Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates generally to earth-boring bits used to drill a borehole for the ultimate recovery of oil, gas or minerals. More particularly, the invention relates to rolling cone rock bits and to an improved cutting structures for such bits.
2. Background of the Technology
An earth-boring drill bit is coupled to the lower end of a drill string and is rotated by revolving the drill string at the surface or by actuation of downhole motors or turbines, or by both methods. With weight applied to the drill string (i.e., weight-on-bit or WOB), the rotating drill bit engages the formation and forms a borehole along a predetermined path toward a target zone. The borehole formed in the drilling process has a diameter generally equal to the diameter or “gage” of the drill bit.
Earth boring bits used in oilfield drilling operations are frequently one of two types: fixed cutter bits or rolling cutter bits. Fixed cutter drill bits have multiple cutting surfaces that are pressed into and dragged through a formation. This type of bit primarily cuts the formation by shearing and scraping. Rolling cutter bits include one or more rotatable cutters that perform their cutting function due to the rolling movement of the cutters acting against the formation material. The cutters roll and slide upon the bottom of the borehole as the bit is rotated, the cutters thereby engaging and disintegrating the formation material in its path. The rotatable cutters may be described as generally conical in shape and are therefore sometimes referred to as rolling cones or rolling cone cutters. The earth disintegrating action of rolling cutter bits is enhanced by providing a plurality of cutters or cutting elements that extend from each of the rolling cones. Applying weight to the drill bit while rotating forces the cutting elements into engagement with the earth and rotates the cones. A rolling cutter drill bit primarily cuts the formation by compression, crushing, gouging, chipping and scraping. Two common classifications of rolling cutter drill bits include “insert” bits and “tooth” bits. In insert bits, the cutting elements extending from the cones comprise inserts that are press fit into undersized apertures in the cone surface prior to drilling with the bit. In tooth bits, the cutting elements comprise teeth that are milled, cast or otherwise integrally formed with the rolling cone.
While drilling, it is conventional practice to pump drilling fluid (also referred to as “drilling mud”) down the length of the tubular drill string where it is jetted from the face of the drill bit through nozzles. The hydraulic energy thus supplied flushes the drilled cuttings away from the cutters and the borehole bottom, and carries them to the surface through the annulus that exists between the tubular drill string and the borehole wall.
In oil and gas drilling, the cost of drilling a borehole is proportional to the length of time it takes to drill to the desired depth and location. The time required to drill the well, in turn, is greatly affected by the number of times the drill bit must be changed in order to reach the targeted formation. This is the case because each time the bit is changed, the entire string of drill pipes, which may be miles long, must be retrieved from the borehole, section-by-section. Once the drill string has been retrieved and the new bit installed, the bit must be lowered to the bottom of the borehole on the drill string, which again must be constructed section-by-section.
As is thus obvious, this process, known as a “trip” of the drill string, requires considerable time, effort and expense. Because drilling costs are typically thousands of dollars per hour, it is desirable to employ drill bits which will drill faster and longer, and which are usable over a wider range of formation hardnesses. The length of time that a drill bit may be employed before it must be changed depends upon its ability to “hold gage” (meaning its ability to maintain a full gage borehole diameter), its rate of penetration (ROP), as well as its durability or ability to maintain an acceptable ROP. For the foregoing reasons, it is desirable for the cutting elements of a rolling cone bit to be of a hard, strong, and durable material capable of drilling through hard and/or soft formations without rapid wear.
The shape and positioning of the cutting elements (both teeth and inserts) also impact bit durability and rate of penetration (ROP) and thus, are important to the success of a particular bit design. Cutting elements may have many different shapes, but are commonly chisel or conical in shape. When rolling cutters engage a formation under pressure, cracks develop in the formation and rock fragments and chips may become dislodged. As the cone rotates, the cutting elements penetrate the formation forming a crush zone beneath the tip of each cutter element. As each cutter element penetrates further into the formation, cracks may be formed around the crater created by the cutter element. Chisel shaped cutters commonly form a pair of hertzian cracks at each end of the crest that lead to chip formation. The size of the chips formed while drilling is generally related to the ROP of the drill bit.
During operation, cutting elements undergo large stress fluctuations due to the rotation of the rolling cutters. Large stresses and large stress fluctuations may cause cutting elements to break. As cutting elements penetrate the formation, the stresses typically increase. When cracks form in the formation, some cutter element stress is relieved immediately as the cutter element penetrates further into the formation. Large stress fluctuations also have an effect on the bit bearings positioned between each roller cone and a journal extending from the bit body, and can negatively impact bit bearing operational life.
Accordingly, there remains a need in the art for a drill bits and associated cutting elements that provide a relatively high rate-of-penetration and footage drilled, while at the same time, minimize the effects of wear and the tendency for breakage. Such bits would be particularly well received if they enhanced formation chip size and removal, while minimizing stresses imposed on the cutting elements and bearings.
