Gyratory equipment, including gyratory sifters, is used as a mechanical screen or sieve. The screening capability of gyratory equipment generally depends on the substantially circular motion and/or oscillation of the equipment. Gyratory equipment can be adapted to screen both wet and dry materials. More particularly, gyratory sifters may be employed to sift many materials, including frac sand, resin coated sand, ceramic proppant, activated carbon, fertilizer, limestone, petroleum coke, plastic pellets, PVC powder, metallic powders, ceramic powders, roofing granules, salt, sugar, grain, and more. Gyratory sifters may be employed in the hydraulic fracturing, oil, construction, mining, food, chemical, materials science, pharmaceutical, and plastics industries and more.
Gyratory equipment may include one or more sets of screens. The screens may be arranged vertically, one on top of the other. Screens may be removable and interchangeable, such that different sets of screens may be used for different applications, and worn or damaged screens may be replaced. Generally speaking, the screens may contain different mesh sizes, where the coarsest (largest mesh size) screen is nearest to the input, and the finest (smallest mesh size) is nearest to the final output. A gyratory sifter may have several outputs depending on the application (e.g., one output for each screen), such that the materials unable to pass through each screen may be separately outputted and thus sorted.
An input or feed mechanism may be located at or near the top of a gyratory sifter, (e.g., above or adjacent to the topmost and coarsest screen). When input material is introduced into the gyratory sifter, gyratory motion and gravity enable particles smaller than the mesh size of the screen to move through the screen to the next screen deck below.
Gyratory equipment may include a system of eccentric weights. For example, a gyratory sifter may include a top weight and a bottom weight. The top weight may be coupled to a motor, causing the top weight to rotate in a plane that is close to the center of the mass of assembly. This may cause vibration and movement of the screens in the horizontal plane, which may cause material input to the screen surface to spread across the screen from the middle to the periphery or outer edges of the screen. Such movement may encourage material too large to pass through the screen to be output and thus removed from the screen surface. A bottom eccentric weight may rotate below the center of mass and create a tilt on the screen surface. The imposition of a tilt on the screen surface may cause vibration in a vertical and tangential plane. Such movement may induce particles smaller than the mesh size to pass through the screen surface at a more rapid pace and may encourage particles only slightly smaller than the mesh size to find the correct alignment for passing through the screen, thus increasing turnover. Horizontal or vertical motion may be amplified through spring assemblies.
Gyratory sifters and components thereof are described in the present disclosure.
Gyratory sifters may contain decks of screens or only one screen. The number of decks in a gyratory sifter, for example, may range from between one and eight, though it is possible to include more decks if needed for a particular application. There may be between one and four screens per deck, depending on the application. More screens may be added per deck if needed for a particular application. In some examples, each deck may be arranged as an independent system with its own set of screens and discharge. Each deck may include its own input, or one input may be provided with a splitter for evenly distributing input material to each deck. The screens of each deck may be arranged vertically, one on top of the other. The screens may contain different mesh sizes, where the coarsest (largest mesh size) screen is nearest to the input, and the finest (smallest mesh size) is nearest to the discharge. A gyratory sifter (or deck system) may have several discharges depending on the application, (e.g., one output for each screen or deck), such that the materials unable to pass through each screen or deck may be separately output and thus sorted.
Each gyratory sifter may include a single input to feed all the decks. The single input may be provided with one or more splitters to create several inlets, one inlet per deck, where the flow of input material may be distributed to each deck evenly. The gyratory motion of the machine may be employed as the mechanism by which the flow of input material is distributed evenly to the particular inlet for each deck.
A splitter in accordance with the present disclosure may additionally function as a reservoir for accumulating input material to be distributed to the decks of the gyratory sifter. The splitter may include a bottom portion that prevents input material from exiting the bottom of the splitter. The splitter may include various openings (e.g., one per deck), along its sidewall. When the gyratory sifter is in operation, gyratory movement, including horizontal or lateral movement components, may force the input material to be thrown through an opening along the sidewall of the splitter. When the direction of movement changes, the input material may be thrown out of a different area of the sidewall. In operation, the movement of the machine may move in each direction for approximately equal times, thus allowing an approximately equal amount of input material to be thrown from each portion of the sidewall of the splitter and onto the corresponding deck of the gyratory sifter. In this manner, even distribution of input material to each deck may be maintained.
The foregoing and other features of the present disclosure will become more fully apparent from the following description, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the drawings:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described herein are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
This disclosure is generally drawn to sifting, separating, and sieve equipment. Some examples of this disclosure are drawn to gyratory equipment, gyratory sifters, and components thereof. Some examples relate to gyratory sifters having multiple decks, where each deck contains multiple screens, and components thereof. Other examples relate to input components for gyratory sifters, particularly to a splitter for splitting or distributing input material, the splitter also functioning as a reservoir for holding input material prior to being distributed by the splitter. This reservoir may function as a rock box to reduce wear on the splitter and the rest of the inlets.
A splitter in accordance with the present disclosure may serve multiple purposes. A splitter may distribute input material to one or more decks of a gyratory sifting machine. A splitter designed may also serve as a reservoir for input material awaiting distribution to the one or more decks of the gyratory sifter. Input material may enter the splitter from a top end of the splitter. The splitter may include a bottom surface. The bottom surface may be solid, preventing input material from exiting through the bottom of the splitter. The bottom surface may enable some input material to collect in the splitter during operation. The splitter may contain one or more sidewalls defining a cylindrical periphery or boundary. The number of sidewalls may depend on the shape of the bottom surface and/or splitter as a whole. For example, a splitter including a circular bottom surface may have one continuous sidewall defining a cylindrical periphery or boundary.
The periphery may include one or more openings therethrough. The number of openings in the periphery may correspond to the number of decks in a gyratory sifter. For example, if a gyratory sifter contains six decks, the sidewall of the splitter may contain six openings therethrough. The openings may be equal in area and may be spaced apart equally from each other.
The openings may include slits (or holes or other voids) that are sufficient in size to allow input material to flow therethrough. Slits may restrict but not prevent input material from flowing through the sidewalls of the splitter. The slits may cause the input material to back up, which produces the rock box function. As input material builds up in the splitter, the gyratory motion throws the product through the slits with an even distribution between the decks. The size of the slits can vary depending on the size of the product that is being screened. In some examples, slits may range from about 0.25 inches in height to about 1 inch in size.
The openings may also include overflow windows, which may allow input material to flow therethrough during a surge of input material being introduced into the splitter. In this manner, the overflow window may prevent a clog of input material or a slowdown in the flow of input material through the splitter.
When a gyratory sifter is in operation, gyratory movement, especially horizontal or lateral movement, may force the input material to be thrown or propelled through openings or slits along the sidewall of the splitter. When the direction of movement changes, the input material may be thrown or propelled through a different opening or slit along the sidewall of the splitter. In this manner, input material may flow through the splitter in a way that distributes input material to different decks of the gyratory sifter. In operation, the movement of the gyratory sifter may move in each direction for approximately equal times, thus allowing an approximately equal amount of input material to be thrown from each side of the splitter and onto the corresponding deck of the gyratory sifter. In this manner, even distribution of input material to each deck may be maintained.
Input material may enter through the top portion of the splitter 100. In the splitter of
A gyratory sifter may include an inlet door to couple the openings of the splitter 100 to the decks of the gyratory sifter.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.
The present application claims priority to U.S. Application Ser. No. 62/331,423, filed May 3, 2016, which is incorporated herein by reference in its entirety
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/030478 | 5/2/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62331423 | May 2016 | US |