Rocker switch

Information

  • Patent Grant
  • 11682535
  • Patent Number
    11,682,535
  • Date Filed
    Friday, March 11, 2022
    2 years ago
  • Date Issued
    Tuesday, June 20, 2023
    10 months ago
Abstract
A rocker switch that can include multiple redundancy at each position. Specifically, the rocker switch is a two-position rocker switch with both positions in line and with double or triple redundancy at each position. The rocker switch still provides a user with definitive snap “on” switching and the snap positions which can be used to activate multiple redundant internal circuit switches to provide for increased reliability of switch operation.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

This disclosure is related to the field of switches and particularly rocker switches that can include multiple redundancy at each position.


2. Description of the Related Art

Switches, and particularly electrical switches, are currently ubiquitous in daily human life. Switches come in all shapes and sizes and from the simple to the complex. While they are near ubiquitous, different switches need to be built to handle particular tasks. A switch, as we tend to think of it, actually includes two “switching” elements. The first of these is the underlying electrical or circuit switch which is, in many respects, the true switch. This is typically very small and is the object that physically connects and disconnects the electrical or circuit path switched by the switch. It, thus, acts to open or close the circuit which carries out the functionality the switch is related to.


The second component of the switch is the interaction component or switch head. This is typically much larger and is designed to be manipulated by a human (or other) user. The head of the switch is what many people think of as a “switch” but technically is nothing other than a specialized lever, toggle or other piece configured to allow for convenient manipulation by human hands, which are typically quite large relative to the underlying electrical circuit switch, to control the action of switching the circuit.


It is in the creation of the interface between the switch head and the circuit switch where the differences in switches typically lie. As indicated, human hands (or any other body part we would want to use to activate a switch) are relatively large compared to electrical components which can be purposefully highly miniaturized. However, human hands are also highly manipulable within 3-Dimensional space with a very wide range of motion. Thus, macro scale switches are really devices to translate specific human motion acting on the head and switch into an expected electrical opening or closing circuit action which circuit action causes an electrical device to behave as the human intended by their act of manipulating the head in the particular fashion they did. Thus, items we think of as switches, such as a light switch, act to take a human motion (e.g. the pushing of a toggle head up or down or the depression of a particular part of a lever head) and translate that into circuit switching in the light circuit to create the desired action of turning the light on or off.


A lot of the purpose of a switch unit is, thus, to give a human user a clear way to manipulate the operation of the underlying circuit so it does what it is intended to do when the user instructs it to do so. The need for accurate translation of human movement into actual circuit switching can be convenient or essential depending on the purpose of the switch. As electrical objects pervade human existence currently, and we trust many of them with both our and others' lives, it is, thus, highly desirable to have switches that consistently and repeatedly switch circuits when the same human actions are performed.


One place where highly accurate switching is necessary is in the operation of complex machines, particularly when the operation of those machines is directly related to the maintenance or loss of human life. While there are large numbers of such applications, one is in the operation of transportation machines such as cars, trucks, boats, and aircraft.


Powered flight can easily be considered one of humankind's greatest accomplishments. The modern aircraft is an amazing piece of engineering and the skill requirements of a human pilot to keep it aloft are also impressive. Operation in three-dimensional space presents aircraft with a number of concerns that ground-based vehicles simply do not have and also tends to require a human operator to make many more choices in keeping the operation of the aircraft safe. In the first instance, humans, whether as operators or passengers in an aircraft, are not native to the skies. Aircraft have to deal with the fact that they are operating in an environment which typically does not allow for a safe stop to disembark human passengers or crew. A ground-based vehicle can typically be simply stopped if there are concerns in its operation, passengers and operators can disembark, and the vehicle can be safely inspected and repaired. Thus, in most cases, ground-based vehicles' major concern with failure of operation is safely coming to a stop and not in being able to get where they are going.