These and other needs in the art are addressed in one embodiment by a rolling cone drill bit for cutting a borehole. In an embodiment, the bit comprises a bit body including a bit axis. In addition, the bit comprises a rolling cone cutter mounted on the bit body and adapted for rotation about a cone axis. Further, the bit comprises a tooth extending from the cone cutter. The tooth includes a base at the cone cutter and an elongate chisel crest distal the cone cutter. The crest extends along a crest median line between a first crest end and a second crest end and includes an elongate crest apex. The tooth also includes a first flanking surface extending from the base to the crest, and a second flanking surface extending from the base to the crest. The first flanking surface and the second flanking surface taper towards one another to form the chisel crest. Moreover, the tooth includes a first raised rib extending continuously along the first flanking surfaces and across the chisel crest to the second flanking surface.
These and other needs in the art are addressed in another embodiment by a rolling cone drill bit for cutting a borehole. In an embodiment, the bit comprises a bit body including a bit axis. In addition, the bit comprises a rolling cone cutter mounted on the bit body and adapted for rotation about a cone axis. Further, the bit comprises a tooth extending from the cone cutter. The tooth includes a base at the cone cutter and an elongate chisel crest distal the cone cutter. The crest extends along a crest median line between a first crest end and a second crest end and includes an elongate crest apex. The tooth also includes a first flanking surface extending from the base to the crest, and a second flanking surface extending from the base to the crest. The first flanking surface and the second flanking surface taper towards one another to form the chisel crest. Moreover, the tooth includes a first groove extending continuously along the first flanking surfaces and across the chisel crest to the second flanking surface.
These and other needs in the art are addressed in another embodiment by a rolling cone drill bit for cutting a borehole. In an embodiment, the bit comprises a bit body including a bit axis. In addition, the bit comprises a rolling cone cutter mounted on the bit body and adapted for rotation about a cone axis. Further, the bit comprises a tooth extending from the cone cutter. The tooth includes a trilateral base at the cone cutter and a tip distal the cone cutter. The tooth also includes a plurality of flanking surfaces, each flanking surface extending from the base to the tip, and each flanking surface extending between a pair of adjacent flanking surfaces. The flanking surfaces taper towards one another to form the tip.
These and other needs in the art are addressed in another embodiment by a rolling cone drill bit for cutting a borehole. In an embodiment, the bit comprises a bit body including a bit axis. In addition, the bit comprises a rolling cone cutter mounted on the bit body and adapted for rotation about a cone axis. Further, the bit comprises a tooth extending from the cone cutter. The tooth includes a base at the cone cutter. The tooth also includes an elongate chisel crest distal the cone cutter, wherein the crest extends along a crest median line between a first crest end and a second crest end. Still further, the tooth includes a first flanking surface and a second flanking surface, each flanking surface extending from the base to the crest. The first flanking surface and the second flanking surface taper towards one another to form the chisel crest. Moreover, the tooth includes a first end surface extending from the base to the first crest end and a second end surface extending between the base to the second crest end. The first end surface and the second end surface each extend between the first flanking surface and the second flanking surface. The first flanking surface is concave between the first and second end surfaces and the second flanking surface is convex between the first and second end surfaces. The crest has an apex disposed at a height Ha measured perpendicularly from the cone cutter to the apex. The first crest end is disposed at a height H1 measured perpendicularly from the cone cutter to the first crest end, the height H1 being less than the height Ha.
Thus, embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices, systems, and methods. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
a is a perspective view of a cutting tooth of the bit of
b is a side view of the tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a top view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a top view of the cutting tooth of
a is a perspective view of an embodiment of a cutting tooth having particular application in a rolling cutter bit such as that shown in
b is a side view of the cutting tooth of
c is an end view of the cutting tooth of
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to limit the scope of the disclosure, including the claims, is limited to that embodiment.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis.
Referring first to
Referring now to both
Referring now to
Extending between gage surface 44 and nose 42 is a slightly convex generally conical cone surface 46. The cutting elements extending from surface 46 gouge or crush the borehole bottom 7 as the cone cutters 1-3 rotate about the borehole. Frustoconical gage surface 44 and conical surface 46 converge in a circumferential edge or shoulder 50. Although referred to herein as an “edge” or “shoulder,” it should be understood that shoulder 50 may be contoured, such as by a radius, to various degrees such that shoulder 50 will define a contoured zone of convergence between frustoconical gage surface 44 and the conical surface 46.
In bit 10 illustrated in
In general, the teeth of a rolling cone tooth bit (e.g., teeth 100 of bit 10) may be formed in a variety of ways. For example, the teeth may be attached to the rolling cone cutter by welding the tooth to the cone. Teeth may also be formed by machining the teeth from a rolling cone casting. Still further, the teeth may be incorporated into the cone through a forging process where a tooth and cone are formed together. One suitable forging process known in the art is rapid solid state densification powder metallurgy (RSSDPM). The RSSDPM process is disclosed in U.S. Pat. Nos. 4,368,788; 4,372,404; 4,398,952; 4,554,130; 4,562,892; 4,592,252; 4,597,456; 4,630,692; 4,853,178; 4,933,140; 4,949,598; 5,032,352; 5,653,299; 5,967,248; 6,045,750; 6,0100,016; 6,135,218; 6,338,621; and 6,347,676, each of which is hereby incorporated herein by reference in its entirety for all purposes. Such processes may be referred to herein as densification powdered metallurgy, powder forging process, powder forge cutter process or simply the PFC process. The powder forging process enables formation of teeth having shapes and configurations that may be difficult to be formed by other manufacturing methods.
