016 B2
9431021 Scalise et al. Aug 2016 B1
9443516 Katuri et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9472201 Sleator Oct 2016 B1
9472203 Ayrapetian et al. Oct 2016 B1
9484030 Meaney et al. Nov 2016 B1
9489948 Chu et al. Nov 2016 B1
9494683 Sadek Nov 2016 B1
9509269 Rosenberg Nov 2016 B1
9510101 Polleros Nov 2016 B1
9514476 Kay et al. Dec 2016 B2
9514752 Sharifi Dec 2016 B2
9516081 Tebbs et al. Dec 2016 B2
9532139 Lu et al. Dec 2016 B1
9536541 Chen et al. Jan 2017 B2
9548053 Basye et al. Jan 2017 B1
9548066 Jain et al. Jan 2017 B2
9552816 Vanlund et al. Jan 2017 B2
9554210 Ayrapetian et al. Jan 2017 B1
9558755 Laroche et al. Jan 2017 B1
9560441 McDonough, Jr. et al. Jan 2017 B1
9576591 Kim et al. Feb 2017 B2
9601116 Casado et al. Mar 2017 B2
9615170 Kirsch et al. Apr 2017 B2
9615171 O'Neill et al. Apr 2017 B1
9626695 Balasubramanian et al. Apr 2017 B2
9632748 Faaborg et al. Apr 2017 B2
9633186 Ingrassia, Jr. et al. Apr 2017 B2
9633368 Greenzeiger et al. Apr 2017 B2
9633660 Haughay et al. Apr 2017 B2
9633661 Typrin et al. Apr 2017 B1
9633671 Giacobello et al. Apr 2017 B2
9633674 Sinha et al. Apr 2017 B2
9640179 Hart et al. May 2017 B1
9640183 Jung et al. May 2017 B2
9640194 Nemala et al. May 2017 B1
9641919 Poole et al. May 2017 B1
9646614 Bellegarda et al. May 2017 B2
9648564 Cui et al. May 2017 B1
9653060 Hilmes et al. May 2017 B1
9653075 Chen et al. May 2017 B1
9659555 Hilmes et al. May 2017 B1
9672821 Krishnaswamy et al. Jun 2017 B2
9674587 Triplett et al. Jun 2017 B2
9685171 Yang Jun 2017 B1
9691378 Meyers et al. Jun 2017 B1
9691379 Mathias et al. Jun 2017 B1
9697826 Sainath et al. Jul 2017 B2
9697828 Prasad et al. Jul 2017 B1
9698999 Mutagi et al. Jul 2017 B2
9704478 Vitaladevuni et al. Jul 2017 B1
9706320 Starobin et al. Jul 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9721568 Polansky et al. Aug 2017 B1
9721570 Beal et al. Aug 2017 B1
9728188 Rosen et al. Aug 2017 B1
9734822 Sundaram et al. Aug 2017 B1
9736578 Iyengar et al. Aug 2017 B2
9743204 Welch et al. Aug 2017 B1
9743207 Hartung Aug 2017 B1
9747011 Lewis et al. Aug 2017 B2
9747899 Pogue et al. Aug 2017 B2
9747920 Ayrapetian et al. Aug 2017 B2
9747926 Sharifi et al. Aug 2017 B2
9749738 Adsumilli et al. Aug 2017 B1
9749760 Lambourne Aug 2017 B2
9754605 Chhetri Sep 2017 B1
9756422 Paquier et al. Sep 2017 B2
9762967 Clarke et al. Sep 2017 B2
9767786 Starobin et al. Sep 2017 B2
9769420 Moses Sep 2017 B1
9779725 Sun et al. Oct 2017 B2
9779732 Lee et al. Oct 2017 B2
9779734 Lee Oct 2017 B2
9779735 Civelli et al. Oct 2017 B2
9805733 Park Oct 2017 B2
9811314 Plagge et al. Nov 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813810 Nongpiur Nov 2017 B1
9813812 Berthelsen et al. Nov 2017 B2
9818407 Secker-Walker et al. Nov 2017 B1
9820036 Tritschler et al. Nov 2017 B1
9820039 Lang Nov 2017 B2
9826306 Lang Nov 2017 B2
9865259 Typrin et al. Jan 2018 B1
9865264 Gelfenbeyn Jan 2018 B2
9875740 Kumar et al. Jan 2018 B1
9881616 Beckley et al. Jan 2018 B2
9898250 Williams et al. Feb 2018 B1
9899021 Vitaladevuni et al. Feb 2018 B1
9900723 Choisel et al. Feb 2018 B1
9916839 Scalise et al. Mar 2018 B1
9947316 Millington et al. Apr 2018 B2
9947333 David Apr 2018 B1
9972318 Kelly et al. May 2018 B1
9972343 Thorson et al. May 2018 B1
9973849 Zhang et al. May 2018 B1
9979560 Kim et al. May 2018 B2
9992642 Rapp et al. Jun 2018 B1
9997151 Ayrapetian Jun 2018 B1
10013381 Mayman et al. Jul 2018 B2
10013995 Lashkari et al. Jul 2018 B1
10025447 Dixit et al. Jul 2018 B1
10026401 Mutagi et al. Jul 2018 B1
10028069 Lang Jul 2018 B1
10048930 Vega et al. Aug 2018 B1
10049675 Haughay Aug 2018 B2
10051366 Buoni et al. Aug 2018 B1
10051600 Zhong et al. Aug 2018 B1
10057698 Drinkwater et al. Aug 2018 B2
RE47049 Zhu et al. Sep 2018 E
10068573 Aykac et al. Sep 2018 B1
10074369 Devaraj et al. Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10079015 Lockhart et al. Sep 2018 B1
10089981 Elangovan et al. Oct 2018 B1
10108393 Millington et al. Oct 2018 B2
10115400 Wilberding Oct 2018 B2
10116748 Farmer et al. Oct 2018 B2
10127911 Kim et al. Nov 2018 B2
10134388 Lilly Nov 2018 B1
10134398 Sharifi Nov 2018 B2
10134399 Lang et al. Nov 2018 B2
10136204 Poole et al. Nov 2018 B1
10152969 Reilly et al. Dec 2018 B2
10181323 Beckhardt et al. Jan 2019 B2
10186265 Lockhart et al. Jan 2019 B1
10186266 Devaraj et al. Jan 2019 B1
10186276 Dewasurendra et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10224056 Torok et al. Mar 2019 B1
10225651 Lang Mar 2019 B2
10229680 Gillespie et al. Mar 2019 B1
10241754 Kadarundalagi Raghuram Doss et al. Mar 2019 B1
10248376 Keyser-Allen et al. Apr 2019 B2
10276161 Hughes et al. Apr 2019 B2
10297256 Reilly et al. May 2019 B2
10318236 Pal et al. Jun 2019 B1
10339917 Aleksic et al. Jul 2019 B2
10339957 Chenier et al. Jul 2019 B1
10346122 Morgan Jul 2019 B1
10354650 Gruenstein et al. Jul 2019 B2
10354658 Wilberding Jul 2019 B2
10365887 Mulherkar Jul 2019 B1
10365889 Plagge et al. Jul 2019 B2
10366688 Gunn et al. Jul 2019 B2
10366699 Dharia et al. Jul 2019 B1
10374816 Leblang et al. Aug 2019 B1
10381001 Gunn et al. Aug 2019 B2
10381002 Gunn et al. Aug 2019 B2
10381003 Wakisaka et al. Aug 2019 B2
10388272 Thomson et al. Aug 2019 B1
10424296 Penilla et al. Sep 2019 B2
10433058 Torgerson et al. Oct 2019 B1
10445057 Vega et al. Oct 2019 B2
10445365 Luke et al. Oct 2019 B2
10469966 Lambourne Nov 2019 B2
10499146 Lang et al. Dec 2019 B2
10510340 Fu et al. Dec 2019 B1
10511904 Buoni et al. Dec 2019 B2
10515625 Metallinou et al. Dec 2019 B1
10522146 Tushinskiy Dec 2019 B1
10546583 White et al. Jan 2020 B2
10565998 Wilberding Feb 2020 B2
10573312 Thomson et al. Feb 2020 B1
10573321 Smith et al. Feb 2020 B1
10580405 Wang et al. Mar 2020 B1
10586540 Smith et al. Mar 2020 B1
10593328 Wang et al. Mar 2020 B1
10593330 Sharifi Mar 2020 B2
10599287 Kumar et al. Mar 2020 B2
10600406 Shapiro et al. Mar 2020 B1
10602268 Soto Mar 2020 B1
10614807 Beckhardt et al. Apr 2020 B2
10621981 Sereshki Apr 2020 B2
10622009 Zhang et al. Apr 2020 B1
10623811 Cwik Apr 2020 B1
10624612 Sumi et al. Apr 2020 B2
10643609 Pogue et al. May 2020 B1
10645130 Corbin et al. May 2020 B2
10672383 Thomson et al. Jun 2020 B1
10679625 Lockhart et al. Jun 2020 B1
10681460 Woo et al. Jun 2020 B2
10685669 Lan et al. Jun 2020 B1
10694608 Baker et al. Jun 2020 B2
10699711 Reilly Jun 2020 B2
10706843 Elangovan et al. Jul 2020 B1
10712997 Wilberding et al. Jul 2020 B2
10728196 Wang Jul 2020 B2
10740065 Jarvis et al. Aug 2020 B2
10748531 Kim Aug 2020 B2
10762896 Yavagal et al. Sep 2020 B1
10777189 Fu et al. Sep 2020 B1
10777203 Pasko Sep 2020 B1
10797667 Fish et al. Oct 2020 B2
10824682 Alvares et al. Nov 2020 B2
10825471 Walley et al. Nov 2020 B2
10837667 Nelson et al. Nov 2020 B2
10847143 Millington et al. Nov 2020 B2
10847149 Mok et al. Nov 2020 B1
10848885 Lambourne Nov 2020 B2
RE48371 Zhu et al. Dec 2020 E
10867596 Yoneda et al. Dec 2020 B2
10867604 Smith et al. Dec 2020 B2
10871943 D'Amato et al. Dec 2020 B1
10878811 Smith et al. Dec 2020 B2
10878826 Li et al. Dec 2020 B2
10897679 Lambourne Jan 2021 B2
10911596 Do et al. Feb 2021 B1
10943598 Singh et al. Mar 2021 B2
10964314 Jazi et al. Mar 2021 B2
10971158 Patangay et al. Apr 2021 B1
11024311 Mixter et al. Jun 2021 B2
11050615 Mathews et al. Jun 2021 B2
11100923 Fainberg et al. Aug 2021 B2
11127405 Antos et al. Sep 2021 B1
11172328 Soto et al. Nov 2021 B2
11172329 Soto et al. Nov 2021 B2
11184704 Jarvis et al. Nov 2021 B2
11206052 Park et al. Dec 2021 B1
11212612 Lang et al. Dec 2021 B2
11264019 Bhattacharya et al. Mar 2022 B2
11277512 Leeds et al. Mar 2022 B1
11315556 Smith et al. Apr 2022 B2
11354092 D'Amato et al. Jun 2022 B2
11411763 Mackay et al. Aug 2022 B2
11445301 Park et al. Sep 2022 B2
20010003173 Lim Jun 2001 A1
20010042107 Palm Nov 2001 A1
20020022453 Balog et al. Feb 2002 A1
20020026442 Lipscomb et al. Feb 2002 A1
20020034280 Infosino Mar 2002 A1
20020046023 Fujii et al. Apr 2002 A1
20020054685 Avendano May 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020116196 Tran Aug 2002 A1
20020124097 Isely et al. Sep 2002 A1
20030015354 Edwards et al. Jan 2003 A1
20030038848 Lee et al. Feb 2003 A1
20030040908 Yang et al. Feb 2003 A1
20030070182 Pierre et al. Apr 2003 A1
20030070869 Hlibowicki Apr 2003 A1
20030072462 Hlibowicki Apr 2003 A1
20030095672 Hobelsberger May 2003 A1
20030130850 Badt et al. Jul 2003 A1
20030157951 Hasty, Jr. Aug 2003 A1
20030235244 Pessoa et al. Dec 2003 A1
20040024478 Hans et al. Feb 2004 A1
20040093219 Shin et al. May 2004 A1
20040105566 Matsunaga et al. Jun 2004 A1
20040127241 Shostak Jul 2004 A1
20040128135 Anastasakos et al. Jul 2004 A1
20040161082 Brown et al. Aug 2004 A1
20040234088 McCarty et al. Nov 2004 A1
20050031131 Browning et al. Feb 2005 A1
20050031132 Browning et al. Feb 2005 A1
20050031133 Browning et al. Feb 2005 A1
20050031134 Leske Feb 2005 A1
20050031137 Browning et al. Feb 2005 A1
20050031138 Browning et al. Feb 2005 A1
20050031139 Browning et al. Feb 2005 A1
20050031140 Browning Feb 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050047606 Lee et al. Mar 2005 A1
20050077843 Benditt Apr 2005 A1
20050164664 DiFonzo et al. Jul 2005 A1
20050195988 Tashev et al. Sep 2005 A1
20050201254 Looney et al. Sep 2005 A1
20050207584 Bright Sep 2005 A1
20050235334 Togashi et al. Oct 2005 A1
20050254662 Blank et al. Nov 2005 A1
20050268234 Rossi et al. Dec 2005 A1
20050283330 Laraia et al. Dec 2005 A1
20050283475 Beranek et al. Dec 2005 A1
20060004834 Pyhalammi et al. Jan 2006 A1
