This invention generally relates to a method and apparatus for taking a rock core drilling sample. In particular, the invention is directed to an improved method of taking core samples from base rock at any depth using simple elements in a controlled and reliable fashion. Some preferred embodiments of this invention are particularly useful for removing rock core samples in extraterrestrial environments.
Some current core sample removal techniques consist of drilling completely through the base rock in order to obtain a core sample. It is often impractical to drill completely through the rock to be sampled. The depth of the base rock may not be known, or if it is known, may be far deeper than the desired sampling depth.
Some current core sample removal techniques consist of drilling to a desired depth and rocking the drill shaft back and forth until the core sample cracks away from the base rock. When obtaining a core sample by drilling to the desired depth and rocking the drill shaft back and forth, several problems arise. The cutting annulus must be great enough to provide sufficient movement of the drill shaft as it is rocked back and forth. As the cutting annulus size increases, the drill tends to operate slower, work less efficiently, and generate more dust. If the drill depth is several times greater than the drill diameter, the cutting annulus must be further increased so as to provide the same rocking angle. Soon it becomes impractical to use this method of core sample removal at any depth greater than several drill diameters. Drill shaft flexing will also detract from the available rocking angle.
Some current core sample removal techniques apply relatively large external loads to the drill shaft which must react to ground. Some current core sampling techniques can therefore become difficult in sandy or soft surroundings. Additionally, in extraterrestrial environments, many of the weight, power, and cost restraints make undesirable a drilling apparatus requiring such external loads reacting to ground.
Some current core sample removal techniques subject the core sample to strong, rotational friction forces while drilling, which can result in inadvertent, premature core breakage. These premature breakages can cause the core sample to become jammed within the collection device. Additionally, the rotational friction forces against the core sample may cause particles to break off of the core sample and accumulate as dust. This dust may clog different parts of the drilling and core removal apparatus rendering either certain parts inoperable or possibly rendering the entire drilling and core removal apparatus inoperable.
Some current core sample removal techniques do not provide for a drill bit quick-change mechanism. In order to change the drill bit, often the entire drilling and core removal apparatus must be removed from the hole and changed using extra equipment. Some current core sample removal techniques run the risk of having the drill tube or possibly the entire drilling mechanism rendered inoperable and immobile if the drill bit gets clogged, broken, or otherwise stuck while still in the hole. Additionally, in extraterrestrial environments, the drilling and core removal apparatus is often attached to an autonomous research platform with other pieces of scientific equipment. If the drill bit were to become stuck in the hole it was drilling and no drill bit quick-change mechanism were available to release the drill bit while it remained within the hole, then the entire research platform may be rendered immovable and many of the pieces of scientific equipment may be rendered immobile and thus inoperable.
Some current core sample removal techniques provide a quick-change means for the drill bit, but are unable to obtain the core sample if the drill bit must be released during a drilling operation.
Some current core sample removal techniques do not provide for a stable bushing support to the drill bit during the drilling process.
Some current core sample removal techniques are not reliable enough to be run autonomously. Reliable and autonomous core sample removal techniques are particularly necessary in extraterrestrial environments.
Some current core sample removal techniques also require a large number of moving parts in order to achieve the drilling, core removal, core ejection, and drill bit changing actions. The large number of moving parts can increase the cost of the mechanisms, impart a loss of drilling efficiency, increase the cost of necessary repairs, and increase the downtime required for repairs. Additionally, in extraterrestrial environments, such a large number of moving parts may be unable to comply with weight, power, and cost restrictions.
Generally, a preferred embodiment of this invention comprises a coaxial arrangement of a cylindrical collet tube located within a cylindrical ground tube which is located within a cylindrical drill tube with a drill bit affixed to one end. In a preferred embodiment, the drill bit is connected to the drill tube through a quick-change mechanism. The collet tube has constricting fingers near its collecting end which are able to flex inward towards the center axis in order to decrease the diameter of the collet tube's collecting end. In a preferred embodiment, features in the collet tube, ground tube, or both tubes cause the collet tube's constricting fingers to flex towards the center axis when the collet tube is moved upwards a small distance with respect to the ground tube, thus allowing the collet tube to grip a core sample that has been drilled.