In an aircraft, there is typically no way to safely stop in midair. Instead, should an aircraft discover a midair concern, the aircraft still needs to have a place to land and safe landing typically requires sufficient aircraft operability, sufficient landing space, and sufficient pilot control for the aircraft to return to the surface of the earth in a controlled fashion and without hitting anything. An aircraft in midair is effectively only safe so long as it continues to operate correctly and safely. Midair operation, at least currently, is dependent on a human pilot's skills in piloting the aircraft being correctly translated by switches in the aircraft into aircraft actions and mechanical movement.


In order to keep aircraft operating correctly, its electrical systems are paramount as they control virtually everything and act to communicate a pilot's requested actions into aircraft actions. Because of this, many of their electrical systems require redundancy and this is true even down to items as simple as switches. A large number of aircraft systems are operated by switches of some form from simple toggle switches for turning components on and off to the complicated motions of a control stick which is translated by many switches into the direction that the pilot wishes to go. In order to improve safety within aircraft, many of these switches operate on double, triple, or even increased redundant circuit switches. This redundancy helps make sure that the action taken by the pilot with the macro switch they are interacting with is carried out by the underlying circuit since failure of a single circuit switch in the system will generally not cause the intent of the pilot to not be translated into switching within the circuit.


In addition to the need for redundancy in switches in aircraft for the purposes of safety, switches, particularly in aircraft, are often required to control many different things because of the sheer number of items that a pilot needs to control. When flying an aircraft, and particularly a rotorcraft, the pilot will often have both hands and both feet engaged with controls at all times. Thus, the need to activate additional controls that are needed during piloting typically requires that switches be located in easy reach and ideally on other controls.


To provide easy access to auxiliary controls while piloting, many of these controls (which can include everything from lighting controls, to controls over payloads, to controls for displays, to the operation of weapon systems on military aircraft) are located on the control sticks, grips, or wheels of aircraft that are held by the pilot while piloting. Auxiliary controls which are needed in flight are therefore often integrated into or attached to the controls where the hands are maintained during piloting operations. They are usually near or under where the hands are positioned during flight to allow for the switches to be operated without needing to remove the hand from the respective control and with a minimum of movement. In this way, the switches can be readily adjusted or operated by the user while maintaining full piloting control. This is not just used in aircraft, but in the operation of ground vehicles as well. One many people are familiar with, for example, is the inclusion of switches related to cruise control or sound system operation in a passenger car being located on the steering wheel so a user does not need to take their hands from the wheel to operate them.


While including switches on control sticks, grips, wheels, and the like is obviously highly beneficial, there is only a limited amount of space on these objects. Thus, there can only be a limited number of switches present along with the associated wiring and circuitry necessary for them to operate. While electrical components can be, and have, been successfully miniaturized over the years, it is often hard to shrink the human access component (the switch head) as humans are still relatively similar in size and have only so much control over fine motor movement.


As machines have become more and more complex, and it has become more and more desirable to include additional functionality at the user's fingertips, so to speak, switches have had to be able to provide for more individually detectable human actions in the same space, while also making sure that the human operator operates the switches with certainty. That is, the switch ideally provides feedback to the operator that the action the operator intends to engage is actually the one they are engaging. This latter element is often provided by switches having a visible or tactile indicator when they are in particular position and/or have moved from one position to another. For example, most switches “snap” where it is easier to hold them in a specific position than to move them between positions which gives them a snap or click as they move to position.


Even simple toggle or rocker switches sometimes have multiple positions (usually two) and it is desirable to have them have “snap” feel so the user is certain they have switched. Most of the time toggle or rocker switches move to distinct positions and then stay in them, but it can also be desirable to have rocker switches that can snap to position but will then snap back to the home or off position once the user lets up force on the rocker.


SUMMARY OF THE INVENTION

The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The sole purpose of this section is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.


There is described herein, among other things, a rocker switch that can include multiple redundancy at each position. Specifically, the rocker switch is a two-position rocker switch with both positions in line and with double or triple redundancy at each position.


Based on the above, there is also a need in the art to provide for rocker switches where a user has definitive snap to “on” switching and which can be used to activate multiple redundant internal circuit switches to provide for increased reliability of switch operation.