Referring now to
Tooth 100 is generally wedge-shaped, including a pair of flanking surfaces 130 and a pair of end surfaces 131. Flanking surfaces 130 taper or incline towards one another as they extend from base 110 and the cone surface to crest 120. In particular, each flanking surface 130 has a first or base end 130a at base 110, and a second or crest end 130b that intersects crest 120 distal base 110. Flanking surfaces 130 are planar, however, crest 120 is curved between flank ends 130b. Thus, the intersection of flanking surface 130 and crest 120 is defined by the transition from a planar surface to a curved, convex surface.
Referring still to
Tooth 100 has a height H100 measured perpendicularly from apex 122 to the cone surface in side view (
As rolling cutters 1-3 rotate during drilling, elongated crests 120 are forced into the formation. In general, the “sharper” a tooth (e.g., tooth 100) is, the deeper it will penetrate the formation at a given WOB. The shape and sharpness of a tooth is generally determined by its height H100, its thickness T100 at base 110 and crest 120, its width 112 at base 110 and crest 120, and the length L120 of crest 120.
Referring again to
Referring now to
Tooth 200 has a base 210 monolithically formed with cutter 202 and an elongate chisel crest 220 distal base 210. Crest 220 extends between crest ends or corners 221 and comprises an apex 222. In this embodiment, crest 220 extends linearly between crest corners 221 along a crest median line 225. The length L220 of crest 120 is measured along median line 225 between crest ends 221.
Tooth 200 is generally wedge-shaped, including a pair of flanking surfaces 230 and a pair of end surfaces 231. Flanking surfaces 230 taper or incline towards one another as they extend from base 210 to crest 220. In particular, each flanking surface 230 has a first or base end 230a at base 210, and a second or crest end 230b that intersects crest 220. End surfaces 231 also extend from base 210 to crest 220. In particular, end surfaces 231 extend from base 210 to crest ends 221, and generally extend between flanking surfaces 230. Each end surface 231 has a first or base end 231a at base 210, and a second or crest end 231b that intersects crest 220 at one corner 221. Similar to flanking surfaces 230, end surfaces 231 taper or incline towards each one another as they extend from base 210 to crest 220. As best shown in the side view of
Tooth 200 has a height H200 measured perpendicularly from apex 220 to the cone surface 201 in side view (
Referring now to the side and end views of
As seen in side profile 260 (
As previously described, in profiles 260, 261, end surfaces 231 and flanking surfaces 230, respectively, are substantially straight, each having a constant radius of curvature in the region between base 210 and crest 220. The transition from surfaces 230, 231 to crest 220 generally occurs where the substantially straight surfaces 230, 231 begin to curve in profiles 261, 260, respectively. In other words, the points in profiles 260, 261 at which the radius of constant curvature of surfaces 231, 230, respectively, begin to change marks the transition into crest 220.
As shown in
Referring still to
As previously described, in this embodiment, rib 270 is centered relative to crest ends 221 and extends perpendicularly from crest 220 along both flanking surfaces 230 to cone surface 201. However, in other embodiments, multiple ribs (e.g., ribs 270) may be provided, one or more rib(s) may be disposed at the center of the crest (e.g., crest 220) or offset from the center of the crest, one or more rib(s) may extend perpendicularly or at an acute angle from the crest in side view, one or more rib(s) may extend from the crest along one or both of the flanking surfaces, one or more rib(s) may extend from the crest to the cone surface or terminate short of the cone surface, or combinations thereof.
As best shown in
In this embodiment, the geometry of rib 270 is uniform along its entire length, and thus, height H270 of rib 270 is uniform between ends 270a, b, width W270 at flanking surfaces 230 and crest 220 is uniform between ends 270a, b, and width W270 at peak 272 is uniform between ends 270a, b. In other embodiments, the height of the rib (e.g., height H270 of rib 270), the maximum width of the rib (e.g., width W270 at surfaces 230 and crest 222), the minimum width of the rib (e.g., width W270 at peak 272), or combinations thereof may vary along the rib's length.
Referring now to
Referring now to
Tooth 300 is substantially the same as tooth 200 previously described. Namely, tooth 300 is generally wedge-shaped and has a base 210 monolithically formed with cutter 202, an elongate chisel crest 220 distal base 210, a pair of flanking surfaces 230, and a pair of end surfaces 231, each as previously described.
Tooth 300 also includes a raised rib 370 similar to rib 270 previously described. Rib 370 is integral with and monolithically formed with tooth 300. Further, rib 370 has a longitudinal axis 375 and extends continuously along both flanking surfaces 230 and across crest 220 between a first end 370a and a second end 370b. As best shown in the side view of
Although tooth 300 includes only one rib 370 that is centered relative to crest ends 221 and extends perpendicularly from crest 220 along both flanking surfaces 230, in other embodiments, more than one rib (e.g., rib 370) may be provided, the one or more rib(s) may extend perpendicularly or at an acute angle from the crest (e.g., crest 220) in side view, one or more rib(s) may extend from the crest along one or both of the flanking surfaces, one or more rib(s) may extend from the crest to the cone surface or terminate short of the cone surface, or combinations thereof. Moreover, although the geometry of rib 370 is uniform along its entire length, in other embodiments, the height of the rib (e.g., height H370 of rib 370), the maximum width of rib (e.g., width W370 at surfaces 230 and crest 222), the minimum width of rib (e.g., width W370 at peak 372), or combinations thereof may be different and/or vary along each rib's length.