In multiple preferred embodiments, the collet tube can be raised with respect to the ground tube to grab the core sample, and then, with respect to the drill tube and drill bit, both the collet tube and ground tube can be (1) raised to break off the core sample solely through tension, (2) rotated until the core sample is broken off solely through torsion, or (3) raised and rotated to break off the core sample through a combination of tension and torsion. A preferred embodiment may allow for the user to adjust the desired proportion of tension to torsion used to break the core sample. An alternate preferred embodiment would allow this apparatus to be manufactured with a specific ratio of tension to torsion. In a preferred embodiment, the same movement actuator that causes the collet tube to grip the core also acts to rotate and raise the collet tube and ground tube in the core sample break-off process.
In a preferred embodiment, an ejection rod is used to push the core sample out of the collet tube after the collet tube is lowered with respect to the ground tube in order to release its grip on the core sample. The ejection rod also serves to change operating modes of the movement actuator that first causes the collet tube to grip the core sample and later rotates and raises the collet tube and ground tube combination. This embodiment would eliminate the need for additional actuators and simplify the design.
During the drilling process, the collet tube and ground tube are rotationally secured so as not to rotate with the drill tube and drill bit. The collet tube and ground tube thus act as non-rotating “sleeves” which protect the core sample from inadvertent breakage while drilling. The protection of the core sample during drilling as well as the unique break-off method allows for the retrieval of much longer core samples than permitted by prior art methods and devices. Additionally, the non-rotating “sleeves” also protect the entire drilling and core removal apparatus from the danger of dust buildup. At the same time, the ground tube also acts as a stable bushing support for the drill bit.
In a further preferred embodiment, a drill bit quick-change mechanism is employed to allow for rapid changing of stuck, broken, worn, or different drill bits in a reliable autonomous fashion without the need for additional actuators. In multiple embodiments, the extra range of movement of the ground tube that is not employed in the core break-off process may be used to actuate the quick-change mechanism. In a preferred embodiment, the attachment end of the drill tube has small tabbed features capable of moving outward so as to engage a groove in the inner diameter of the drill bit. In this preferred embodiment, the ground tube generally forces the drill tube's tabbed features outwards into the grooved recesses of the drill bit. In this preferred embodiment, the ground tube is shaped so that when it is moved through its extra range of motion, it allows the drill tube's tabbed features to move inward and release the drill bit. Preferred embodiments may use drill bit quick-change mechanisms that secure the drill bit both vertically and rotationally or only vertically. If the drill bit quick-change mechanism only secures the drill bit vertically, an alternate method, such as keyed features, must be used to rotationally couple the drill bit and drill tube. Such preferred embodiments would allow the drill tube, collet tube, ground tube, core sample, and other parts to be saved and retrieved even if the drill bit becomes stuck in the hole it is drilling.
A preferred embodiment of this invention allows the core removal apparatus to be powered by only four motors: one to rotate the collet nut, one to move the ejection rod lead screw, one to operate the drill tube, and one to move the entire assembly in and out of the ground. While the motors are not shown or described in this invention, it is readily apparent to one skilled in the art how such motors would be attached when this core removal apparatus is to be used.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. The hatch patterns used in the following drawings are not intended to show specific or different material types.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
Referring back to
Referring to
Referring to
The embodiment shown in
Because of the relationship between the constricting fingers 22 of the collet tube 20 and the conical features 44 of the ground tube 40, the collet tube 20 will grip the core sample 66 when raised with respect to the ground tube 40. After the collet tube 20 grips the core sample 66, the collet tube 20 and ground tube 40 are together raised, rotated, or raised and rotated so as to break the core sample 66 from the substrate 60 through either tension, torsion, or a combination of tension and torsion.
Referring to
Referring to
Referring to
It is possible that the gripping force applied to the collet fingers 22 onto the core sample 66 via the tightening collet nut 23 is not sufficient to prevent rotational or axial slipping of the collet fingers 22 as the ground tube 40 and collet tube 20 are actuated to rotate and break the core sample 66. If this occurs, the collet nut 23 can be actuated to “reset” the grip of the collet fingers 22 onto the core sample 66 with an increased force and execute the break-off sequence again.