20060023945 King et al. Feb 2006 A1
20060041431 Maes Feb 2006 A1
20060093128 Oxford May 2006 A1
20060104451 Browning et al. May 2006 A1
20060147058 Wang Jul 2006 A1
20060190269 Tessel et al. Aug 2006 A1
20060190968 Jung et al. Aug 2006 A1
20060247913 Huerta et al. Nov 2006 A1
20060262943 Oxford Nov 2006 A1
20070018844 Sutardja Jan 2007 A1
20070019815 Asada et al. Jan 2007 A1
20070033043 Hyakumoto Feb 2007 A1
20070038999 Millington Feb 2007 A1
20070060054 Romesburg Mar 2007 A1
20070071206 Gainsboro et al. Mar 2007 A1
20070071255 Schobben Mar 2007 A1
20070076131 Li et al. Apr 2007 A1
20070076906 Takagi et al. Apr 2007 A1
20070140058 McIntosh et al. Jun 2007 A1
20070140521 Mitobe et al. Jun 2007 A1
20070142944 Goldberg et al. Jun 2007 A1
20070147651 Mitobe et al. Jun 2007 A1
20070201639 Park et al. Aug 2007 A1
20070254604 Kim Nov 2007 A1
20070286426 Xiang et al. Dec 2007 A1
20080008333 Nishikawa et al. Jan 2008 A1
20080031466 Buck et al. Feb 2008 A1
20080037814 Shau Feb 2008 A1
20080090537 Sutardja Apr 2008 A1
20080090617 Sutardja Apr 2008 A1
20080144858 Khawand et al. Jun 2008 A1
20080146289 Korneluk et al. Jun 2008 A1
20080182518 Lo Jul 2008 A1
20080192946 Faller Aug 2008 A1
20080207115 Lee et al. Aug 2008 A1
20080208594 Cross et al. Aug 2008 A1
20080221897 Cerra et al. Sep 2008 A1
20080247530 Barton et al. Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080291896 Tuubel et al. Nov 2008 A1
20080301729 Broos et al. Dec 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090005893 Sugii et al. Jan 2009 A1
20090010445 Matsuo Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090043206 Towfiq et al. Feb 2009 A1
20090046866 Feng et al. Feb 2009 A1
20090052688 Ishibashi et al. Feb 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090153289 Hope et al. Jun 2009 A1
20090191854 Beason Jul 2009 A1
20090197524 Haff et al. Aug 2009 A1
20090214048 Stokes, III Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090228919 Zott et al. Sep 2009 A1
20090238377 Ramakrishnan et al. Sep 2009 A1
20090238386 Usher et al. Sep 2009 A1
20090248397 Garcia et al. Oct 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090264072 Dai Oct 2009 A1
20090323907 Gupta et al. Dec 2009 A1
20090323924 Tashev Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20100014690 Wolff et al. Jan 2010 A1
20100023638 Bowman Jan 2010 A1
20100035593 Franco et al. Feb 2010 A1
20100041443 Yokota Feb 2010 A1
20100070922 DeMaio et al. Mar 2010 A1
20100075723 Min et al. Mar 2010 A1
20100088100 Lindahl Apr 2010 A1
20100092004 Kuze Apr 2010 A1
20100161335 Whynot Jun 2010 A1
20100172516 Lastrucci Jul 2010 A1
20100178873 Lee et al. Jul 2010 A1
20100179806 Zhang et al. Jul 2010 A1
20100179874 Higgins et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100260348 Bhow et al. Oct 2010 A1
20100278351 Fozunbal et al. Nov 2010 A1
20100299639 Ramsay et al. Nov 2010 A1
20100329472 Nakadai Dec 2010 A1
20100332236 Tan Dec 2010 A1
20110019833 Kuech Jan 2011 A1
20110033059 Bhaskar et al. Feb 2011 A1
20110035580 Wang et al. Feb 2011 A1
20110044461 Kuech Feb 2011 A1
20110044489 Saiki et al. Feb 2011 A1
20110046952 Koshinaka Feb 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110091055 Leblanc Apr 2011 A1
20110103615 Sun May 2011 A1
20110131032 Yang, II et al. Jun 2011 A1
20110145581 Malhotra et al. Jun 2011 A1
20110170707 Yamada et al. Jul 2011 A1
20110176687 Birkenes Jul 2011 A1
20110182436 Murgia et al. Jul 2011 A1
20110202924 Banguero et al. Aug 2011 A1
20110218656 Bishop et al. Sep 2011 A1
20110267985 Wilkinson et al. Nov 2011 A1
20110276333 Wang et al. Nov 2011 A1
20110280422 Neumeyer et al. Nov 2011 A1
20110285808 Feng et al. Nov 2011 A1
20110289506 Trivi et al. Nov 2011 A1
20110299706 Sakai Dec 2011 A1
20120020485 Visser et al. Jan 2012 A1
20120020486 Fried et al. Jan 2012 A1
20120022863 Cho et al. Jan 2012 A1
20120022864 Leman et al. Jan 2012 A1
20120027218 Every Feb 2012 A1
20120076308 Kuech Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120086568 Scott et al. Apr 2012 A1
20120123268 Tanaka et al. May 2012 A1
20120128160 Kim et al. May 2012 A1
20120131125 Seidel et al. May 2012 A1
20120148075 Goh et al. Jun 2012 A1
20120162540 Ouchi et al. Jun 2012 A1
20120163603 Abe et al. Jun 2012 A1
20120177215 Bose et al. Jul 2012 A1
20120183149 Hiroe Jul 2012 A1
20120224715 Kikkeri Sep 2012 A1
20120237047 Neal Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120288100 Cho Nov 2012 A1
20120297284 Matthews, III et al. Nov 2012 A1
20120308044 Vander et al. Dec 2012 A1
20120308046 Muza Dec 2012 A1
20130006453 Wang et al. Jan 2013 A1
20130024018 Chang et al. Jan 2013 A1
20130034241 Pandey et al. Feb 2013 A1
20130039527 Jensen et al. Feb 2013 A1
20130051755 Brown et al. Feb 2013 A1
20130058492 Silzle et al. Mar 2013 A1
20130066453 Seefeldt Mar 2013 A1
20130080146 Kato et al. Mar 2013 A1
20130124211 McDonough May 2013 A1
20130129100 Sorensen May 2013 A1
20130148821 Sorensen Jun 2013 A1
20130170647 Reilly et al. Jul 2013 A1
20130179173 Lee et al. Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130191119 Sugiyama Jul 2013 A1
20130191122 Mason Jul 2013 A1
20130198298 Li et al. Aug 2013 A1
20130211826 Mannby Aug 2013 A1
20130216056 Thyssen Aug 2013 A1
20130230184 Kuech Sep 2013 A1
20130262101 Srinivasan Oct 2013 A1
20130294611 Yoo Nov 2013 A1
20130301840 Yemdji Nov 2013 A1
20130315420 You Nov 2013 A1
20130317635 Bates et al. Nov 2013 A1
20130322462 Poulsen Dec 2013 A1
20130322665 Bennett et al. Dec 2013 A1
20130324031 Loureiro Dec 2013 A1
20130329896 Krishnaswamy et al. Dec 2013 A1
20130331970 Beckhardt et al. Dec 2013 A1
20130332165 Beckley et al. Dec 2013 A1
20130336499 Beckhardt Dec 2013 A1
20130339028 Rosner et al. Dec 2013 A1
20130343567 Triplett et al. Dec 2013 A1
20140003611 Mohammad et al. Jan 2014 A1
20140003625 Sheen et al. Jan 2014 A1
20140003635 Mohammad et al. Jan 2014 A1
20140005813 Reimann Jan 2014 A1
20140006026 Lamb et al. Jan 2014 A1
20140006825 Shenhav Jan 2014 A1
20140019743 DeLuca Jan 2014 A1
20140034929 Hamada et al. Feb 2014 A1
20140046464 Reimann Feb 2014 A1
20140056435 Kjems Feb 2014 A1
20140064476 Mani Mar 2014 A1
20140064501 Olsen et al. Mar 2014 A1
20140073298 Rossmann Mar 2014 A1
20140075306 Rega Mar 2014 A1
20140075311 Boettcher et al. Mar 2014 A1
20140094151 Klappert et al. Apr 2014 A1
20140100854 Chen et al. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140109138 Cannistraro et al. Apr 2014 A1
20140122075 Bak et al. May 2014 A1
20140126745 Dickins May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140145168 Ohsawa et al. May 2014 A1
20140146983 Kim et al. May 2014 A1
20140149118 Lee et al. May 2014 A1
20140163978 Basye et al. Jun 2014 A1
20140164400 Kruglick Jun 2014 A1
20140167931 Lee et al. Jun 2014 A1
20140168344 Shoemake et al. Jun 2014 A1
20140172899 Hakkani-Tur et al. Jun 2014 A1
20140172953 Blanksteen Jun 2014 A1
20140181271 Millington Jun 2014 A1
20140192986 Lee et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140200881 Chatlani Jul 2014 A1
20140207457 Biatov et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140215332 Lee et al. Jul 2014 A1
20140219472 Huang et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140229959 Beckhardt et al. Aug 2014 A1
20140244013 Reilly Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140252386 Ito et al. Sep 2014 A1
20140254805 Su et al. Sep 2014 A1
20140258292 Thramann et al. Sep 2014 A1
20140259075 Chang et al. Sep 2014 A1
20140269757 Park et al. Sep 2014 A1
20140270216 Tsilfidis Sep 2014 A1
20140270282 Tammi et al. Sep 2014 A1
20140274185 Luna et al. Sep 2014 A1
20140274203 Ganong, III et al. Sep 2014 A1
20140274218 Kadiwala et al. Sep 2014 A1
20140277650 Zurek et al. Sep 2014 A1
20140278372 Nakadai et al. Sep 2014 A1
20140278445 Eddington, Jr. Sep 2014 A1
20140278933 McMillan Sep 2014 A1
20140288686 Sant et al. Sep 2014 A1
20140291642 Watabe et al. Oct 2014 A1
20140303969 Inose et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310614 Jones Oct 2014 A1
20140324203 Coburn, IV et al. Oct 2014 A1
20140328490 Mohammad et al. Nov 2014 A1
20140330896 Addala et al. Nov 2014 A1
20140334645 Yun et al. Nov 2014 A1
20140340888 Ishisone et al. Nov 2014 A1
20140357248 Tonshal et al. Dec 2014 A1
20140358535 Lee et al. Dec 2014 A1
20140363022 Dizon et al. Dec 2014 A1
20140363024 Apodaca Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140369491 Kloberdans et al. Dec 2014 A1
20140372109 Iyer et al. Dec 2014 A1
20150006176 Pogue et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150010169 Popova et al. Jan 2015 A1
20150014680 Yamazaki et al. Jan 2015 A1
20150016642 Walsh et al. Jan 2015 A1
20150018992 Griffiths et al. Jan 2015 A1
20150019201 Schoenbach Jan 2015 A1
20150019219 Tzirkel-Hancock et al. Jan 2015 A1
20150030172 Gaensler et al. Jan 2015 A1
20150036831 Klippel Feb 2015 A1
20150039303 Lesso et al. Feb 2015 A1
20150039317 Klein et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150063580 Huang et al. Mar 2015 A1
20150066479 Pasupalak et al. Mar 2015 A1
20150086034 Lombardi et al. Mar 2015 A1
20150088500 Conliffe Mar 2015 A1
20150091709 Reichert et al. Apr 2015 A1
20150092947 Gossain et al. Apr 2015 A1
20150104037 Lee et al. Apr 2015 A1
20150106085 Lindahl Apr 2015 A1
20150110294 Chen et al. Apr 2015 A1
20150112672 Giacobello Apr 2015 A1
20150124975 Pontoppidan May 2015 A1
20150126255 Yang May 2015 A1
20150128065 Torii et al. May 2015 A1
20150134456 Baldwin May 2015 A1
20150154976 Mutagi Jun 2015 A1