There is described herein, among other things, a rocker switch comprising: a switch head; a button support attached to the switch head and configured to rotate to a first detent position located on a first side of a center position and a second detent position located on a second side opposing the first side of the center position; a first lever arm with a first rotation point arranged on the second side; a second lever arm with a second rotation point arranged on the first side; a first circuit switch arranged so as to be switched when the first lever arm is rotated about the first rotation point; and a second circuit switch arranged so as to be switched when the second lever arm is rotated about the second rotation point; wherein moving the switch head in a first direction from a stable position causes: the button support to rotate from the center position to the first detent position; the button support to depress the first lever arm about the first rotation point; and the first lever arm to engage the first circuit switch; and wherein moving the switch head in a second direction opposing the first direction from the stable position causes: the button support to rotate from the center position to the second detent position; the button support to depress the second lever arm about the second rotation point; and the second lever arm to engage the second circuit switch.


In an embodiment, the rocker switch further comprises: a first snap feel mechanism, the first snap feel mechanism comprising: a first pin having a ball end, a base, and a center section therebetween; and a first ball bearing; wherein the first lever pushes the first pin against a first pin biasing mechanism; wherein, as the first lever pushes the first pin, the first ball bearing is pushed from being adjacent the center section of the first pin and against a first bearing biasing mechanism by the ball end of the first pin; and wherein the first ball bearing is adjacent the ball end of the first pin when the first lever engages the first circuit switch; and a second snap feel mechanism, the second snap feel mechanism comprising: a second pin having a ball end, a base, and a center section therebetween; and a second ball bearing; wherein the second lever pushes the second pin against a second pin biasing mechanism; wherein, as the second lever pushes the second pin, the second ball bearing is pushed from being adjacent the center section of the second pin and against a second bearing biasing mechanism by the ball end of the second pin; and wherein the second ball bearing is adjacent the ball end of the second pin when the second lever engages the second circuit switch.


In an embodiment of the rocker switch, the first circuit switch is one of a plurality of switches engaged by the first lever arm.


In an embodiment of the rocker switch, the plurality of switches engaged by the first lever arm includes two switches.


In an embodiment of the rocker switch, the plurality of switches engaged by the first lever arm includes three switches.


In an embodiment of the rocker switch, the switch head is generally a trapezoidal prism.


In an embodiment of the rocker switch, the switch head is generally a squircle.


In an embodiment of the rocker switch, the ball end is generally a sphere.


In an embodiment of the rocker switch, the ball end is generally a capsule.


In an embodiment of the rocker switch, the first snap feel mechanism will bias the button support to the center position.


In an embodiment of the rocker switch, the second snap feel mechanism will bias the button support to the center position.


There is also described herein, in an embodiment, a rocker switch comprising: a switch head; a button support attached to the switch head and configured to rotate to a detent position located on a first side of a center position; a lever arm with a rotation point arranged on a second side opposing the first side of the center position; and a circuit switch arranged so as to be switched when the lever arm is rotated about the rotation point; wherein moving the switch head in a first direction from a stable position causes: the button support to rotate from the center position to the detent position; the button support to depress the lever arm about the rotation point; and the lever arm to engage the circuit switch.


In an embodiment, the rocker switch further comprises: a snap feel mechanism, the snap feel mechanism comprising: a pin having a ball end, a base, and a center section therebetween; and a ball bearing; wherein the lever pushes the pin against a pin biasing mechanism; wherein, as the lever pushes the pin, the ball bearing is pushed from being adjacent the center section and against a bearing biasing mechanism by the ball end; and wherein the ball bearing is adjacent the ball end when the lever engages the circuit switch.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a left top perspective view of a first embodiment of a rocker switch.



FIG. 2 depicts a left top perspective view of a second embodiment of a rocker switch.



FIG. 3 depicts a bottom view of the rocker switch of FIG. 1.



FIG. 4 depicts a top view of the rocker switch of FIG. 1 in the “off” position (home position).



FIG. 5 depicts a side view of FIG. 4.



FIG. 6 depicts a cut-through along line A-A in FIG. 4.



FIG. 7 depicts a top view of the rocker switch of FIG. 1 in the first on position.



FIG. 8 depicts a side view of FIG. 7.