An alternate embodiment involves designing the pitch of the threads on the collet nut 23 and collet tube 20 as well as the slope of the constricting fingers 22 and the conical features 44 such that the gripping force applied to the collet fingers 22 through torque applied to the collet tube 20 will continue to increase until the magnitude of torque equals that needed to break the core sample 66 from the substrate 60. In other words, as long as there is a sufficient “biting” grip or sufficient preload on the core sample 66, when the rotational lock 34 is raised to free the ground tube 40 and collet tube 20 to rotate, the collet nut 23 will continue to tighten the grip onto the core sample 66 without slipping until the torsional breaking force needed to separate the core sample 66 from the substrate 60 is equal to the ever increasing torque that is applied to the collet tube 20. In this way, it is not necessary to know, in advance, the gripping force needed to insure the collet fingers 22 do not slip on the core sample 66 when the core sample 66 is to be broken off. The mechanism will continue to tighten its grip on the core sample 66 until the core sample 66 breaks from the substrate 60.
Referring to
Referring to
Referring to
In a preferred embodiment of the invention, the drill bit quick-change mechanism allows for the drill bit 56 to be detached and remain within the substrate 60 while allowing the core sample 66 to be retained and removed by the removing the ground tube 40 and collet tube 20 from the substrate 60.
Referring to
Referring to
A preferred embodiment of the rock core removal apparatus is conveniently employed by first drilling the drill tube 50, drill bit 56, ground tube 40, and collet tube 20 into a substrate 60 to a certain depth, thus allowing a core sample 66 to become located within the collet tube 20. At the desired depth, the collet nut 23 may be rotated to raise the collet tube 20 and cause the constricting fingers 22 to grip the core sample 66. After gripping, the ejection rod 39 may be commanded to be raised a small distance in order to lift the rotational lock 34 so it no longer engages the ground tube 40. The collet nut 23 may again be rotated to this time rotate the collet tube 20 and ground tube 40. Depending on the embodiment used, the core sample may be broken by torsion, tension, or a combination of torsion and tension. The drill tube 50, ground tube 40, and collet tube 20 may be removed from the substrate 60. At the same time, the drill bit 56 may either be removed from the substrate, or the ejection rod 39 can be commanded to be raised fully in order to raise the ground tube 40 to the drill bit quick-change position, thus releasing the drill bit 56 and leaving it in the substrate 60.
After breaking off the core sample 66 and before or after removing the collet tube 20 and ground tube 40 from the substrate 60, the ejection rod 39 can be commanded to be lowered while the collet nut 23 is rotated to allow the rotational lock 34 to again engage the ground tube 40. Then, the collet nut 23 can be rotated in an opposite direction that will cause the collet tube 20 to be lowered with respect to the ground tube 40, thus releasing the grip on the core sample 66. In a preferred embodiment of the invention, the core sample 66 is then pushed out of the collet tube 20 by commanding the ejection rod 39 to be lowered.
In one preferred embodiment, this invention is to be used for rock core removal in extraterrestrial environments. As such, an example of the general scale of the outer diameter of the drill bit is about 0.625 inches. It is readily apparent to one skilled in the art that different embodiments of this invention can be scaled up or down in order to accomplish different sized core removals. It is also readily apparent to one skilled in the art that the nature of this invention is not limited to use only in extraterrestrial environments.
The advantages of the above described embodiments and improvements are readily apparent to one skilled in the art as enabling the efficient and effective drilling and removal of a core sample. Additional design considerations may be incorporated without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited by the particular embodiments or forms described above, but by the appended claims.
This U.S. patent application claims the priority from U.S. Provisional Application No. 60/937,142 on Jun. 27, 2007 by the same inventor having the title “Collet Core Removal.”
Number | Name | Date | Kind |
---|---|---|---|
2537605 | Sewell | Jan 1951 | A |
3086602 | Henderson | Apr 1963 | A |
4566545 | Story et al. | Jan 1986 | A |
4694916 | Ford | Sep 1987 | A |
5211249 | Richter | May 1993 | A |
6550549 | Myrick | Apr 2003 | B2 |
6719070 | Puymbroeck et al. | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20090000822 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60937142 | Jun 2007 | US |