Referring now to
Referring now to
Tooth 400 is substantially the same as tooth 200 previously described. Namely, tooth 400 is generally wedge-shaped and has a base 210 monolithically formed with cutter 202, an elongate chisel crest 220 distal base 210, a pair of flanking surfaces 230, and a pair of end surfaces 231, each as previously described. However, unlike tooth 200 that includes only one raised rib 270, in this embodiment, tooth 400 includes two ribs 270, each as previously described. As best shown in
Referring now to
Referring now to
Tooth 500 is substantially the same as tooth 400 previously described. Namely, tooth 500 is generally wedge-shaped and has a base 210 monolithically formed with cutter 202, an elongate chisel crest 220 distal base 210, a pair of flanking surfaces 230, and a pair of end surfaces 231, each as previously described. In addition, tooth 500 includes two ribs 570, each similar to rib 270 previously described. Namely, each rib 570 extends continuously along each flanking surface 230 and across crest 220. In particular, each rib 570 extends along a longitudinal axis 575 from a first end 570a on one flanking surface 230 at cone surface 201 to a second end 570b on the other flanking surface 230 at cone surface 201. Longitudinal axis 575 of each rib 570 is oriented perpendicular to crest median line 225 and apex 222 on both flanking surfaces 230 and extends linearly from crest 220 to each end 570a, b. As with tooth 400 previously described, in this embodiment, the two ribs 570 are evenly distributed across crest 220. In other words, each rib 570 is spaced one-third the length L220 of crest 220 from different crest ends 221, and ribs 570 are spaced one-third the length L220 of crest 220 from each other.
As best shown in
In this embodiment, each rib 570 is identical, and each rib 570 has a uniform geometry along its entire length. Specifically, each rib 570 extends to the same height H570 measured perpendicularly from either flanking surface 230 or crest 220 to peak 572. The height H570 of each rib 570 is preferably 10-20% of the height H200 of tooth 200. In this embodiment, the height H570 of each rib 570 is 15% of the height H200 of tooth 200 at the lengthwise center of apex 222 (i.e., at the midpoint of apex 222 relative to crest ends 221). In addition, each rib 570 has a width W570 measured perpendicular to axis 575 (in side view) between surfaces 571. Since surfaces 571 are inclined towards each other, width W570 of each rib 570 is maximum at the intersection of rib 570 with flanking surfaces 230 and crest 220, and minimum at peak 572. In this embodiment, each rib 570 has the same maximum and minimum width W570. The maximum width W570 of each rib 570 is preferably 15-35% the length L220 of crest 220, and more preferably 20-30% the length L220 of crest 220.
Although this embodiment of tooth 500 includes only two ribs 570, in other embodiments, more than two ribs 570 may be provided. Further, the ribs (e.g., ribs 570) may be uniformly or non-uniformly distributed relative to the crest ends (e.g., crest ends 221). Further, in other embodiments, one or more rib(s) (e.g., ribs 570) may extend perpendicularly or at an acute angle from the crest (e.g., crest 220) in side view, one or more rib(s) may extend from the crest along one or both of the flanking surfaces, one or more rib(s) may extend from the crest to the cone surface or terminate short of the cone surface, or combinations thereof. Moreover, although the geometry of each rib 570 is the same and is uniform along its entire length, in other embodiments, the height of each rib (e.g., height H570 of each rib 570), the maximum width of each rib (e.g., width W570 at surfaces 230 and crest 222), the minimum width of each rib (e.g., width W570 at peak 572), or combinations thereof may be different and/or vary along each rib's length.
Referring now to
As understood by those skilled in the art, the phenomenon by which formation material is removed by the impact of cutting teeth is extremely complex. A variety of factors including, without limitation, the geometry and orientation of the cutting teeth, the design of the rolling cone cutters, and the type of formation being drilled, all play a role in how the formation material is removed and the rate that the material is removed (i.e., ROP).
Depending upon their position in the rolling cone cutter, cutting teeth have different cutting trajectories as the cone rotates in the borehole. Cutting teeth in certain locations of the cone cutter have more than one cutting mode. In addition to a scraping or gouging motion, some cutting teeth include a twisting motion as they enter into and then separate from the formation. Accordingly, such teeth may be oriented to optimize the cutting and formation removal that takes place as the cutter element both scrapes and twists against the formation. Furthermore, as mentioned above, the type of formation material dramatically impacts a given bit's ROP. In relatively brittle formations, a given impact by a particular cutting tooth may remove more rock material than it would in a less brittle or a plastic formation.