FIG. 9 depicts a cut-through along line B-B in FIG. 7.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

The following detailed description and disclosure illustrates by way of example and not by way of limitation. This description will clearly enable one skilled in the art to make and use the disclosed systems and methods, and describes several embodiments, adaptations, variations, alternatives and uses of the disclosed systems and methods. As various changes could be made in the above constructions without departing from the scope of the disclosures, it is intended that all matter contained in the description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.



FIGS. 1 and 2 show perspective views of two different embodiments (100) and (200) of rocker switches. The embodiments of FIGS. 1 and 2 are essentially the same in that each includes a switch head (101) or (201) which extends from a housing (111). However, the switch heads (101) and (201) are of different shape. The switch head (101) or (201) is the portion of the switch (100) or (200) that is intended to be human activated. As such, the switch head (101) or (201) may be any form of object which is designed to be pushed or pulled by a human.


In the depicted embodiment of FIG. 1, the switch head (101) comprises the general shape of a trapezoid or triangular prism which extends from the housing. In the depicted embodiment of FIG. 1, the trapezoid prism is generally in the form of a trapezium prism with rounded corners making both sides (103) of equal height. The sides (103) may include knurling or texturing to increase friction when contacted by a finger or thumb the pad of which would typically be placed against the side (103) and possibly over the top (113) to push or pull the head (101) generally perpendicular to its major axis (131). Alternatively, the head (101) can be moved by the side of a finger or thumb pushing against a side (103).


In the embodiment of FIG. 2, the switch head (101) comprises a generally square or “squircle” shape in cross section. The upper surface thereof is typically concave in at least one major dimension and may include knurling or texturing to increase friction when contacted by a finger or thumb the pad of which would typically be placed into the concave surface. In both the embodiments of FIGS. 1 and 2, the switch head (101) or (201) is surrounded by a cowl (105) which is designed to allow the head (101) to move relative to the housing (111) while still keeping objects (including dust and dirt) and moisture out of the housing (111).


Each position of the switch (100) or (200) can activate one, two, three, or more circuit switches simultaneously providing it with multiple redundancy of virtually any level. This type of switch (100) or (200) with double or triple redundancy is well suited for mounting in a grip or similar component of an aircraft for activation by a pilot with their thumb. However, it may be used in any application which calls for a rocker switch with two activation positions on either side of a center off position or any other application where three distinct positions are desired.


As shown in FIG. 3, at the lower portion of the housing (111), and regardless of if it is switch (100) or (200), there are mounted a number of circuit switches (301), (303), (311), (313), (321), and (323). In the depicted embodiment, there are six such circuit switches (301), (303), (311), (313), (321), and (323) depicted. As this is a two-position switch, each “on” position will activate three of the circuit switches (301), (303), (311), (313), (321), and (323) compared to other positions which provides each position with triple redundancy. The circuit (301), (303), (311), (313), (321), and (323) are, thus, arranged in triplets with circuit switches (301), (311), and (321) being together and circuit switches (303), (313) and (323) being together. It should be apparent that each triplet of switches could be replaced by a single circuit switch, two circuit switches, or by four or more circuit switches if a different level of redundancy is desired. Each of the circuit switches (301), (303), (311), (313), (321), and (323) will generally comprise a micro or sub-micro button switch with a lever to assist with activation such as, but not limited to, the B1-5 lever series of switches or the B3 basic series of switches with auxiliary levers both of which are produced by Otto. This particular type of circuit switch is, however, by no means required and any sort of circuit switch activated by the motion of the switch (100) or (200) as discussed herein may be used.


For the sake of simplicity in the remaining discussion, the switch (100) embodiment of FIG. 1 will be used as an exemplary embodiment of the switch (100) or (200). However, it should be apparent that since the only difference between switch (100) and switch (200) is the shape of the head (101) or (201), the remaining discussion applies equally well to either embodiment even through switch (100) is discussed herein.