20150161990 Sharifi Jun 2015 A1
20150169279 Duga Jun 2015 A1
20150170645 Di et al. Jun 2015 A1
20150170665 Gundeti et al. Jun 2015 A1
20150172843 Quan Jun 2015 A1
20150179181 Morris et al. Jun 2015 A1
20150180432 Gao et al. Jun 2015 A1
20150181318 Gautama et al. Jun 2015 A1
20150189438 Hampiholi et al. Jul 2015 A1
20150200454 Heusdens et al. Jul 2015 A1
20150200923 Triplett Jul 2015 A1
20150201271 Diethorn et al. Jul 2015 A1
20150221678 Yamazaki et al. Aug 2015 A1
20150222563 Burns et al. Aug 2015 A1
20150222987 Angel, Jr. et al. Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228803 Koezuka et al. Aug 2015 A1
20150237406 Ochoa et al. Aug 2015 A1
20150243287 Nakano et al. Aug 2015 A1
20150245152 Ding et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150249889 Iyer et al. Sep 2015 A1
20150253292 Larkin et al. Sep 2015 A1
20150253960 Lin et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150263174 Yamazaki et al. Sep 2015 A1
20150271593 Sun et al. Sep 2015 A1
20150277846 Yen et al. Oct 2015 A1
20150280676 Holman et al. Oct 2015 A1
20150296299 Klippel et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150319529 Klippel Nov 2015 A1
20150325267 Lee et al. Nov 2015 A1
20150331663 Beckhardt et al. Nov 2015 A1
20150334471 Innes et al. Nov 2015 A1
20150338917 Steiner et al. Nov 2015 A1
20150341406 Rockefeller et al. Nov 2015 A1
20150346845 Di et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150355878 Corbin Dec 2015 A1
20150363061 De, III et al. Dec 2015 A1
20150363401 Chen et al. Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150371657 Gao Dec 2015 A1
20150371659 Gao Dec 2015 A1
20150371664 Bar-Or et al. Dec 2015 A1
20150380010 Srinivasan Dec 2015 A1
20150382047 Van Os et al. Dec 2015 A1
20160007116 Holman Jan 2016 A1
20160018873 Fernald et al. Jan 2016 A1
20160021458 Johnson et al. Jan 2016 A1
20160026428 Morganstern et al. Jan 2016 A1
20160029142 Isaac et al. Jan 2016 A1
20160035321 Cho et al. Feb 2016 A1
20160035337 Aggarwal et al. Feb 2016 A1
20160036962 Rand et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160044151 Shoemaker et al. Feb 2016 A1
20160050488 Matheja et al. Feb 2016 A1
20160055850 Nakadai et al. Feb 2016 A1
20160057522 Choisel et al. Feb 2016 A1
20160066087 Solbach Mar 2016 A1
20160070526 Sheen Mar 2016 A1
20160072804 Chien et al. Mar 2016 A1
20160077710 Lewis et al. Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160086609 Yue et al. Mar 2016 A1
20160088036 Corbin et al. Mar 2016 A1
20160088392 Huttunen et al. Mar 2016 A1
20160093281 Kuo Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094718 Mani et al. Mar 2016 A1
20160094917 Wilk et al. Mar 2016 A1
20160098393 Hebert Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160103653 Jang Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160111110 Gautama et al. Apr 2016 A1
20160125876 Schroeter et al. May 2016 A1
20160127780 Roberts et al. May 2016 A1
20160133259 Rubin et al. May 2016 A1
20160134966 Fitzgerald et al. May 2016 A1
20160134982 Iyer May 2016 A1
20160140957 Duta et al. May 2016 A1
20160148615 Lee et al. May 2016 A1
20160154089 Altman Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160157035 Russell et al. Jun 2016 A1
20160162469 Santos Jun 2016 A1
20160171976 Sun et al. Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173983 Berthelsen et al. Jun 2016 A1
20160180853 Vanlund et al. Jun 2016 A1
20160189716 Lindahl et al. Jun 2016 A1
20160192099 Oishi et al. Jun 2016 A1
20160196499 Khan et al. Jul 2016 A1
20160203331 Khan et al. Jul 2016 A1
20160210110 Feldman Jul 2016 A1
20160212538 Fullam et al. Jul 2016 A1
20160216938 Millington Jul 2016 A1
20160217789 Lee et al. Jul 2016 A1
20160225385 Hammarqvist Aug 2016 A1
20160232451 Scherzer Aug 2016 A1
20160234204 Rishi et al. Aug 2016 A1
20160234615 Lambourne Aug 2016 A1
20160239255 Chavez et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160241976 Pearson Aug 2016 A1
20160253050 Mishra et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160283841 Sainath et al. Sep 2016 A1
20160302018 Russell et al. Oct 2016 A1
20160314782 Klimanis Oct 2016 A1
20160316293 Klimanis Oct 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160336519 Seo et al. Nov 2016 A1
20160343866 Koezuka et al. Nov 2016 A1
20160343949 Seo et al. Nov 2016 A1
20160343954 Seo et al. Nov 2016 A1
20160345114 Hanna et al. Nov 2016 A1
20160352915 Gautama Dec 2016 A1
20160353217 Starobin et al. Dec 2016 A1
20160353218 Starobin et al. Dec 2016 A1
20160357503 Triplett et al. Dec 2016 A1
20160364206 Keyser-Allen et al. Dec 2016 A1
20160366515 Mendes et al. Dec 2016 A1
20160372113 David et al. Dec 2016 A1
20160372688 Seo et al. Dec 2016 A1
20160373269 Okubo et al. Dec 2016 A1
20160373909 Rasmussen et al. Dec 2016 A1
20160379634 Vamamoto et al. Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170012207 Seo et al. Jan 2017 A1
20170012232 Kataishi et al. Jan 2017 A1
20170019732 Mendes et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170025615 Seo et al. Jan 2017 A1
20170025630 Seo et al. Jan 2017 A1
20170026769 Patel Jan 2017 A1
20170032244 Kurata Feb 2017 A1
20170034263 Archambault et al. Feb 2017 A1
20170039025 Kielak Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170040018 Tormey Feb 2017 A1
20170041724 Master et al. Feb 2017 A1
20170053648 Chi Feb 2017 A1
20170053650 Ogawa Feb 2017 A1
20170060526 Barton et al. Mar 2017 A1
20170062734 Suzuki et al. Mar 2017 A1
20170070478 Park et al. Mar 2017 A1
20170076212 Shams et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076726 Bae Mar 2017 A1
20170078824 Heo Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083606 Mohan Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170084292 Yoo Mar 2017 A1
20170084295 Tsiartas et al. Mar 2017 A1
20170090864 Jorgovanovic Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170092297 Sainath et al. Mar 2017 A1
20170092299 Matsuo Mar 2017 A1
20170092889 Seo et al. Mar 2017 A1
20170092890 Seo et al. Mar 2017 A1
20170094215 Western Mar 2017 A1
20170103748 Weissberg et al. Apr 2017 A1
20170103754 Higbie et al. Apr 2017 A1
20170103755 Jeon et al. Apr 2017 A1
20170110124 Boesen et al. Apr 2017 A1
20170110144 Sharifi et al. Apr 2017 A1
20170117497 Seo et al. Apr 2017 A1
20170123251 Nakada et al. May 2017 A1
20170125037 Shin May 2017 A1
20170125456 Kasahara May 2017 A1
20170133007 Drewes May 2017 A1
20170133011 Chen et al. May 2017 A1
20170134872 Silva et al. May 2017 A1
20170139720 Stein May 2017 A1
20170140449 Kannan May 2017 A1
20170140748 Roberts et al. May 2017 A1
20170140750 Wang et al. May 2017 A1
20170140757 Penilla et al. May 2017 A1
20170140759 Kumar et al. May 2017 A1
20170151930 Boesen Jun 2017 A1
20170177585 Rodger et al. Jun 2017 A1
20170178662 Ayrapetian et al. Jun 2017 A1
20170180561 Kadiwala et al. Jun 2017 A1
20170186427 Wang et al. Jun 2017 A1
20170188150 Brunet et al. Jun 2017 A1
20170188437 Banta Jun 2017 A1
20170193999 Aleksic et al. Jul 2017 A1
20170206896 Ko et al. Jul 2017 A1
20170206900 Lee et al. Jul 2017 A1
20170214996 Yeo Jul 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236515 Pinsky et al. Aug 2017 A1
20170242649 Jarvis et al. Aug 2017 A1
20170242651 Lang et al. Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242656 Plagge et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243587 Plagge et al. Aug 2017 A1
20170245076 Kusano et al. Aug 2017 A1
20170255612 Sarikaya et al. Sep 2017 A1
20170257686 Gautama et al. Sep 2017 A1
20170269975 Wood et al. Sep 2017 A1
20170270919 Parthasarathi et al. Sep 2017 A1
20170278512 Pandya et al. Sep 2017 A1
20170287485 Civelli et al. Oct 2017 A1
20170300990 Tanaka et al. Oct 2017 A1
20170330565 Daley et al. Nov 2017 A1
20170331869 Bendahan et al. Nov 2017 A1
20170332168 Moghimi et al. Nov 2017 A1
20170346872 Naik et al. Nov 2017 A1
20170352357 Fink Dec 2017 A1
20170353789 Kim et al. Dec 2017 A1
20170357475 Lee et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170364371 Nandi et al. Dec 2017 A1
20170365247 Ushakov Dec 2017 A1
20170366393 Shaker et al. Dec 2017 A1
20170374454 Bernardini et al. Dec 2017 A1
20170374552 Xia et al. Dec 2017 A1
20180018964 Reilly et al. Jan 2018 A1
20180018965 Daley Jan 2018 A1
20180018967 Lang et al. Jan 2018 A1
20180020306 Sheen Jan 2018 A1
20180025733 Qian et al. Jan 2018 A1
20180033428 Kim et al. Feb 2018 A1
20180033438 Toma et al. Feb 2018 A1
20180040324 Wilberding Feb 2018 A1
20180047394 Tian et al. Feb 2018 A1
20180053504 Wang et al. Feb 2018 A1
20180054506 Hart et al. Feb 2018 A1
20180061396 Srinivasan et al. Mar 2018 A1
20180061402 Devaraj et al. Mar 2018 A1
20180061404 Devaraj et al. Mar 2018 A1
20180061419 Melendo Casado et al. Mar 2018 A1
20180061420 Patil et al. Mar 2018 A1
20180062871 Jones et al. Mar 2018 A1
20180084367 Greff et al. Mar 2018 A1
20180088900 Glaser et al. Mar 2018 A1
20180091898 Yoon et al. Mar 2018 A1
20180091913 Hartung et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180096696 Mixter Apr 2018 A1
20180107446 Wilberding et al. Apr 2018 A1
20180108351 Beckhardt et al. Apr 2018 A1
20180122372 Wanderlust May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180130469 Gruenstein et al. May 2018 A1
20180132217 Stirling-Gallacher May 2018 A1
20180132298 Birnam et al. May 2018 A1
20180137861 Ogawa May 2018 A1
20180152557 White et al. May 2018 A1
20180158454 Campbell et al. Jun 2018 A1
20180165055 Yu et al. Jun 2018 A1
20180167981 Jonna et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180182383 Kim et al. Jun 2018 A1