The impact of a cutting tooth with the formation will typically remove a first volume of formation material and, in addition, will tend to generate cracks in the formation immediately adjacent the material that has been removed. These cracks, in turn, allow for the easier removal of the now-fractured material by the subsequent impact from other cutting teeth on the bit. Without being limited to this or any other particular theory, it is believed that cutting teeth 200, 300, 400, 500 having an elongate chisel crest 220 and one or more raised ribs 270, 370, 570, as described above, will enhance formation removal by propagating cracks further into the uncut formation than would be the case for a conventional chisel-shaped cutting tooth (e.g., tooth 100) of similar size. In particular, it is anticipated that providing ribs 270, 370, 570 extending from apex 222 will provide insert 100 with the ability to penetrate deeply into the formation without the requirement of adding substantial additional weight-on-bit to achieve that penetration. Since ribs 270, 370, 570 extend from crest 220, they will generally lead teeth 200, 300, 400, 500 into the formation. As ribs 270, 370, 570 penetrate the formation, it is anticipated that substantial cracking will occur, allowing crest 220 to gouge and scrape away a substantial volume of formation material as it sweeps across (and in some cone positions, twists through) the formation material. Further, since ribs 270, 370, 570 extend from apex 222 of crest 220, and thus, are able to penetrate deeper into the formation as compared to a similarly-sized conventional chisel-shaped cutting teeth, it is believed that each tooth 200, 300, 400, 500 will create deeper cracks in a localized area, allowing the remainder of tooth 200, 300, 400, 500, and the cutting teeth that follow thereafter, to remove formation material at a faster rate. Further, as previously described, each rib 270, 370, 570 extends from crest 220 down each flanking surface 220. Consequently, the increased “sharpness” and penetrating potential of each tooth 200, 300, 400, 500 provided by each rib 270, 370, 570 at apex 222 is buttressed and supported by increased insert material.
Referring now to
Tooth 600 is similar to tooth 200 previously described. Namely, tooth 600 is generally wedge-shaped and has a base 210 monolithically formed with cutter 202, an elongate chisel crest 220 distal base 210, a pair of flanking surfaces 230, and a pair of end surfaces 231, each as previously described. In addition, tooth 600 includes a discontinuity 240 extending along each flanking surface 230 and across crest 220. However, unlike tooth 200 in which discontinuity 240 comprises raised rib 270, in this embodiment, discontinuity 240 comprises a generally concave groove 670.
Groove 670 extends continuously along each flanking surface 230 and across crest 220. In particular, groove 670 extends along a longitudinal axis 675 from a first end 670a on one flanking surface 230 proximal cone surface 201 to a second end 670b on the other flanking surface 230 proximal cone surface 201. As best shown in the side view of
As best shown in
Referring now to
Referring now to
Tooth 700 is substantially the same as tooth 600 previously described. Namely, tooth 700 is generally wedge-shaped and has a base 210 monolithically formed with cutter 202, an elongate chisel crest 220 distal base 210, a pair of flanking surfaces 230, and a pair of end surfaces 231, each as previously described. However, unlike tooth 600 that includes only one groove 670, in this embodiment, tooth 700 includes two grooves 670, each as previously described. As best shown in
Referring now to
As previously described, the phenomenon by which formation material is removed by the impact of cutting teeth is extremely complex. A variety of factors including, without limitation, the geometry and orientation of the cutting teeth, the design of the rolling cone cutters, and the type of formation being drilled, all play a role in how the formation material is removed and the rate that the material is removed (i.e., ROP). Without being limited to this or any other particular theory, it is believed that cutting teeth 600, 700 having an elongate chisel crest 220 with one or more grooves 670 as described above, may enhance formation removal in certain applications by enhancing the formation of cracks in the uncut formation as compared to a conventional chisel-shaped cutting tooth (e.g., tooth 100) of similar size. In particular, it is anticipated that the additional cutting edges 673 on crest 220 formed by grooves 670 will enhance crack formation and propagation without the requirement of adding substantial additional weight-on-bit, allowing crest 220 to gouge and scrape away a substantial volume of formation material as it sweeps across (and in some cone positions, twists through) the formation material.
Referring now to
Tooth 800 has base 810 monolithically formed with cutter 202, and a pointed cutting tip 820 distal base 810. Tip 820 defines an apex 822 of tooth 800. The central axis 815 of tooth 800 extends perpendicularly from base 210 (i.e., perpendicular to a projection of the cone surface 201 beneath tooth 800) through apex 822. Apex 822 is disposed at height H800 measured perpendicularly from the cone surface to apex 822. In this embodiment, tooth 800 is generally pyramid-shaped, including a plurality of generally triangular flanking surfaces 830a, b, c that taper or incline towards one another as they extend from base 810 to tip 820. In particular, three flanking surfaces 830a, b, c are provided, with each flanking surface 830a, b, c extending between the other two flanking surfaces 830a, b, c. Thus, as best shown in
Referring still to
Referring specifically to
Referring now to
Referring now to
Tooth 900 is similar to tooth 800 previously described. Namely, tooth 900 has a base 910 monolithically formed with cutter 202 and a pointed cutting tip 920 distal base 910. Tip 920 defines an apex 922 of tooth 900. The central axis 915 of tooth 900 extends perpendicularly from base 210 (i.e., perpendicular to a projection of the cone surface 201 beneath tooth 900) through apex 922. Apex 922 is disposed at height H900 measured perpendicularly from the cone surface to apex 922. In addition, tooth 900 is generally pyramid-shaped, including a plurality of generally triangular flanking surfaces 930a, b, c that taper or incline towards one another as they extend from base 910 to tip 920. In particular, three flanking surfaces 930a, b, c are provided, with each flanking surface 930a, b, c extending between the other two flanking surfaces 930a, b, c. Thus, as best shown in
Referring specifically to
Referring now to
As previously described, the phenomenon by which formation material is removed by the impact of cutting teeth is extremely complex. A variety of factors including, without limitation, the geometry and orientation of the cutting teeth, the design of the rolling cone cutters, and the type of formation being drilled, all play a role in how the formation material is removed and the rate that the material is removed (i.e., ROP). Without being limited to this or any other particular theory, it is believed that pyramid-shaped cutting teeth 800, 900 as described above, may enhance formation removal in certain applications by enhancing the formation of cracks in the uncut formation as compared to a conventional cutting tooth geometries (e.g., tooth 100) of similar size. In particular, it is anticipated that inclusion of concave flanking surfaces 830, 930 offer the potential to enhance crack formation and propagation without the requirement of adding substantial additional weight-on-bit.