The head (101) typically has three different linear positions into which it may be placed. In FIGS. 4, 5, and 6, the head (101) is shown in a center position, which, in this embodiment, is the off or home position. In FIGS. 7, 8, and 9 the head (101) is in a first detent position, which, in this embodiment, is also referred to as the forward position. The third positon or second detent position is a backward position. The use of the terms “forward” and “backward” here are arbitrary designators and are used solely to indicate that forward is on the opposing side of center to the backward position (which is not shown but is discussed below).


The switch (100) will now be discussed in conjunction with the various internal components. The structure of the internals of the switch (100) are best seen by Examining FIGS. 6 and 9 as each of these shows cut-through drawings of the switch (100) as indicated in the respective FIGS. 4 and 7. For ease of discussion and display, FIG. 6 and FIG. 9 are each depicted with only a subset of components labeled due to the large number of close components even though most of the components are visible in both FIGS.


The head (101) is attached to a button support (401). The button (401) is generally semi-circular in cross-section in at least one dimension with a flat upper surface (403) which interfaces with the bottom surface (104) of the head (101). This can make it appear as a portion of a flattened cylinder or sphere, for example. The button (401), depending on embodiment, may be attached to the head (101) in any fashion including, but not limited to, by screws (405), adhesives, or by being integrally molded with the head (101).


The lower surface (407) is generally flat, but includes two ridges or nubs (417A) and (417B). These nubs (417A) and (417B) are typically positioned toward at least two opposing outer corners of the lower surface (407) with one on either side of the major axis (131) of the head (101) or may run generally parallel to the major axis (131) of the head (101), again with one on each side. The nubs (417A) and (417B) are typically in the from of rounded bumps extending downward from the lower surface (407) of the button (401).


There is a hole (409) positioned in the button (401) typically at a point closer to the lower surface (407) than the upper surface (403). Through the hole (409) there is positioned a rod (419) which will also run generally parallel to the major axis (131) of the head (101). This allows for the button (401) to rotate about the rod (419).


Below the lower surface (407) there are positioned two lever arms (431) and (433). The lever arms (431) and (433) are positioned so as to run generally perpendicular to the major axis (131) of the head (101) and each will typically cross the major axis (131). As can be seen from the FIGS., the first lever arm (431), which is the one on the side of the switch (100) closest to the viewer, has its lower rotational connection (435) toward the right side (as viewed) of the switch (100) of FIG. 6. The second lever arm (433), which is spaced from the viewer into the page of FIG. 6, is partially visible behind the first lever arm (431) and is in opposing position with its rotation connection (not visible) on the left side of the head (101) of FIG. 6. It should be recognized that the terms “right” and “left” as used herein are not intended to denote any particular location relative to operation or other components. They are instead used simply to show that the components are in opposing positions relative to a central reference point, in this case the major axis (131).


Each of the lever arms (431) and (433) is positioned over a triplet of circuit switches (301), (311), (321), (303), (313), or (323). Specifically, lever arm (431) is positioned over switches (301) (311) and (321) and lever arm (433) is positioned over switches (303), (313), and (323). The lever arms (431) and (433) are sized and shaped so as to be over each circuit switch (301), (311), (321), (303), (313), or (323) in the associated triplet by effectively the same distance. As can be seen in FIG. 6, the lower surface (437) of the lever arm (431) is in contact with the integrated lever arm (447) of the circuit switch (311). Lever arm (431) is also in similar contact with the integrated lever arms of switches (301) and (321) even though they are not visible in FIG. 6. Similarly, the lever arm (433) is in an essentially mirrored position with the integrated lever arms of switches (303), (313) and (323).


Next to the triplet of switches (301), (311), and (321), there is positioned a snap-feel mechanism. The other side of the switch (100) (into the paper behind switch (301)), also has a similar snap-feel mechanism of essentially mirrored design. The snap-feel mechanism comprises a pin (503) which has a ball end (501). The ball end (501) in the depicted embodiment comprises an elongated cylinder with rounded ends generally in the form of a capsule or spherocylinder. In alternative embodiments, the ball end (501) may be generally spherical or may have other shapes. Typically, however, the ball end (501) will have angled or rounded ends so as to smoothly engage with the ball bearing (601) as discussed later.