20180182390 Hughes et al. Jun 2018 A1
20180182397 Carbune et al. Jun 2018 A1
20180182410 Kaskari Jun 2018 A1
20180188948 Ouyang et al. Jul 2018 A1
20180190274 Kirazci et al. Jul 2018 A1
20180190285 Heckman et al. Jul 2018 A1
20180197533 Lyon et al. Jul 2018 A1
20180199130 Jaffe et al. Jul 2018 A1
20180199146 Sheen Jul 2018 A1
20180204569 Nadkar et al. Jul 2018 A1
20180205963 Matei et al. Jul 2018 A1
20180210698 Park et al. Jul 2018 A1
20180211665 Park et al. Jul 2018 A1
20180218747 Moghimi et al. Aug 2018 A1
20180219976 Decenzo et al. Aug 2018 A1
20180225933 Park et al. Aug 2018 A1
20180228006 Baker et al. Aug 2018 A1
20180233130 Kaskari et al. Aug 2018 A1
20180233136 Torok et al. Aug 2018 A1
20180233137 Torok et al. Aug 2018 A1
20180233139 Finkelstein et al. Aug 2018 A1
20180233141 Solomon et al. Aug 2018 A1
20180233142 Koishida et al. Aug 2018 A1
20180233150 Gruenstein et al. Aug 2018 A1
20180234765 Torok et al. Aug 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180261213 Arik et al. Sep 2018 A1
20180262793 Lau et al. Sep 2018 A1
20180262831 Matheja et al. Sep 2018 A1
20180270565 Ganeshkumar Sep 2018 A1
20180270573 Lang et al. Sep 2018 A1
20180277107 Kim Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180277119 Baba et al. Sep 2018 A1
20180277133 Deetz et al. Sep 2018 A1
20180286394 Li et al. Oct 2018 A1
20180286414 Ravindran et al. Oct 2018 A1
20180293221 Finkelstein et al. Oct 2018 A1
20180293484 Wang et al. Oct 2018 A1
20180308470 Park et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180322891 Van Den Oord et al. Nov 2018 A1
20180324756 Ryu et al. Nov 2018 A1
20180330727 Tulli Nov 2018 A1
20180335903 Coffman et al. Nov 2018 A1
20180336274 Choudhury et al. Nov 2018 A1
20180349093 McCarty et al. Dec 2018 A1
20180356962 Corbin Dec 2018 A1
20180358009 Daley et al. Dec 2018 A1
20180365567 Kolavennu et al. Dec 2018 A1
20180367944 Heo et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190013019 Lawrence Jan 2019 A1
20190014592 Hampel et al. Jan 2019 A1
20190019112 Gelfenbeyn et al. Jan 2019 A1
20190033446 Bultan et al. Jan 2019 A1
20190042187 Truong et al. Feb 2019 A1
20190043488 Bocklet et al. Feb 2019 A1
20190043492 Lang Feb 2019 A1
20190051298 Lee et al. Feb 2019 A1
20190066672 Wood et al. Feb 2019 A1
20190066687 Wood et al. Feb 2019 A1
20190074025 Lashkari et al. Mar 2019 A1
20190079724 Feuz et al. Mar 2019 A1
20190081507 Ide Mar 2019 A1
20190081810 Jung Mar 2019 A1
20190082255 Tajiri et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190088261 Lang et al. Mar 2019 A1
20190090056 Rexach et al. Mar 2019 A1
20190096408 Li et al. Mar 2019 A1
20190098400 Buoni et al. Mar 2019 A1
20190104119 Giorgi et al. Apr 2019 A1
20190104373 Wodrich et al. Apr 2019 A1
20190108839 Reilly et al. Apr 2019 A1
20190115011 Khellah et al. Apr 2019 A1
20190130906 Kobayashi et al. May 2019 A1
20190163153 Price et al. May 2019 A1
20190172452 Smith et al. Jun 2019 A1
20190173687 Mackay et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179611 Wojogbe et al. Jun 2019 A1
20190182072 Roe et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189117 Kumar Jun 2019 A1
20190206391 Busch et al. Jul 2019 A1
20190206405 Gillespie et al. Jul 2019 A1
20190206412 Li et al. Jul 2019 A1
20190219976 Giorgi et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190221206 Chen et al. Jul 2019 A1
20190237067 Friedman et al. Aug 2019 A1
20190239008 Lambourne Aug 2019 A1
20190239009 Lambourne Aug 2019 A1
20190243603 Keyser-Allen et al. Aug 2019 A1
20190243606 Jayakumar et al. Aug 2019 A1
20190244608 Choi et al. Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190281397 Lambourne Sep 2019 A1
20190287546 Ganeshkumar Sep 2019 A1
20190288970 Siddiq Sep 2019 A1
20190289367 Siddiq Sep 2019 A1
20190295542 Huang et al. Sep 2019 A1
20190295555 Wilberding Sep 2019 A1
20190295556 Wilberding Sep 2019 A1
20190295563 Kamdar et al. Sep 2019 A1
20190297388 Panchaksharaiah et al. Sep 2019 A1
20190304443 Bhagwan Oct 2019 A1
20190311710 Eraslan et al. Oct 2019 A1
20190311712 Firik et al. Oct 2019 A1
20190311720 Pasko Oct 2019 A1
20190317606 Jain et al. Oct 2019 A1
20190342962 Chang et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190348044 Chun et al. Nov 2019 A1
20190362714 Mori et al. Nov 2019 A1
20190364375 Soto et al. Nov 2019 A1
20190364422 Zhuo Nov 2019 A1
20190371310 Fox et al. Dec 2019 A1
20200007987 Woo et al. Jan 2020 A1
20200034492 Verbeke et al. Jan 2020 A1
20200051554 Kim et al. Feb 2020 A1
20200074990 Kim et al. Mar 2020 A1
20200090647 Kurtz Mar 2020 A1
20200092687 Devaraj et al. Mar 2020 A1
20200098354 Lin et al. Mar 2020 A1
20200098379 Tai et al. Mar 2020 A1
20200105245 Gupta et al. Apr 2020 A1
20200105256 Fainberg et al. Apr 2020 A1
20200105264 Jang et al. Apr 2020 A1
20200110571 Liu et al. Apr 2020 A1
20200125162 D'Amato et al. Apr 2020 A1
20200135224 Bromand et al. Apr 2020 A1
20200152206 Shen et al. May 2020 A1
20200175989 Lockhart et al. Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200184980 Wilberding Jun 2020 A1
20200193973 Tolomei et al. Jun 2020 A1
20200211539 Lee Jul 2020 A1
20200211550 Pan et al. Jul 2020 A1
20200211556 Mixter et al. Jul 2020 A1
20200213729 Soto Jul 2020 A1
20200216089 Garcia et al. Jul 2020 A1
20200234709 Kunitake Jul 2020 A1
20200251107 Wang et al. Aug 2020 A1
20200265838 Lee et al. Aug 2020 A1
20200310751 Anand et al. Oct 2020 A1
20200336846 Rohde et al. Oct 2020 A1
20200366477 Brown et al. Nov 2020 A1
20200395006 Smith et al. Dec 2020 A1
20200395010 Smith et al. Dec 2020 A1
20200395013 Smith et al. Dec 2020 A1
20200409652 Wilberding et al. Dec 2020 A1
20200409926 Srinivasan et al. Dec 2020 A1
20210035561 D'Amato et al. Feb 2021 A1
20210035572 D'Amato et al. Feb 2021 A1
20210067867 Kagoshima Mar 2021 A1
20210118429 Shan Apr 2021 A1
20210118439 Schillmoeller et al. Apr 2021 A1
20210166680 Jung et al. Jun 2021 A1
20210183366 Reinspach et al. Jun 2021 A1
20210280185 Tan et al. Sep 2021 A1
Foreign Referenced Citations (125)
Number Date Country
2017100486 Jun 2017 AU
2017100581 Jun 2017 AU
1323435 Nov 2001 CN
101310558 Nov 2008 CN
101480039 Jul 2009 CN
101661753 Mar 2010 CN
101686282 Mar 2010 CN
101907983 Dec 2010 CN
102123188 Jul 2011 CN
102256098 Nov 2011 CN
102567468 Jul 2012 CN
103052001 Apr 2013 CN
103181192 Jun 2013 CN
103210663 Jul 2013 CN
103546616 Jan 2014 CN
103811007 May 2014 CN
104010251 Aug 2014 CN
104035743 Sep 2014 CN
104053088 Sep 2014 CN
104092936 Oct 2014 CN
104104769 Oct 2014 CN
104115224 Oct 2014 CN
104282305 Jan 2015 CN
104520927 Apr 2015 CN
104538030 Apr 2015 CN
104575504 Apr 2015 CN
104635539 May 2015 CN
104865550 Aug 2015 CN
105187907 Dec 2015 CN
105204357 Dec 2015 CN
105206281 Dec 2015 CN
105284076 Jan 2016 CN
105493442 Apr 2016 CN
105679318 Jun 2016 CN
106028223 Oct 2016 CN
106375902 Feb 2017 CN
106531165 Mar 2017 CN
106708403 May 2017 CN
106796784 May 2017 CN
107004410 Aug 2017 CN
107919123 Apr 2018 CN
108028047 May 2018 CN
108028048 May 2018 CN
109712626 May 2019 CN
1349146 Oct 2003 EP
1389853 Feb 2004 EP
2051542 Apr 2009 EP
2166737 Mar 2010 EP
2683147 Jan 2014 EP
2986034 Feb 2016 EP
3128767 Feb 2017 EP
3133595 Feb 2017 EP
2351021 Sep 2017 EP
3270377 Jan 2018 EP
3285502 Feb 2018 EP
S63301998 Dec 1988 JP
H0883091 Mar 1996 JP
2001236093 Aug 2001 JP
2003223188 Aug 2003 JP
2004109361 Apr 2004 JP
2004347943 Dec 2004 JP
2004354721 Dec 2004 JP
2005242134 Sep 2005 JP
2005250867 Sep 2005 JP
2005284492 Oct 2005 JP
2006092482 Apr 2006 JP
2007013400 Jan 2007 JP
2007142595 Jun 2007 JP
2008079256 Apr 2008 JP
2008158868 Jul 2008 JP
2010141748 Jun 2010 JP
2013037148 Feb 2013 JP
2014071138 Apr 2014 JP
2014510481 Apr 2014 JP
2014137590 Jul 2014 JP
2015161551 Sep 2015 JP
2015527768 Sep 2015 JP
2016095383 May 2016 JP
2017072857 Apr 2017 JP
2017129860 Jul 2017 JP
2017227912 Dec 2017 JP
2018055259 Apr 2018 JP
20100036351 Apr 2010 KR
100966415 Jun 2010 KR
20100111071 Oct 2010 KR
20130050987 May 2013 KR
20140005410 Jan 2014 KR
20140035310 Mar 2014 KR
20140054643 May 2014 KR
20140111859 Sep 2014 KR
200153994 Jul 2001 WO
03054854 Jul 2003 WO
2003093950 Nov 2003 WO
2008048599 Apr 2008 WO
2012166386 Dec 2012 WO
2013184792 Dec 2013 WO
2014064531 May 2014 WO
2014159581 Oct 2014 WO
2015017303 Feb 2015 WO
2015037396 Mar 2015 WO
2015105788 Jul 2015 WO
2015131024 Sep 2015 WO
2015133022 Sep 2015 WO
2015178950 Nov 2015 WO
2015195216 Dec 2015 WO
2016003509 Jan 2016 WO
2016014142 Jan 2016 WO
2016014686 Jan 2016 WO
2016022926 Feb 2016 WO
2016033364 Mar 2016 WO
2016057268 Apr 2016 WO
2016085775 Jun 2016 WO
2016136062 Sep 2016 WO
2016165067 Oct 2016 WO
2016171956 Oct 2016 WO
2016200593 Dec 2016 WO
2017039632 Mar 2017 WO
2017058654 Apr 2017 WO
2017138934 Aug 2017 WO
2017147075 Aug 2017 WO
2017147936 Sep 2017 WO
2018027142 Feb 2018 WO
2018067404 Apr 2018 WO
2018140777 Aug 2018 WO
2019005772 Jan 2019 WO
Non-Patent Literature Citations (627)
Entry
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn)
Non-Final Office Action dated Feb. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 16 pages.
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages.
Non-Final Office Action dated Sep. 9, 2020, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 29 pages.
Notice of Allowance dated Aug. 10, 2021, issued in connection with U.S. Appl. No. 17/157,686, filed Jan. 25, 2021, 9 pages.
Notice of Allowance dated Aug. 2, 2021, issued in connection with U.S. Appl. No. 16/660,197, filed Oct. 22, 2019, 7 pages.
Notice of Allowance dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 11 pages.