Referring now to
Tooth 1000 has a base 1010 monolithically formed with cutter 202 and an elongate chisel crest 1020 distal base 1010. Crest 1020 extends between crest ends or corners 1021 and comprises an apex 1022 disposed between ends 1021. In this embodiment, crest 1020 extends along a curved crest median line 1025 between crest corners 221. Crest 1020 has a length measured along median line 1025 between crest ends 1021.
Tooth 1000 is generally wedge-shaped, including a pair of flanking surfaces 1030 and a pair of end surfaces 1031. Flanking surfaces 1030 taper or incline towards one another as they extend from base 1010 to crest 1020. In particular, each flanking surface 1030 has a first or base end 1030a at base 1010, and a second or crest end 1030b that intersects crest 1020. End surfaces 1031 also extend from base 1010 to crest 1020. In particular, end surfaces 1031 extend from base 1010 to crest ends 1021, and generally extend between flanking surfaces 1030. Each end surface 1031 has a first or base end 1031a at base 1010, and a second or crest end 1031b that intersects crest 1020 at one corner 1021. In this embodiment, end surfaces 1031 are generally planar and parallel, each end surface 1031 extending perpendicularly from cone surface 1001 to one crest end 1021. In other embodiments, the end surfaces (e.g., end surfaces 1031) may taper or incline towards each other as they extend from the base (e.g., base 1020) to the crest (e.g., crest 1020). A continuous edge 1024 extends along the intersection of each end surface 1031 with flanking surfaces 1030 and crest 1020. Although referred to as an “edge,” the intersection between end surfaces 1031 with flanking surfaces 1030 and crest 1020 may be radius or rounded. Although end surfaces 1031 are planar in this embodiment, in other embodiments, one or more end surfaces 1031 may be convex or concave.
Unlike tooth 200 previously described, which includes generally planar flanking surfaces 230, in this embodiment, flanking surfaces 1030 are curved. Namely, one flanking surfaces 1030 is concave or inwardly bowed between end surfaces 1031, and the other flanking surface 1030 is convex or outwardly bowed between end surfaces 1031.
In general, tooth 1000 has a height H1000 measured perpendicularly from the cone surface to crest 1020 in side view (
Referring now to the side and end views of
As previously described, in profiles 1060, 1061, end surfaces 1031 and flanking surfaces 1030, respectively, are substantially straight, each having a constant radius of curvature in the region between base 1010 and crest 1020. The transition from surfaces 1030 to crest 1020 generally occurs where the substantially straight surfaces 1030 begin to curve in profile 1061. In other words, the points in profile 1061 at which the radius of constant curvature of surfaces 1030 begin to change marks the transition into crest 1020.
As shown in
Referring now to
As previously described, the phenomenon by which formation material is removed by the impact of cutting teeth is extremely complex. A variety of factors including, without limitation, the geometry and orientation of the cutting teeth, the design of the rolling cone cutters, and the type of formation being drilled, all play a role in how the formation material is removed and the rate that the material is removed (i.e., ROP). Without being limited to this or any other particular theory, it is believed that scoop-shaped cutting tooth 1000 as described above, may enhance formation removal in certain applications by enhancing the formation of cracks in the uncut formation as compared to a conventional cutting tooth geometries (e.g., tooth 100) of similar size. In particular, it is anticipated that inclusion of concave flanking surfaces 1030 offers the potential to enhance crack formation and propagation without the requirement of adding substantial additional weight-on-bit.
In general, embodiments of cutting teeth disclosed herein (e.g., teeth 200, 300, 400, 500, 600, 700, 800, 900) may be implemented into a roller cone bit using the powder forge cutter (PFC) process. The PFC process enables teeth to be formed in shapes and configurations that may be difficult to be formed by other methods. The PFC process also enables the teeth to be more uniform and have a more consistent alignment as compared to other processes, such as manual placement and welding of individual teeth.