The pin (503) may also comprise a widened base (505) which, in the depicted embodiment, is generally cylindrical with flat ends as opposed to the rounded or angled ends of the generally capsule or spherical ball end (501). This, however, gives the pin (503) a loose “dumbbell” shape where there is a narrowed center section (509), which is typically generally cylindrical, between the ball end (501) and the base (505). The pin (503) is placed within a shaft (513) through which it can slide. At the base (505) of the pin (503), there is a compression coil or wave spring (507) which serves to push the pin (503) toward the lever arm (431) and will normally place the ball end (501) into contact with the lower surface (437).


In FIG. 6, There is a ball bearing (601) which may, in an alternative embodiment, be the ball end of another pin, placed in a shaft (613) against another compression coil or wave spring (607). The shaft (613) is generally perpendicular to shaft (513) as shown in FIG. 6. The shaft (613) is also positioned so as to positon the ball bearing (601) in proximity to, and possibly in contact with, the center section (509) of the pin (503). In FIG. 6 the ball bearing (601), regardless of it being in contact with, or not with, the center section (509) is in contact with the ball end (501) generally on a surface more between the dumbbell sides of the pin (503) than any other as can be seen in the FIG.



FIGS. 7, 8, and 9 provide for the positon of the various components when the head (101) when the head (101) has been pushed to the forward position. The forward position typically will involve the head (101) rotating about the pin (419). In the depicted embodiment, the rotation is about 20 degrees from upright but that amount is by no means required and any amount may be used. As can be best seen in FIG. 9, when the head (101) is so rotated, it causes the button (401) to tip forward. This causes the surface (407) to rotate and pushes the nub (417A) into the lever arm (431) at a point spaced from that of the lever arm rotation (435). This causes the lever arm (431) to rotate downward and depress the integrated lever arm (447) which in turn activates the circuit switch (311). The motion of the lever arm (431) also generally simultaneously depresses the integrated lever arms on each of the other circuit switches (301) and (321) in the triplet resulting in all three circuit switches (301), (311), and (321) being activated generally simultaneously.


In addition to activating the circuit switches (301), (311), and (321), the lever arm (431) also pushes the ball end (501) of pin (503) into the shaft (513) against the biasing of spring (507). However, as should be apparent from FIG. 6, the ball bearing (601) is initially in the way of this and impedes the motion of the ball end (501) into the shaft (513). However, as the surfaces of the ball end (501) and ball bearing (601) are generally smooth and rounded (or may be simply angled in alternative embodiments), the force of the lever arm (431) on the ball end (501) will result in the ball end (501) pushing the ball bearing (601) into shaft (607) against spring (607).


Movement of the head (101) to this position is resisted by an amount of force typically proportional to the biasing forces of both spring (507) and/or spring (607) as well as the relative angle in the position of contact between ball head (501) and ball bearing (601) and their relative friction with each other. At some point along the travel of ball head (501) into shaft (513), the point of contact between the ball bearing (601) and ball head (501) alters so that the ball head (501) is no longer pushing ball bearing (601) downward (e.g. along shaft (513)). At this time, the ball head (501) can basically freely slide past ball bearing (601) continuing into shaft (513). In the depicted embodiment, the ball bearing (601) will typically slide or roll along the side of capsule shape of the ball head (501) at this stage.


At the point of clearance of the ball bearing (601), the lever (431) motion begun by the head (101) movement is no longer impeded by the forces of spring (607) or ball bearing (601) and is essentially solely impeded by the lever force of integrated lever (447) and spring (507) which is generally substantially less than the prior combination. Thus, the head (101) movement which was resisted by spring (507), spring (607), integrated lever arm (447), and friction between ball bearing (601) and ball head (501) is much less impeded as only spring (507) and integrated lever arm (447) impede the movement and the head (101) will feel like it “snaps” into position with the lever arm (431) fully depressed as shown in FIG. 9. At this point, the lever arm (431) can rotate no further as the circuit switches' (301), (311) and (321) housings are in the way.