Notice of Allowance dated Aug. 4, 2021, issued in connection with U.S. Appl. No. 16/780,483, filed Feb. 3, 2020, 5 pages.
Notice of Allowance dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 15 pages.
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages.
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages.
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages.
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages.
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages.
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 8 pages.
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/685,135, filed Nov. 15, 2019, 10 pages.
Notice of Allowance dated Sep. 1, 2021, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 22 pages.
Notice of Allowance dated Aug. 10, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 9 pages.
Notice of Allowance dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 8 pages.
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages.
Notice of Allowance dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 9 pages.
Notice of Allowance dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 5 pages.
Notice of Allowance dated Aug. 12, 2021, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 6 pages.
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages.
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages.
Notice of Allowance dated Jun. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 7 pages.
Notice of Allowance dated May 12, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 8 pages.
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages.
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages.
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages.
Notice of Allowance dated Jan. 13, 2020, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 6 pages.
Notice of Allowance dated Jan. 13, 2021, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 5 pages.
Notice of Allowance dated Nov. 13, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 11 pages.
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages.
Notice of Allowance dated Aug. 14, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 5 pages.
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages.
Notice of Allowance dated Jan. 14, 2021, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 8 pages.
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages.
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages.
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages.
Notice of Allowance dated Jan. 15, 2020, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 9 pages.
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages.
Notice of Allowance dated Oct. 15, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 9 pages.
Notice of Allowance dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 9 pages.
Notice of Allowance dated Oct. 15, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 8 pages.
Notice of Allowance dated Sep. 15, 2021, issued in connection with U.S. Appl. No. 16/685,135, filed Nov. 15, 2019, 10 pages.
Notice of Allowance dated Apr. 16, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 16 pages.
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages.
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages.
Notice of Allowance dated Feb. 17, 2021, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 8 pages.
Notice of Allowance dated Jul. 17, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 5 pages.
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages.
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages.
Non-Final Office Action dated Oct. 9, 2019, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 16 pages.
Non-Final Office Action dated Jul. 1, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 14 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages.
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages.
Non-Final Office Action dated Aug. 11, 2021, issued in connection with U.S. Appl. No. 16/841,116, filed Apr. 6, 2020, 9 pages.
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 16 pages.
Non-Final Office Action dated Mar. 11, 2021, issued in connection with U.S. Appl. No. 16/834,483, filed Mar. 30, 2020, 11 pages.
Non-Final Office Action dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 14 pages.
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 8 pages.
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages.
Non-Final Office Action dated Apr. 12, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages.
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages.
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages.
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages.
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages.
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages.
Non-Final Office Action dated Nov. 13, 2019, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 18 pages.
Non-Final Office Action dated Oct. 13, 2021, issued in connection with U.S. Appl. No. 16/679,538, filed Nov. 11, 2019, 8 pages.
Non-Final Office Action dated May 14, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages.
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages.
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages.
Non-Final Office Action dated Apr. 15, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 15 pages.
Non-Final Office Action dated Dec. 15, 2020, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 7 pages.
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages.
Non-Final Office Action dated Nov. 15, 2019, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 17 pages.
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages.
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages.
Non-Final Office Action dated Sep. 16, 2021, issued in connection with U.S. Appl. No. 16/879,553, filed May 20, 2020, 24 pages.
Non-Final Office Action dated Aug. 17, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 10 pages.
Non-Final Office Action dated Sep. 17, 2020, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 29 pages.
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468 filed Nov. 13, 2017, 14 pages.
Non-Final Office Action dated Aug. 18, 2021, issued in connection with U.S. Appl. No. 16/845,946, filed Apr. 10, 2020, 14 pages.
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages.
Non-Final Office Action dated Oct. 18, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 27 pages.
Non-Final Office Action dated Sep. 18, 2019, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 14 pages.
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages.
Non-Final Office Action dated Dec. 19, 2019, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 10 pages.
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 15 pages.
Non-Final Office Action dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 17 pages.
Non-Final Office Action dated Sep. 2, 2021, issued in connection with U.S. Appl. No. 16/947,895, filed Aug. 24, 2020, 16 pages.
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages.
Non-Final Office Action dated Jun. 20, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 10 pages.
Non-Final Office Action dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages.
Non-Final Office Action dated Aug. 21, 2019, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 8 pages.
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages.
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages.
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages.
European Patent Office, European EPC Article 94.3 mailed on Nov. 11, 2021, issued in connection with European Application No. 19784172.9, 5 pages.
European Patent Office, European EPC Article 94.3 mailed on Feb. 23, 2021, issued in connection with European Application No. 17200837.7, 8 pages.
European Patent Office, European EPC Article 94.3 mailed on Feb. 26, 2021, issued in connection with European Application No. 18789515.6, 8 pages.
European Patent Office, European Extended Search Report dated Oct. 7, 2021, issued in connection with European Application No. 21193616.6, 9 pages.
European Patent Office, European Extended Search Report dated Nov. 25, 2020, issued in connection with European Application No. 20185599.6, 9 pages.
European Patent Office, European Extended Search Report dated Feb. 3, 2020, issued in connection with European Application No. 19197116.7, 9 pages.
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages.
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages.
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages.
European Patent Office, European Extended Search Report dated Aug. 6, 2020, issued in connection with European Application No. 20166332.5, 10 pages.
European Patent Office, European Office Action dated Jul. 1, 2020, issued in connection with European Application No. 17757075.1, 7 pages.
European Patent Office, European Office Action dated Jan. 14, 2020, issued in connection with European Application No. 17757070.2, 7 pages.
European Patent Office, European Office Action dated Jan. 21, 2021, issued in connection with European Application No. 17792272.1, 7 pages.
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages.
European Patent Office, European Office Action dated Sep. 23, 2020, issued in connection with European Application No. 18788976.1, 7 pages.
European Patent Office, European Office Action dated Oct. 26, 2020, issued in connection with European Application No. 18760101.8, 4 pages.
European Patent Office, European Office Action dated Aug. 30, 2019, issued in connection with European Application No. 17781608.9, 6 pages.
European Patent Office, European Office Action dated Sep. 9, 2020, issued in connection with European Application No. 18792656.3, 10 pages.
European Patent Office, Examination Report dated Jul. 15, 2021, issued in connection with European Patent Application No. 19729968.8, 7 pages.
European Patent Office, Extended Search Report dated Aug. 13, 2021, issued in connection with European Patent Application No. 21164130.3, 11 pages.
European Patent Office, Extended Search Report dated May 16, 2018, issued in connection with European Patent Application No. 17200837.7, 11 pages.
European Patent Office, Extended Search Report dated Jul. 25, 2019, issued in connection with European Patent Application No. 18306501.0, 14 pages.
European Patent Office, Extended Search Report dated May 29, 2020, issued in connection with European Patent Application No. 19209389.6, 8 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Dec. 20, 2019, issued in connection with European Application No. 17174435.2, 13 pages.
Fadilpasic,“Cortana can now be the default PDA on your Android”, IT Pro Portal: Accessed via WayBack Machine: http://web.archive.org/web/20171129124915/https://www.itproportal.com/2015/08/11/cortana-can-now-be- . . . , Aug. 11, 2015, 6 pages.
Final Office Action dated Jul. 23, 2021, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 12 pages.
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages.
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages.
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 13 pages.
Final Office Action dated Nov. 10, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 19 pages.
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages.
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages.
Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 10 pages.
Final Office Action dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 13 pages.
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages.
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages.
Final Office Action dated May 13, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 20 pages.
Final Office Action dated Jul. 15, 2021, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages.
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages.
Final Office Action dated Jun. 15, 2021, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 12 pages.
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages.
Final Office Action dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages.
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages.
Final Office Action dated May 18, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 16 pages.
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages.
Final Office Action dated May 21, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 21 pages.
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages.
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 12 pages.
Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 16 pages.
Notice of Allowance dated Oct. 30, 2019, issued in connection with U.S. Appl. No. 16/131,392, filed Sep. 14, 2018, 9 pages.
Notice of Allowance dated Oct. 30, 2020, issued in connection with U.S. Appl. No. 16/528,016, filed Jul. 31, 2019, 10 pages.
Notice of Allowance dated May 31, 2019, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 9 pages.
Notice of Allowance dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 17 pages.
Notice of Allowance dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 16/444,975, filed Jun. 18, 2019, 10 pages.
Notice of Allowance dated Feb. 5, 2020, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 9 pages.
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages.
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages.
Notice of Allowance dated Feb. 6, 2020, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 7 pages.
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 7 pages.
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 15 pages.
Notice of Allowance dated Jun. 7, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages.
Notice of Allowance dated Jun. 7, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages.
Notice of Allowance dated Nov. 8, 2021, issued in connection with U.S. Appl. No. 17/008,104, filed Aug. 31, 2020, 9 pages.
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages.
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages.
Oord et al. WaveNet: A Generative Model for Raw Audio. Arxiv.org, Cornell University Library, Sep. 12, 2016, 15 pages.
Optimizing Siri on HomePod in Far-Field Settings. Audio Software Engineering and Siri Speech Team, Machine Learning Journal vol. 1, Issue 12. https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html. Dec. 2018, 18 pages.
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages.
Parada et al. Contextual Information Improves OOV Detection in Speech. Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Jun. 2, 2010, 9 pages.
Pre-Appeal Brief Decision dated Jun. 2, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 2 pages.
Preinterview First Office Action dated Aug. 5, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 4 pages.
Preinterview First Office Action dated Mar. 25, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 6 pages.
Preinterview First Office Action dated Sep. 30, 2019, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 4 pages.
Preinterview First Office Action dated May 7, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 5 pages.
Preinterview First Office Action dated Jan. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 4 pages.
Presentations at WinHEC 2000, May 2000, 138 pages.
Renato De Mori. Spoken Language Understanding: A Survey. Automatic Speech Recognition & Understanding, 2007. IEEE, Dec. 1, 2007, 56 pages.
Restriction Requirement dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 5 pages.
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages.
Rottondi et al., “An Overview on Networked Music Performance Technologies,” IEEE Access, vol. 4, pp. 8823-8843, 2016, DOI: 10.1109/ACCESS.2016.2628440, 21 pages.
Rybakov et al. Streaming keyword spotting on mobile devices, arXiv:2005.06720v2, Jul. 29, 2020, 5 pages.
Shan et al. Attention-based End-to-End Models for Small-Footprint Keyword Spotting, arXiv:1803.10916v1, Mar. 29, 2018, 5 pages.
Snips: How to Snips—Assistant creation & Installation, Jun. 26, 2017, 6 pages.
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages.
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages.
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages.
Speidel, Hans. Chatbot Training: How to use training data to provide fully automated customer support. Retrieved from the Internet: URL: https://www.crowdguru.de/wp-content/uploads/Case-Study-Chatbox-training-How-to-use-training-data-to-provide-fully-automated-customer-support.pdf. Jun. 29, 2017, 4 pages.
Stemmer et al. Speech Recognition and Understanding on Hardware-Accelerated DSP. Proceedings of Interspeech 2017: Show & Tell Contribution, Aug. 20, 2017, 2 pages.
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages.
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages.
Tsung-Hsien Wen et al: “A Network-based End-to-End Trainable Task-oriented Dialogue System”, Corr Arxiv, vol. 1604.04562v1, Apr. 15, 2016, pp. 1-11, XP055396370, Stroudsburg, PA, USA.
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop ©Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page.
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages.
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54.
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages.
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages.
“S Voice or Google Now?”; https://web.archive.org/web/20160807040123/lowdown.carphonewarehouse.com/news/s-voice-or-google-now/ . . . , Apr. 28, 2015; 4 pages.
Advisory Action dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 4 pages.
Advisory Action dated Aug. 13, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 4 pages.
Advisory Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 3 pages.
Advisory Action dated Apr. 24, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 4 pages.
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages.
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages.
Advisory Action dated Sep. 8, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 4 pages.
Advisory Action dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 3 pages.
Andra et al. Contextual Keyword Spotting in Lecture Video With Deep Convolutional Neural Network. 2017 International Conference on Advanced Computer Science and Information Systems, IEEE, Oct. 28, 2017, 6 pages.