The PFC process can also enable the integration of harder materials, that can be referred to as hardmetal or hardphase, such as tungsten carbide (WC) or Cemented Carbide, in greater amounts. Hardmetal composites can consist of a hardmetal such as tungsten carbide, diamond, cubic boron nitride, or ceramic dispersed in a softer, metal matrix, optionally including a binder metal, to form a hardphase. The hardphase can then be incorporated on the surface of the bit, such as the cone or cutter teeth, to provide a certain thickness that contains the hardmetal. In some embodiments, a hardphase that includes hardmetal in amounts greater than 50% by volume can be integrated into tooth designs utilizing the PFC process wherein the tooth and cutter are forged as a single item. Further, in some embodiments, a hardphase that includes cemented carbide in amounts greater than 50% can be integrated into tooth designs utilizing the PFC process wherein the tooth and cutter are forged as a single item.
Hardmetal is typically applied by welding techniques. The conventional welding application of a hardmetal can limit the hardmetal content, for example to less than about 50% by volume of the hardphase. The forged-in tooth hardmetal of the PFC process can produce cutter teeth having a hardmetal such as cemented carbide in amounts greater than 50% by volume of the hardphase, optionally greater than 70% by volume, optionally greater than 75% by volume. The hardmetal can be integrated into the exterior of the tooth in the PFC process in a hardphase thickness of greater than 0.01 inch. In an embodiment, the hardmetal can be integrated into the exterior of the tooth in the PFC process in a hardphase thickness ranging from 0.01 to 0.50 inch, optionally ranging from 0.01 to 0.25 inch. One process of adding hardmetal that can be utilized with embodiments described herein is disclosed in U.S. patent application Ser. No. 12/536,624 to Sreshta et al. filed on Aug. 6, 2009, which is hereby incorporated herein by reference in its entirety for all purposes.
Although embodiments of cutter cones described herein (e.g., cones 205, 305, 405, 505, 605, 705, 805, 905, 1005) include multiple teeth of a single shape, in general, different embodiments of teeth (e.g., teeth 200, 300, 400, 500, 600, 700, 800, 900) may be included on a single cone to provide a pattern of teeth designs. For example, pyramid-shaped teeth 800, 900 may be desired for the gage rows while scoop-shaped tooth 1000 is preferred for the inner rows. Any combination of the tooth designs of the present application can be incorporated with the other designs or with conventional or alternate tooth designs and are considered to be within the scope of the present application. Further, although embodiments of teeth (e.g., teeth 200, 300, 400, 500, 600, 700, 800, 900, 1000) are described herein as being monolithically formed with the cone cutter 202 from which each extends, in general, similar tooth geometries may be employed in insert cutting elements that are mounted to a cone cutter.
While preferred embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the invention. For example, the relative dimensions of various parts, the materials from which the various parts are made, and other parameters can be varied. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2578593 | Phipps | Dec 1951 | A |
3388757 | Fittinger | Jun 1968 | A |
3442342 | McElya et al. | May 1969 | A |
3946820 | Knapp | Mar 1976 | A |
4056153 | Miglierini | Nov 1977 | A |
4058177 | Langford, Jr. et al. | Nov 1977 | A |
4086973 | Keller et al. | May 1978 | A |
4108260 | Bozarth | Aug 1978 | A |
4254840 | Shay, Jr. | Mar 1981 | A |
4334586 | Schumacher | Jun 1982 | A |
4352400 | Grappendorf et al. | Oct 1982 | A |
4368788 | Drake | Jan 1983 | A |
4372404 | Drake | Feb 1983 | A |
4398952 | Drake | Aug 1983 | A |
4511006 | Grainger | Apr 1985 | A |
4554130 | Ecer | Nov 1985 | A |
4562892 | Ecer | Jan 1986 | A |
4586574 | Grappendorf | May 1986 | A |
4592252 | Ecer | Jun 1986 | A |
4597456 | Ecer | Jul 1986 | A |
4630692 | Ecer | Dec 1986 | A |
4716977 | Huffstutler | Jan 1988 | A |
4722405 | Langford, Jr. | Feb 1988 | A |
4811801 | Salesky et al. | Mar 1989 | A |
4832139 | Minikus et al. | May 1989 | A |
4853178 | Oslin | Aug 1989 | A |
4854405 | Stroud | Aug 1989 | A |