When the user releases the switch head (101), the spring (507) will generally push the pin (503) upward (the reverse direction to the downward direction it was pushed by the user) and the spring (607) will push the ball bearing (601) back in the gap between the ball head (501) and the widened base (505). This motion (along with the spring force of integrated lever arm (447)) serves to push the lever arm (431) back to the position of FIG. 6. Once in the position of FIG. 6, the ball bearing (601) will also generally impede the pin (503) from continuing beyond the position in FIG. 6 as the widened base (505) not having a rounded surface against the ball bearing (601) hinders continued movement. Further, since FIG. 6 corresponds to the central position of the head (101), the snap mechanism interacting with lever arm (433) also impedes further motion.


It should be apparent that while FIGS. 7, 8, and 9 show the motion for the head (101) being moved in the forward direction, the head (101) can also be moved in the backward direction. To put this another way, if FIGS. 7, 8, and 9 show the head at a rotation of 20 degrees, the head (101) can also be rotated to −20 degrees to provide a different point of activation. This would operate in the same way as the motion of FIGS. 7, 8, and 9 (generally in mirror image) except that the lever arm (433) would depress the circuit switches (303), (313), and (323) instead of lever arm (431) depressing circuit switches (301), (311), and (321).


It should be noted that when the head (101) is tilted in the opposing direction to that which would cause the lever arm (431) or (433) to depress the relevant circuit switch triplet, the force of the spring (507) (or the corresponding element for lever arm (433)) could cause the lever arm (431) (or arm (433)) to tilt upward further than the position shown in FIG. 6. However, such arrangement is by no means required and further upward motion of lever arm (431) and/or lever arm (433) could be hindered. For example, this could be by having part of the lever arm (431) or lever arm (433) contact part of the housing (111) as shown in FIG. 6 for lever arm (431) and in FIG. 9 for lever arm (433).


While the invention has been disclosed in conjunction with a description of certain embodiments, the detailed description is intended to be illustrative and should not be understood to limit the scope of the present disclosure. As would be understood by one of ordinary skill in the art, embodiments other than those described in detail herein are encompassed by the disclosed invention. Modifications and variations of the described embodiments may be made without departing from the spirit and scope of the invention.


It will further be understood that any of the ranges, values, properties, or characteristics given for any single component of the present disclosure can be used interchangeably with any ranges, values, properties, or characteristics given for any of the other components of the disclosure, where compatible, to form an embodiment having defined values for each of the components, as given herein throughout. Further, ranges provided for a genus or a category can also be applied to species within the genus or members of the category unless otherwise noted.


Finally, the qualifier “generally,” and similar qualifiers as used in the present case, would be understood by one of ordinary skill in the art to accommodate recognizable attempts to conform a device to the qualified term, which may nevertheless fall short of doing so. This is because terms such as “circular” are purely geometric constructs and no real-world component is truly “circular” in the geometric sense. Variations from geometric and mathematical descriptions are unavoidable due to, among other things, manufacturing tolerances resulting in shape variations, defects and imperfections, non-uniform thermal expansion, and natural wear. Moreover, there exists for every object a level of magnification at which geometric and mathematical descriptors fail due to the nature of matter. One of ordinary skill would thus understand the term “generally” and relationships contemplated herein regardless of the inclusion of such qualifiers to include a range of variations from the literal geometric meaning of the term in view of these and other considerations.