Anonymous,. S Voice or Google Now—The Lowdown. Apr. 28, 2015, 9 pages. [online], [retrieved on Nov. 29, 2017]. Retrieved from the Internet (URL:http://web.archive.org/web/20160807040123/http://lowdown.carphonewarehouse.com/news/s-voice-or-google-now/29958/).
Anonymous: “What are the function of 4 Microphones on iPhone 6S/6S+?”, ETrade Supply, Dec. 24, 2015, XP055646381, Retrieved from the Internet URL:https://www.etradesupply.com/blog/4-microphones-iphone-6s6s-for/ [retrieved on Nov. 26, 2019].
Audhkhasi Kartik et al. End-to-end ASR-free keyword search from speech. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 5, 2017, 7 pages.
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages.
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages.
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages.
Australian Patent Office, Australian Examination Report Action dated Apr. 14, 2020, issued in connection with Australian Application No. 2019202257, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Oct. 3, 2019, issued in connection with Australian Application No. 2018230932, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Apr. 7, 2021, issued in connection with Australian Application No. 2019333058, 2 pages.
Australian Patent Office, Australian Examination Report Action dated Aug. 7, 2020, issued in connection with Australian Application No. 2019236722, 4 pages.
Australian Patent Office, Examination Report dated Jun. 28, 2021, issued in connection with Australian Patent Application No. 2019395022, 2 pages.
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages.
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages.
Bertrand et al. “Adaptive Distributed Noise Reduction for Speech Enhancement in Wireless Acoustic Sensor Networks” Jan. 2010, 4 pages.
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages.
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages.
Canadian Patent Office, Canadian Examination Report dated Nov. 2, 2021, issued in connection with Canadian Application No. 3067776, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Oct. 26, 2021, issued in connection with Canadian Application No. 3072492, 3 pages.
Canadian Patent Office, Canadian Examination Report dated Mar. 9, 2021, issued in connection with Canadian Application No. 3067776, 5 pages.
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages.
Chinese Patent Office, Chinese Office Action and Translation dated Jul. 2, 2021, issued in connection with Chinese Application No. 201880077216.4, 22 pages.
Chinese Patent Office, Chinese Office Action and Translation dated Mar. 30, 2021, issued in connection with Chinese Application No. 202010302650.7, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages.
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages.
Chinese Patent Office, First Office Action and Translation dated May 27, 2021, issued in connection with Chinese Application No. 201880026360.5, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 28, 2020, issued in connection with Chinese Application No. 201880072203.8, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 5, 2019, issued in connection with Chinese Application No. 201780072651.3, 19 pages.
Chinese Patent Office, First Office Action dated Feb. 28, 2020, issued in connection with Chinese Application No. 201780061543.6, 29 pages.
Chinese Patent Office, Second Office Action and Translation dated May 11, 2020, issued in connection with Chinese Application No. 201780061543.6, 17 pages.
Chinese Patent Office, Second Office Action and Translation dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages.
Chinese Patent Office, Second Office Action and Translation dated Sep. 23, 2019, issued in connection with Chinese Application No. 201780025028.2, 15 pages.
Chinese Patent Office, Second Office Action and Translation dated Mar. 31, 2020, issued in connection with Chinese Application No. 201780072651.3, 17 pages.
Chinese Patent Office, Third Office Action and Translation dated Sep. 16, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages.
Chinese Patent Office, Third Office Action and Translation dated Aug. 5, 2020, issued in connection with Chinese Application No. 201780072651.3, 10 pages.
Chinese Patent Office, Translation of Office Action dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 8 pages.
Chung et al. Empirical Evaluation of Gated Recurrent Neural Network on Sequence Modeling. Dec. 11, 2014, 9 pages.
Cipriani,. The complete list of OK, Google commands—CNET. Jul. 1, 2016, 5 pages. [online], [retrieved on Jan. 15, 2020]. Retrieved from the Internet: (URL:https://web.archive.org/web/20160803230926/https://www.cnet.com/how-to/complete-list-of-ok-google--commands/).
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages.
Couke et al. Efficient Keyword Spotting using Dilated Convolutions and Gating, arXiv:1811.07684v2, Feb. 18, 2019, 5 pages.
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages.
Dell, Inc. “Start Here,” Jun. 2000, 2 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 30, 2020, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2020, issued in connection with Japanese Patent Application No. 2019-073348, 10 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2021, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages.
Japanese Patent Office, Office Action and Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 5 pages.
Japanese Patent Office, Office Action Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 2 pages.
Japanese Patent Office, Office Action Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 8 pages.
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861.
Johnson, “Implementing Neural Networks into Modern Technology,” IJCNN'99. International Joint Conference on Neural Networks . Proceedings [Cat. No. 99CH36339], Washington, DC, USA, 1999, pp. 1028-1032, vol. 2, doi: 10.1109/IJCNN.1999.831096. [retrieved on Jun. 22, 2020].
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages.
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages.
Joseph Szurley et al, “Efficient computation of microphone utility in a wireless acoustic sensor network with multi-channel Wiener filter based noise reduction”, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, Mar. 25-30, 2012, pp. 2657-2660, XP032227701, DOI: 10.1109/ICASSP .2012.6288463 ISBN: 978-1-4673-0045-2.
Ketabdar et al. Detection of Out-of-Vocabulary Words in Posterior Based ASR. Proceedings of Interspeech 2007, Aug. 27, 2007, 4 pages.
Kim et al. Character-Aware Neural Language Models. Retrieved from the Internet: URL: https://arxiv.org/pdf/1508.06615v3.pdf, Oct. 16, 2015, 9 pages.
Korean Patent Office, Korean Examination Report and Translation dated Apr. 26, 2021, issued in connection with Korean Application No. 10-2021-7008937, 15 pages.
Korean Patent Office, Korean Office Action and Translation dated Oct. 14, 2021, issued in connection with Korean Application No. 10-2020-7011843, 29 pages.
Korean Patent Office, Korean Office Action and Translation dated Aug. 16, 2019, issued in connection with Korean Application No. 10-2018-7027452, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Apr. 2, 2020, issued in connection with Korean Application No. 10-2020-7008486, 12 pages.
Korean Patent Office, Korean Office Action and Translation dated Mar. 25, 2020, issued in connection with Korean Application No. 10-2019-7012192, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Aug. 26, 2020, issued in connection with Korean Application No. 10-2019-7027640, 16 pages.
Korean Patent Office, Korean Office Action and Translation dated Mar. 30, 2020, issued in connection with Korean Application No. 10-2020-7004425, 5 pages.
Korean Patent Office, Korean Office Action and Translation dated Jan. 4, 2021, issued in connection with Korean Application No. 10-2020-7034425, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Sep. 9, 2019, issued in connection with Korean Application No. 10-2018-7027451, 21 pages.
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027451, 7 pages.
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Application No. 10-2018-7027452, 5 pages.
Lei et al. Accurate and Compact Large Vocabulary Speech Recognition on Mobile Devices. Interspeech 2013, Aug. 25, 2013, 4 pages.
Lengerich et al. An End-to-End Architecture for Keyword Spotting and Voice Activity Detection, arXiv:1611.09405v1, Nov. 28, 2016, 5 pages.
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages.
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 4-6, 2012, 4pages.
Matrix—The Ultimate Development Board Sep. 14, 2019 Matrix—The Ultimate Development Board Sep. 14, 2019 https-//web.archive.org/web/20190914035838/https-//www.matrix.one/ , 1 page.
Mesaros et al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 Challenge. IEEE/ACM Transactions on Audio, Speech, and Language Processing. Feb. 2018, 16 pages.
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages.
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page.
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages.
Non-Final Office Action dated Jul. 12, 2021, issued in connection with U.S. Appl. No. 17/008,104, filed Aug. 31, 2020, 6 pages.
Non-Final Office Action dated Jun. 18, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 9 pages.
Non-Final Office Action dated Dec. 21, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages.
Non-Final Office Action dated Jul. 22, 2021, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 19 pages.
Non-Final Office Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/660,197, filed Oct. 22, 2019, 9 pages.
Non-Final Office Action dated Jun. 25, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 11 pages.
Non-Final Office Action dated Jul. 8, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 12 pages.
Non-Final Office Action dated Dec. 9, 2020, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 35 pages.
Non-Final Office Action dated Jul. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 18 pages.
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages.
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages.
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages.
Non-Final Office Action dated Nov. 4, 2019, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 16 pages.
Non-Final Office Action dated Sep. 5, 2019, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 14 pages.
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages.
Notice of Allowance dated Jun. 17, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 6 pages.
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages.
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages.
Notice of Allowance dated Dec. 18, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 13 pages.
Notice of Allowance dated Feb. 18, 2020, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 8 pages.
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 9 pages.
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 8 pages.
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 8 pages.
Notice of Allowance dated Aug. 19, 2020, issued in connection with U.S. Appl. No. 16/271,560, filed Feb. 8, 2019, 9 pages.
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages.
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages.
Notice of Allowance dated Mar. 19, 2021, issued in connection with U.S. Appl. No. 17/157,686, filed Jan. 25, 2021, 11 pages.
Notice of Allowance dated Aug. 2, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 5 pages.
Notice of Allowance dated Dec. 2, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 11 pages.
Notice of Allowance dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages.
Notice of Allowance dated Jul. 20, 2020, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 12 pages.
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages.
Notice of Allowance dated Oct. 20, 2021, issued in connection with U.S. Appl. No. 16/439,032, filed Jun. 12, 2019, 8 pages.
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages.
Notice of Allowance dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 8 pages.
Notice of Allowance dated Feb. 21, 2020, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 6 pages.
Notice of Allowance dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/672,764, filed Nov. 4, 2019, 10 pages.
Notice of Allowance dated Jan. 21, 2021, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 7 pages.
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 5 pages.
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages.
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages.
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 13 pages.
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 10 pages.
Notice of Allowance dated Aug. 23, 2021, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages.
Notice of Allowance dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/814,844, filed Mar. 10, 2020, 8 pages.
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 3, 2018, 5 pages.
Notice of Allowance dated Oct. 25, 2021, issued in connection with U.S. Appl. No. 16/723,909, filed Dec. 20, 2019, 11 pages.
Notice of Allowance dated Aug. 26, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 9 pages.
Notice of Allowance dated May 26, 2021, issued in connection with U.S. Appl. No. 16/927,670, filed Jul. 13, 2020, 10 pages.
Notice of Allowance dated Apr. 27, 2020, issued in connection with U.S. Appl. No. 16/700,607, filed Dec. 2, 2019, 10 pages.
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages.
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/699,982, filed Sep. 8, 2017, 17 pages.
Notice of Allowance dated May 28, 2021, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 9 pages.
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages.
Notice of Allowance dated Jan. 29, 2021, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 9 pages.
Notice of Allowance dated Jun. 29, 2020, issued in connection with U.S. Appl. No. 16/216,357, filed Dec. 11, 2018, 8 pages.
Notice of Allowance dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 9 pages.
Notice of Allowance dated May 29, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 6 pages.
Notice of Allowance dated Sep. 29, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 5 pages.
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages.
Notice of Allowance dated Jun. 3, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 7 pages.
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages.
Notice of Allowance dated Jul. 30, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 9 pages.
Notice of Allowance dated Mar. 30, 2020, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 5 pages.
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053517, filed on Sep. 28, 2018, 10 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 10, 2020, issued in connection with International Application No. PCT/US2020/044250, filed on Jul. 30, 2020, 15 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 11, 2019, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019, 18 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 13, 2018, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 11 pages.
International Bureau, International Search Report and Written Opinion dated Jan. 14, 2019, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 10 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 14, 2020, issued in connection with International Application No. PCT/US2020/017150, filed on Feb. 7, 2020, 27 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 14, 2017, issued in connection with International Application No. PCT/US2017/045521, filed on Aug. 4, 2017, 10 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 17, 2019, issued in connection with International Application No. PCT/US2019/032934, filed on May 17, 2019, 17 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019052841, filed on Sep. 25, 2019, 12 pages.
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/US2019064907, filed on Dec. 6, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/US2019/064907, filed on Dec. 6, 2019, 9 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 20, 2019, issued in connection with International Application No. PCT/US2019052654, filed on Sep. 24, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 21, 2020, issued in connection with International Application No. PCT/US2020/037229, filed on Jun. 11, 2020, 17 pages.
