The invention is further described by way of examples with reference to the accompanying drawings in which:
As used herein “propellant” is to be interpreted broadly to include any energetic substance such as a propellant, blasting agent, explosive, gas-evolving substance, or similar means which, once initiated, generates high pressure material typically in gaseous form. “Propellant” does not include a high explosive.
An igniter 36, of known construction, is positioned inside the propellant 20. An igniter lead wire 40 extends from the propellant through a hole 41 in the inner cap and along a groove 42 in an outer surface of the stemming device. A portion 44 of the wire is therefore positioned externally of the tubular body.
The tubular body is made from any appropriate material such as, for example, a high density plastics material eg. in an extrusion process. The caps 14 and 16 are made from a similar material for example by using injection moulding techniques.
The filler 34 is a particulate material with a high friction capability eg. graded sand with an appropriate aggregate or particle size.
The stemming device 30 is shown in further detail in
The inner cap 14 is formed with a wedge or conical outer surface 56.
The igniter 36 is ignited in any appropriate way via the igniter lead wire 40 using techniques which are known in the art and which, for this reason, are not further described herein. Ignition of the propellant results in the generation of high pressure jet material, substantially in gaseous form, in the enclosure 22. Substantial forces are generated inside the enclosure and the body is radially expanded. Forces are exerted on the caps 14 and 16 which tend to move the caps axially away from each other. The cap 14 is thereby moved deeper into the filler 34 and the filler, which is a particulate material with a high friction capability, tends to flow towards and against the stemming device. A force is thereby exerted, particularly on a large face 70 of the wedge component 48 which faces the filler, which increases the wedging action of the stemming device. The effectiveness of the stemming device is thereby enhanced by the action of the propellant.
The twin activation of the stemming device, ie. when the stemming device is initially manually activated and as a result of the ignition of the propellant, means that a highly effective stemming action results.
The groove 42 allows the igniter lead wire 40 to pass to a location outside the bore 18 and is such that, when the stemming device 30 is activated, no damage is caused to the igniter lead wire.
The stemming device 30A includes two wedge-shaped components 46A and 48A respectively which present inclined surfaces 50A and 52A to each other which define a wedge-shaped cavity 74 between them. A wedge-shaped barrel 76 is positioned in the cavity and a threaded shank 78 is engaged with a threaded passage 80 in the barrel.
Viewed from one end the wedge components 46A and 48A, when engaged with each other as is shown in
A washer 82 is fixed to a protruding end 84 of the shank which is provided with a lever-type formation 86 which facilitates rotation of the shank.
The stemming device 30A is engaged with the tubular body 12 of the cartridge as shown in
Once the cartridge 10A has been positioned in the hole 64 in the rock face the lever formation 86 is rotated in a direction which causes the wedge-shaped barrel 76 to be drawn deeper into the cavity 74. The wedge components 46A and 48A are thereby forced apart and the tubular body is frictionally locked in position in the hole 64. Once the propellant 20 is ignited, pressure exerted by gas, which is evolved by the propellant, drives the inner cap 14 into the particulate filler which is thereby forced into the cavity 74 in the stemming device. The components 46A and 48A are urged radially apart with the result that the effectiveness of the stemming device is enhanced.
In a variation of the invention the filler is not used. Referring to
The stemming device, in each embodiment of the invention, acts to help contain gas, released by the ignited propellant, within the hole in the rock face. The high pressure of the gas is effectively contained in the hole 64. The tubular body initially expands plastically confining the high pressure material which is released by the propellant and a substantial force is thereby generated inside the body. As the body fractures the energy which is released results in localised fracture of the rock in one or more regions adjacent the body.
The invention thus provides a rock breaking cartridge which includes an integral internal stemming device which may be of any appropriate design. The cartridge is inserted in a single operation into a hole in a rock face and it is not necessary for a separate stemming device or filler to be placed in the hole after the cartridge has been positioned. These steps are carried out in one operation. The use of the cartridge of the invention thus saves time and increases safety because the period of time required for a person to install the cartridge is reduced.
The rock breaking cartridge of the invention also allows for use to be made of robotic applications for the insertion process is relatively simple compared to conventional techniques which require the cartridge to be placed and then for stemming to be inserted into a hole in separate operations.
Number | Date | Country | Kind |
---|---|---|---|
2004/0552 | Jan 2004 | ZA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ZA05/00005 | 1/19/2005 | WO | 00 | 4/12/2007 |