4933140 | Oslin | Jun 1990 | A |
4949598 | Griffin | Aug 1990 | A |
4951762 | Lundell | Aug 1990 | A |
5032352 | Meeks et al. | Jul 1991 | A |
D324527 | Slutz | Mar 1992 | S |
5131478 | Brett et al. | Jul 1992 | A |
5172777 | Siracki et al. | Dec 1992 | A |
5172779 | Siracki et al. | Dec 1992 | A |
5197555 | Estes | Mar 1993 | A |
5201376 | Williams | Apr 1993 | A |
5303787 | Brady | Apr 1994 | A |
5322138 | Siracki | Jun 1994 | A |
5323865 | Isbell et al. | Jun 1994 | A |
5341890 | Cawthorne et al. | Aug 1994 | A |
5351768 | Scott et al. | Oct 1994 | A |
5372210 | Harrell | Dec 1994 | A |
5379854 | Dennis | Jan 1995 | A |
5407022 | Scott et al. | Apr 1995 | A |
5421423 | Huffstutler | Jun 1995 | A |
5421424 | Portwood et al. | Jun 1995 | A |
5429199 | Sheirer et al. | Jul 1995 | A |
5429200 | Blackman et al. | Jul 1995 | A |
5452771 | Blackman et al. | Sep 1995 | A |
5479997 | Scott et al. | Jan 1996 | A |
5518077 | Blackman et al. | May 1996 | A |
5533582 | Tibbitts | Jul 1996 | A |
5535839 | Brady | Jul 1996 | A |
5542485 | Pessier et al. | Aug 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5592995 | Scott et al. | Jan 1997 | A |
5636700 | Shamburger, Jr. | Jun 1997 | A |
5644956 | Blackman et al. | Jul 1997 | A |
5653299 | Sreshta et al. | Aug 1997 | A |
5676214 | Pearce et al. | Oct 1997 | A |
5695019 | Shamburger, Jr. | Dec 1997 | A |
5697462 | Grimes et al. | Dec 1997 | A |
5709278 | Crawford | Jan 1998 | A |
5743346 | Flood et al. | Apr 1998 | A |
5746280 | Scott et al. | May 1998 | A |
5752573 | Scott et al. | May 1998 | A |
5755301 | Love et al. | May 1998 | A |
5813485 | Portwood | Sep 1998 | A |
5819861 | Scott et al. | Oct 1998 | A |
5833020 | Portwood et al. | Nov 1998 | A |
5839526 | Cisneros et al. | Nov 1998 | A |
5871606 | Sakamoto et al. | Feb 1999 | A |
5874060 | Armour et al. | Feb 1999 | A |
5881828 | Fischer et al. | Mar 1999 | A |
5887655 | Haugen et al. | Mar 1999 | A |
5887668 | Haugen et al. | Mar 1999 | A |
5890550 | Swadi et al. | Apr 1999 | A |
5915486 | Portwood et al. | Jun 1999 | A |
5950745 | Ingmarsson | Sep 1999 | A |
5967245 | Garcia et al. | Oct 1999 | A |
5967248 | Drake et al. | Oct 1999 | A |
6029759 | Sue et al. | Feb 2000 | A |
6045750 | Drake et al. | Apr 2000 | A |
6053263 | Meiners | Apr 2000 | A |
6059054 | Portwood et al. | May 2000 | A |
6060016 | Vuyk, Jr. et al. | May 2000 | A |
6105693 | Ingmarsson | Aug 2000 | A |
6105694 | Scott | Aug 2000 | A |
D430578 | Brady | Sep 2000 | S |
6135218 | Deane et al. | Oct 2000 | A |
6161634 | Minikus et al. | Dec 2000 | A |
6176332 | Massa et al. | Jan 2001 | B1 |
6176333 | Doster | Jan 2001 | B1 |
6196340 | Jensen et al. | Mar 2001 | B1 |
6199645 | Anderson et al. | Mar 2001 | B1 |
6202752 | Kuck et al. | Mar 2001 | B1 |
6241034 | Steinke et al. | Jun 2001 | B1 |
6241035 | Portwood | Jun 2001 | B1 |
6290008 | Portwood et al. | Sep 2001 | B1 |
6338621 | Vuyk, Jr. et al. | Jan 2002 | B1 |
6347676 | Vuyk, Jr. | Feb 2002 | B1 |
6367568 | Steinke et al. | Apr 2002 | B2 |
6510910 | Eyre et al. | Jan 2003 | B2 |
6530441 | Singh et al. | Mar 2003 | B1 |
6561293 | Minikus et al. | May 2003 | B2 |
6595305 | Dunn et al. | Jul 2003 | B1 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6725952 | Singh | Apr 2004 | B2 |
6745645 | Griffo | Jun 2004 | B2 |
6782959 | Minikus et al. | Aug 2004 | B2 |
6883624 | McDonough | Apr 2005 | B2 |
6929079 | McDonough et al. | Aug 2005 | B2 |
7013999 | Tufts | Mar 2006 | B2 |
7040424 | Yong et al. | May 2006 | B2 |
7086489 | McDonough | Aug 2006 | B2 |
7152703 | Meiners et al. | Dec 2006 | B2 |
7631709 | McDonough et al. | Dec 2009 | B2 |
20040173384 | Yong et al. | Sep 2004 | A1 |
20050247492 | Shen et al. | Nov 2005 | A1 |
20080156543 | McDonough et al. | Jul 2008 | A1 |
20110031028 | Sreshta et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0391683 | Oct 1990 | EP |
0446765 | Sep 1991 | EP |
0527506 | Feb 1993 | EP |
0902159 | Mar 1999 | EP |
2361497 | Oct 2001 | GB |
2369841 | Jun 2002 | GB |
2393982 | Apr 2004 | GB |
2398330 | Aug 2004 | GB |
2105124 | Feb 1998 | RU |
2153569 | Jul 2000 | RU |
0161142 | Aug 2001 | WO |
Entry |
---|
Dekun, Ma, Translated by Ma Dekun and Jiao Peilin,The Operational Mechanics of the Rock Bit, (Petroleum Industry Press, 1996) (China) (6 pages). |
Number | Date | Country | |
---|---|---|---|
20120211282 A1 | Aug 2012 | US |