International Bureau, International Search Report and Written Opinion dated Oct. 22, 2020, issued in connection with International Application No. PCT/US2020/044282, filed on Jul. 30, 2020, 15 pages.
International Bureau, International Search Report and Written Opinion dated Apr. 23, 2021, issued in connection with International Application No. PCT/US2021/070007, filed on Jan. 6, 2021, 11 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 24, 2018, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 12 pages.
International Bureau, International Search Report and Written Opinion, dated Feb. 27, 2019, issued in connection with International Application No. PCT/US2018/053123, filed on Sep. 27, 2018, 16 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 27, 2019, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 13 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 29, 2019, issued in connection with International Application No. PCT/US2019/053253, filed on Sep. 29, 2019, 14 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 4, 2019, issued in connection with International Application No. PCT/US2019/033945, filed on May 24, 2019, 8 pages.
International Bureau, International Search Report and Written Opinion dated Aug. 6, 2020, issued in connection with International Application No. PCT/FR2019/000081, filed on May 24, 2019, 12 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2018, issued in connection with International Application No. PCT/US2018/050050, filed on Sep. 7, 2018, 9 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2019, issued in connection with International Application No. PCT/US2019050852, filed on Sep. 12, 2019, 10 pages.
International Bureau, International Search Report and Written Opinion dated Oct. 6, 2017, issued in connection with International Application No. PCT/US2017/045551, filed on Aug. 4, 2017, 12 pages.
International Bureau, International Search Report and Written Opinion dated Apr. 8, 2020, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Feb. 8, 2021, issued in connection with International Application No. PCT/EP2020/082243, filed on Nov. 16, 2020, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Feb. 12, 2021, issued in connection with International Application No. PCT/US2020/056632, filed on Oct. 21, 2020, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Apr. 23, 2021, issued in connection with International Application No. PCT/US2020/066231, filed on Dec. 18, 2020, 9 pages.
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages.
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages.
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Jun. 8, 2021, issued in connection with Japanese Patent Application No. 2019-073348, 5 pages.
Japanese Patent Office, English Translation of Office Action dated Nov. 17, 2020, issued in connection with Japanese Application No. 2019-145039, 5 pages.
Japanese Patent Office, English Translation of Office Action dated Aug. 27, 2020, issued in connection with Japanese Application No. 2019-073349, 6 pages.
Japanese Patent Office, English Translation of Office Action dated Jul. 30, 2020, issued in connection with Japanese Application No. 2019-517281, 26 pages.
Japanese Patent Office, Non-Final Office Action and Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Jun. 22, 2021, issued in connection with Japanese Patent Application No. 2020-517935, 4 pages.
Japanese Patent Office, Office Action and Translation dated Mar. 16, 2021, issued in connection with Japanese Patent Application No. 2020-506725, 7 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 17, 2020, issued in connection with Japanese Patent Application No. 2019-145039, 7 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 20, 2021, issued in connection with Japanese Patent Application No. 2020-513852, 9 pages.
Japanese Patent Office, Office Action and Translation dated Feb. 24, 2021, issued in connection with Japanese Patent Application No. 2019-517281, 4 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 27, 2021, issued in connection with Japanese Patent Application No. 2020-518400, 10 pages.
Japanese Patent Office, Office Action and Translation dated Aug. 27, 2020, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages.
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 25 pages.
Non-Final Office Action dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 10 pages.
Non-Final Office Action dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages.
Non-Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 7 pages.
Non-Final Office Action dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/439,032, filed Jun. 12, 2019, 13 pages.
Non-Final Office Action dated May 23, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 36 pages.
Non-Final Office Action dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 14 pages.
Non-Final Office Action dated Sep. 23, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 17 pages.
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages.
Non-Final Office Action dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 26 pages.
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages.
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages.
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages.
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages.
Non-Final Office Action dated Oct. 26, 2021, issued in connection with U.S. Appl. No. 16/736,725, filed Jan. 7, 2020, 12 pages.
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages.
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 8 pages.
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 8 pages.
Non-Final Office Action dated Mar. 27, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 8 pages.
Non-Final Office Action dated May 27, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 14 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 13 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 14 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 8 pages.
Non-Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated Oct. 28, 2021, issued in connection with U.S. Appl. No. 16/378,516, filed Apr. 8, 2019, 10 pages.
Non-Final Office Action dated Oct. 28, 2021, issued in connection with U.S. Appl. No. 17/247,736, filed Dec. 21, 2020, 12 pages.
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages.
Non-Final Office Action dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 18 pages.
Non-Final Office Action dated Sep. 29, 2020, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 12 pages.
Non-Final Office Action dated Dec. 3, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated Jul. 3, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 7 pages.
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages.
Non-Final Office Action dated Oct. 3, 2018, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 20 pages.
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages.
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages.
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages.
Non-Final Office Action dated Aug. 4, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 30 pages.
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages.
Non-Final Office Action dated Nov. 5, 2021, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 21 pages.
Non-Final Office Action dated Apr. 6, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 22 pages.
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages.
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages.
Non-Final Office Action dated Jan. 6, 2021, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 13 pages.
Non-Final Office Action dated Mar. 6, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 8 pages.
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages.
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages.
Non-Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 19 pages.
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages.
Non-Final Office Action dated Apr. 9, 2021, issued in connection with U.S. Appl. No. 16/780,483, filed Feb. 3, 2020, 45 pages.
Final Office Action dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Final Office Action dated Feb. 24, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages.
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages.
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages.
Final Office Action dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 38 pages.
Final Office Action dated Oct. 4, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 17 pages.
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages.
Final Office Action dated Feb. 7, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages.
Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 41 pages.
Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 12 pages.
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.euffiles/docs/DIRHA_D1.1., 31 pages.
First Action Interview Office Action dated Mar. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 4 pages.
First Action Interview Office Action dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages.
First Action Interview Office Action dated Jun. 15, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 4 pages.
First Action Interview Office Action dated Jun. 2, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages.
First Action Interview Office Action dated Jan. 22, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 3 pages.
First Action Interview Office Action dated Jul. 5, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages.
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages.
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages.
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages.
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages.
Hans Speidel: “Chatbot Training: How to use training data to provide fully automated customer support”, Jun. 29, 2017, pp. 1-3, XP055473185, Retrieved from the Internet: URL:https://www.crowdguru.de/wp-content/uploads/Case-Study-Chatbot-training-How-to-use-training-data-to-provide-fully-automated-customer-support.pdf [retrieved on May 7, 2018].
Helwani et al “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages.
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages.
Indian Patent Office, Examination Report dated May 24, 2021, issued in connection with Indian Patent Application No. 201847035595, 6 pages.
Indian Patent Office, Examination Report dated Feb. 25, 2021, issued in connection with Indian Patent Application No. 201847035625, 6 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 1, 2021, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019, 13 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jul. 1, 2021, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Aug. 10, 2021, issued in connection with International Application No. PCT/US2020/017150, filed on Feb. 7, 2020, 20 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Dec. 10, 2020, issued in connection with International Application No. PCT/US2019/033945, filed on May 25, 2018, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 10, 2020, issued in connection with International Application No. PCT/US2018/050050, filed on Sep. 7, 2018, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 15, 2021, issued in connection with International Application No. PCT/US2019/054332, filed on Oct. 2, 2019, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 25, 2021, issued in connection with International Application No. PCT/US2019/050852, filed on Sep. 12, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Aug. 27, 2019, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018/053517, filed on Sep. 28, 2018, 10 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Feb. 5, 2019, issued in connection with International Application No. PCT/US2017/045521, filed on Aug. 4, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Feb. 5, 2019, issued in connection with International Application No. PCT/US2017/045551, filed on Aug. 4, 2017, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 7, 2021, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 11 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052654, filed on Sep. 24, 2019, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052841, filed on Sep. 25, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/053253, filed on Sep. 26, 2019, 10 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed on Sep. 28, 2017, 9 pages.
International Bureau, International Preliminary Report on Patentability, dated Jun. 17, 2021, issued in connection with International Application No. PCT/US2019/064907, filed on Dec. 6, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Feb. 20, 2020, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 23, 2019, issued in connection with International Application No. PCT/US2017/057220, filed on Oct. 18, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053123, filed on Sep. 27, 2018, 12 pages.
Wen et al. A Network-based End-to-End Trainable Task-oriented Dialogue System, Corr (Arxiv), Apr. 15, 2016, 11 pages.
Wu et al. End-to-End Recurrent Entity Network for Entity-Value Independent Goal-Oriented Dialog Learning. DSTC6—Dialog System Technology Challenges, Dec. 10, 2017, 5 pages.
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304.
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages.
Xiaoguang et al. “Robust Small-Footprint Keyword Spotting Using Sequence-To-Sequence Model with Connectionist Temporal Classifier”, 2019 IEEE, Sep. 28, 2019, 5 pages.
Xu et al. An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking. Arxiv.org, Cornell University Library, May 3, 2018, 10 pages.
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages.
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages.
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages.
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages.
Zaykovskiy, Dmitry. Survey of the Speech Recognition Techniques for Mobile Devices. Proceedings of Specom 2006, Jun. 25, 2006, 6 pages.
Korean Patent Office, Korean Examination Report and Translation dated Apr. 19, 2022, issued in connection with Korean Application No. 10-2021-7008937, 14 pages.
Korean Patent Office, Korean Examination Report and Translation dated Nov. 25, 2021, issued in connection with Korean Application No. 10-2021-7008937, 14 pages.
Korean Patent Office, Korean Examination Report and Translation dated Jul. 26, 2022, issued in connection with Korean Application No. 10-2022-7016656, 17 pages.
Korean Patent Office, Korean Examination Report and Translation dated Dec. 27, 2021, issued in connection with Korean Application No. 10-2021-7008937, 22 pages.
Korean Patent Office, Korean Examination Report and Translation dated Oct. 31, 2021, issued in connection with Korean Application No. 10-2022-7024007, 10 pages.
Molina et al., “Maximum Entropy-Based Reinforcement Learning Using a Confidence Measure in Speech Recognition for Telephone Speech,” in IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, pp. 1041-1052, Jul. 2010, doi: 10.1109/TASL.2009.2032618. [Retrieved online] URLhttps://ieeexplore.ieee.org/document/5247099?partnum=5247099&searchProductType=IEEE%20Journals%20Transactions.
Non-Final Office Action dated Oct. 5, 2022, issued in connection with U.S. Appl. No. 17/449,926, filed Oct. 4, 2021, 11 pages.
Non-Final Office Action dated Feb. 11, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 9 pages.
Non-Final Office Action dated Nov. 14, 2022, issued in connection with U.S. Appl. No. 17/077,974, filed Oct. 22, 2020, 6 pages.
Non-Final Office Action dated Sep. 14, 2022, issued in connection with U.S. Appl. No. 17/446,690, filed Sep. 1, 2021, 10 pages.
Non-Final Office Action dated Aug. 15, 2022, issued in connection with U.S. Appl. No. 17/448,015, filed Sep. 17, 2021, 12 pages.
Non-Final Office Action dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 17/247,507, filed Dec. 14, 2020, 9 pages.
Non-Final Office Action dated Oct. 18, 2022, issued in connection with U.S. Appl. No. 16/949,973, filed Nov. 23, 2020, 31 pages.
Non-Final Office Action dated Sep. 19, 2022, issued in connection with U.S. Appl. No. 17/385,542, filed Jul. 26, 2021, 9 pages.
Non-Final Office Action dated Oct. 20, 2022, issued in connection with U.S. Appl. No. 17/532,674, filed Nov. 22, 2021, 52 pages.
Non-Final Office Action dated Mar. 23, 2022, issued in connection with U.S. Appl. No. 16/907,953, filed Jun. 22, 2020, 7 pages.
Non-Final Office Action dated Sep. 23, 2022, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 25 pages.
Non-Final Office Action dated May 24, 2022, issued in connection with U.S. Appl. No. 17/101,949, filed Nov. 23, 2020, 10 pages.
Non-Final Office Action dated Oct. 25, 2022, issued in connection with U.S. Appl. No. 17/549,034, filed Dec. 13, 2021, 20 pages.
Non-Final Office Action dated May 26, 2022, issued in connection with U.S. Appl. No. 16/989,805, filed Aug. 10, 2020, 14 pages.
Non-Final Office Action dated Mar. 28, 2022, issued in connection with U.S. Appl. No. 17/222,151, filed Apr. 5, 2021, 5 pages.
Non-Final Office Action dated Nov. 29, 2021, issued in connection with U.S. Appl. No. 16/989,350, filed Aug. 10, 2020, 15 pages.
Non-Final Office Action dated Sep. 30, 2022, issued in connection with U.S. Appl. No. 17/353,254, filed Jun. 21, 2021, 22 pages.
Non-Final Office Action dated Jan. 4, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 14 pages.
Non-Final Office Action dated Nov. 4, 2022, issued in connection with U.S. Appl. No. 17/445,272, filed Aug. 17, 2021, 22 pages.
Non-Final Office Action dated Oct. 4, 2022, issued in connection with U.S. Appl. No. 16/915,234, filed Jun. 29, 2020, 16 pages.
Non-Final Office Action dated Dec. 7, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 36 pages.
Non-Final Office Action dated Jan. 7, 2022, issued in connection with U.S. Appl. No. 17/135,123, filed Dec. 28, 2020, 16 pages.
Non-Final Office Action dated Mar. 7, 2022, issued in connection with U.S. Appl. No. 16/812,758, filed Mar. 9, 2020, 18 pages.
Non-Final Office Action dated Feb. 8, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 17 pages.
Notice of Allowance dated Nov. 2, 2022, issued in connection with U.S. Appl. No. 16/989,805, filed Aug. 10, 2020, 5 pages.
Notice of Allowance dated Nov. 3, 2022, issued in connection with U.S. Appl. No. 17/448,015, filed Sep. 17, 2021, 7 pages.
Notice of Allowance dated Nov. 9, 2022, issued in connection with U.S. Appl. No. 17/385,542, filed Jul. 26, 2021, 8 pages.
Notice of Allowance dated Feb. 1, 2022, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 9 pages.
Notice of Allowance dated Mar. 1, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 9 pages.
Notice of Allowance dated Jun. 10, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 8 pages.
Notice of Allowance dated May 11, 2022, issued in connection with U.S. Appl. No. 17/135,123, filed Dec. 28, 2020, 8 pages.
Notice of Allowance dated May 11, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 7 pages.
Notice of Allowance dated Jul. 12, 2022, issued in connection with U.S. Appl. No. 16/907,953, filed Jun. 22, 2020, 8 pages.
Notice of Allowance dated Jul. 12, 2022, issued in connection with U.S. Appl. No. 17/391,404, filed Aug. 2, 2021, 13 pages.
Notice of Allowance dated Apr. 13, 2022, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 7 pages.
Notice of Allowance dated Dec. 13, 2021, issued in connection with U.S. Appl. No. 16/879,553, filed May 20, 2020, 15 pages.
Notice of Allowance dated Jan. 14, 2022, issued in connection with U.S. Appl. No. 16/966,397, filed Jul. 30, 2020, 5 pages.
Notice of Allowance dated Aug. 15, 2022, issued in connection with U.S. Appl. No. 17/101,949, filed Nov. 23, 2020, 11 pages.
Notice of Allowance dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 16/736,725 , filed Jan. 1, 2020, 11 pages.
Notice of Allowance dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 17/135,347, filed Dec. 28, 2020, 14 pages.
Notice of Allowance dated Nov. 17, 2022, issued in connection with U.S. Appl. No. 17/486,222, filed Sep. 27, 2021, 10 pages.
Notice of Allowance dated Jul. 18, 2022, issued in connection with U.S. Appl. No. 17/222,151, filed Apr. 5, 2021, 5 pages.
Notice of Allowance dated Dec. 2, 2021, issued in connection with U.S. Appl. No. 16/841,116, filed Apr. 6, 2020, 5 pages.
Notice of Allowance dated Jun. 20, 2022, issued in connection with U.S. Appl. No. 16/947,895, filed Aug. 24, 2020, 7 pages.
Notice of Allowance dated Dec. 21, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 11 pages.
Notice of Allowance dated Nov. 21, 2022, issued in connection with U.S. Appl. No. 17/454,676, filed Nov. 12, 2021, 8 pages.
Notice of Allowance dated Sep. 21, 2022, issued in connection with U.S. Appl. No. 17/128,949, filed Dec. 21, 2020, 8 pages.
Notice of Allowance dated Nov. 22, 2021, issued in connection with U.S. Appl. No. 16/834,483, filed Mar. 30, 2020, 10 pages.
Notice of Allowance dated Sep. 22, 2022, issued in connection with U.S. Appl. No. 17/163,506, filed Jan. 31, 2021, 13 pages.
Notice of Allowance dated Sep. 22, 2022, issued in connection with U.S. Appl. No. 17/248,427, filed Jan. 25, 2021, 9 pages.
Notice of Allowance dated Mar. 24, 2022, issued in connection with U.S. Appl. No. 16/378,516, filed Apr. 8, 2019, 7 pages.
Notice of Allowance dated Aug. 26, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 8 pages.
Notice of Allowance dated Oct. 26, 2022, issued in connection with U.S. Appl. No. 17/486,574, filed Sep. 27, 2021, 11 pages.
Notice of Allowance dated Jun. 27, 2022, issued in connection with U.S. Appl. No. 16/812,758, filed Mar. 9, 2020, 16 pages.
Notice of Allowance dated Sep. 28, 2022, issued in connection with U.S. Appl. No. 17/444,043, filed Jul. 29, 2021, 17 pages.
Notice of Allowance dated Jul. 29, 2022, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 6 pages.
Notice of Allowance dated Mar. 3, 2022, issued in connection with U.S. Appl. No. 16/679,538, filed Nov. 11, 2019, 7 pages.
Notice of Allowance dated Apr. 8, 2022, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 7 pages.
Notice of Allowance dated Dec. 9, 2021, issued in connection with U.S. Appl. No. 16/845,946, filed Apr. 10, 2020, 10 pages.
Notice of Allowance dated Feb. 9, 2022, issued in connection with U.S. Appl. No. 17/247,736, filed Dec. 21, 2020, 8 pages.
Pre-Appeal Brief Decision dated Jan. 18, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 2 pages.
Tsung-Hsien Wen et al: “A Network-based End-to-End Trainable Task-oriented Dialogue System”, Corr (Arxiv), vol. 1604.04562v1, Apr. 15, 2016 (Apr. 15, 2016), pp. 1-11.
Wikipedia. “The Wayback Machine”, Speech recognition software for Linux, Sep. 22, 2016, 4 pages. [retrieved on Mar. 28, 2022], Retrieved from the Internet: URL: https://web.archive.org/web/20160922151304/https://en.wildpedia.org/wiki/Speech_recognition_software_for_Linux.
Advisory Action dated Nov. 7, 2022, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 4 pages.
Advisory Action dated Feb. 28, 2022, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Nov. 10, 2022, issued in connection with Australian Application No. 2018312989, 2 pages.
Australian Patent Office, Australian Examination Report Action dated May 19, 2022, issued in connection with Australian Application No. 2021212112, 2 pages.
Australian Patent Office, Australian Examination Report Action dated Sep. 28, 2022, issued in connection with Australian Application No. 2018338812, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Mar. 4, 2022, issued in connection with Australian Application No. 2021202786, 2 pages.
Canadian Patent Office, Canadian Examination Report dated Dec. 1, 2021, issued in connection with Canadian Application No. 3096442, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Sep. 14, 2022, issued in connection with Canadian Application No. 3067776, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Oct. 19, 2022, issued in connection with Canadian Application No. 3123601, 5 pages.
Canadian Patent Office, Canadian Examination Report dated Mar. 29, 2022, issued in connection with Canadian Application No. 3111322, 3 pages.
Canadian Patent Office, Canadian Examination Report dated Jun. 7, 2022, issued in connection with Canadian Application No. 3105494, 5 pages.
Chinese Patent Office, First Office Action and Translation dated Jun. 1, 2021, issued in connection with Chinese Application No. 201980089721.5, 21 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 1, 2021, issued in connection with Chinese Application No. 201780077204.7, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Sep. 19, 2022, issued in connection with Chinese Application No. 201980056604.9, 13 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 20, 2021, issued in connection with Chinese Application No. 202010302650.7, 10 pages.
Chinese Patent Office, Second Office Action and Translation dated Mar. 3, 2022, issued in connection with Chinese Application No. 201880077216.4, 11 pages.
Co-pending U.S. Application No. 202117236559, inventor Millington; Nicholas A.J., filed on Apr. 21, 2021.
European Patent Office, Decision to Refuse European Patent Application dated May 30, 2022, issued in connection with European Application No. 17200837.7, 4 pages.
European Patent Office, European EPC Article 94.3 mailed on Mar. 11, 2022, issued in connection with European Application No. 19731415.6, 7 pages.
European Patent Office, European EPC Article 94.3 mailed on May 2, 2022, issued in connection with European Application No. 20185599.6, 7 pages.
European Patent Office, European EPC Article 94.3 mailed on Jun. 21, 2022, issued in connection with European Application No. 19780508.8, 5 pages.
European Patent Office, European EPC Article 94.3 mailed on Mar. 3, 2022, issued in connection with European Application No. 19740292.8, 10 pages.
European Patent Office, European EPC Article 94.3 mailed on Jun. 30, 2022, issued in connection with European Application No. 19765953.5, 4 pages.
European Patent Office, European Extended Search Report dated Oct. 7, 2022, issued in connection with European Application No. 22182193.7, 8 pages.
European Patent Office, European Extended Search Report dated Apr. 22, 2022, issued in connection with European Application No. 21195031.6, 14 pages.
European Patent Office, European Extended Search Report dated Jun. 23, 2022, issued in connection with European Application No. 22153180.9, 6 pages.
European Patent Office, European Extended Search Report dated Jun. 30, 2022, issued in connection with European Application No. 21212763.3, 9 pages.
European Patent Office, European Extended Search Report dated Jul. 8, 2022, issued in connection with European Application No. 22153523.0, 9 pages.
European Patent Office, European Search Report dated Mar. 1, 2022, issued in connection with European Application No. 21180778.9, 9 pages.
European Patent Office, European Search Report dated Oct. 4, 2022, issued in connection with European Application No. 22180226.7, 6 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Jul. 15, 2022, issued in connection with European Application No. 17792272.1, 11 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Feb. 4, 2022, issued in connection with European Application No. 17757075.1, 10 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Dec. 9, 2021, issued in connection with European Application No. 17200837.7, 10 pages.
Final Office Action dated Jun. 1, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 20 pages.
Final Office Action dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 26 pages.
Final Office Action dated Dec. 17, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 12 pages.
Final Office Action dated Mar. 21, 2022, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 23 pages.
Final Office Action dated Aug. 22, 2022, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 37 pages.
Final Office Action dated Jul. 27, 2022, issued in connection with U.S. Appl. No. 16/989,350, filed Aug. 10, 2020, 15 pages.
Final Office Action dated Nov. 29, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 11 pages.
Final Office Action dated Jun. 7, 2022, issued in connection with U.S. Appl. No. 16/736,725, filed Jan. 7, 2020, 14 pages.
International Bureau, International Preliminary Report on Patentability, dated Jul. 21, 2022, issued in connection with International Application No. PCT/US2021/070007, filed on Jan. 6, 2021, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 26, 2022, issued in connection with International Application No. PCT/US2020/056632, filed on Oct. 21, 2020, 7 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Oct. 4, 2022, issued in connection with Japanese Patent Application No. 2021-535871, 6 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Jul. 26, 2022, issued in connection with Japanese Patent Application No. 2020-513852, 10 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Sep. 13, 2022, issued in connection with Japanese Patent Application No. 2021-163622, 12 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Nov. 28, 2021, issued in connection with Japanese Patent Application No. 2020-550102, 9 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 15, 2022, issued in connection with Japanese Patent Application No. 2021-146144, 9 pages.
Japanese Patent Office, Office Action dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-513852, 6 pages.
Korean Patent Office, Korean Examination Report and Translation dated Oct. 13, 2022, issued in connection with Korean Application No. 10-2021-7030939, 4 pages.
Related Publications (1)
Number Date Country
20220044695 A1 Feb 2022 US
Continuations (2)
Number Date Country
Parent 16600644 Oct 2019 US
Child 17327911 US
Parent 15717621 Sep 2017 US
Child 16600644 US