Claims
  • 1. A rocker switch comprising: a switch head;a button support attached to said switch head and configured to rotate to a first detent position located on a first side of a center position and a second detent position located on a second side opposing said first side of said center position;a first lever arm with a first rotation point arranged on said second side;a second lever arm with a second rotation point arranged on said first side;a first circuit switch arranged so as to be switched when said first lever arm is rotated about said first rotation point;a second circuit switch arranged so as to be switched when said second lever arm is rotated about said second rotation point;a first snap feel mechanism, said first snap feel mechanism comprising: a first pin having a ball end, a base, and a center section therebetween; anda first ball bearing;wherein said first lever pushes said first pin against a first pin biasing mechanism;wherein, as said first lever pushes said first pin, said first ball bearing is pushed from being adjacent said center section of said first pin and against a first bearing biasing mechanism by said ball end of said first pin; andwherein said first ball bearing is adjacent said ball end of said first pin when said first lever engages said first circuit switch; anda second snap feel mechanism, said second snap feel mechanism comprising: a second pin having a ball end, a base, and a center section therebetween; anda second ball bearing;wherein said second lever pushes said second pin against a second pin biasing mechanism;wherein, as said second lever pushes said second pin, said second ball bearing is pushed from being adjacent said center section of said second pin and against a second bearing biasing mechanism by said ball end of said second pin; andwherein said second ball bearing is adjacent said ball end of said second pin when said second lever engages said second circuit switch;wherein moving said switch head in a first direction from a stable position causes: said button support to rotate from said center position to said first detent position;said button support to depress said first lever arm about said first rotation point; andsaid first lever arm to engage said first circuit switch; andwherein moving said switch head in a second direction opposing said first direction from said stable position causes: said button support to rotate from said center position to said second detent position;said button support to depress said second lever arm about said second rotation point; andsaid second lever arm to engage said second circuit switch.
  • 2. The rocker switch of claim 1, wherein said first snap feel mechanism will bias said button support to said center position.
  • 3. The rocker switch of claim 1, wherein said second snap feel mechanism will bias said button support to said center position.
  • 4. The rocker switch of claim 1, wherein said first circuit switch is one of a plurality of switches engaged by said first lever arm.
  • 5. The rocker switch of claim 4, wherein said plurality of switches engaged by said first lever arm includes two switches.
  • 6. The rocker switch of claim 4, wherein said plurality of switches engaged by said first lever arm includes three switches.
  • 7. The rocker switch of claim 1, wherein said switch head is generally a trapezoidal prism.
  • 8. The rocker switch of claim 1, wherein said switch head is generally a squircle.
  • 9. The rocker switch of claim 1, wherein said ball end is generally a sphere.
  • 10. The rocker switch of claim 1, wherein said ball end is generally a capsule.
  • 11. A rocker switch comprising: a switch head;a button support attached to said switch head and configured to rotate to a detent position located on a first side of a center position;a lever arm with a rotation point arranged on a second side opposing said first side of said center position;a circuit switch arranged so as to be switched when said lever arm is rotated about said rotation point; anda snap feel mechanism, said snap feel mechanism comprising: a pin having a ball end, a base, and a center section therebetween; anda ball bearing;wherein said lever pushes said pin against a pin biasing mechanism; andwherein, as said lever pushes said pin, said ball bearing is pushed from being adjacent said center section and against a bearing biasing mechanism by said ball end;wherein said ball bearing is adjacent said ball end when said lever engages said circuit switch; andwherein moving said switch head in a first direction from a stable position causes: said button support to rotate from said center position to said detent position;said button support to depress said lever arm about said rotation point; andsaid lever arm to engage said circuit switch.
  • 12. The rocker switch of claim 11, wherein said first circuit switch is one of a plurality of switches engaged by said first lever arm.
  • 13. The rocker switch of claim 12, wherein said plurality of switches engaged by said first lever arm includes two switches.
  • 14. The rocker switch of claim 12, wherein said plurality of switches engaged by said first lever arm includes three switches.
  • 15. The rocker switch of claim 11, wherein said switch head is generally a trapezoidal prism.
  • 16. The rocker switch of claim 11, wherein said switch head is generally a squircle.
  • 17. The rocker switch of claim 11, wherein said ball end is generally a sphere.
  • 18. The rocker switch of claim 11, wherein said ball end is generally a capsule.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Patent Application No. 63/160,303 filed Mar. 12, 2021, the entire disclosure of which is herein incorporated by reference.

US Referenced Citations (333)
Number Name Date Kind
3828148 Roeser Aug 1974 A
3957230 Boucher et al. May 1976 A
3977004 Bickel Aug 1976 A
3981611 Jensen Sep 1976 A
4032091 Reddy Jun 1977 A
4067139 Pinkerton et al. Jan 1978 A
4079902 Ryzhko et al. Mar 1978 A
4123050 Casado Oct 1978 A
4140352 Delpech et al. Feb 1979 A
4146780 Sprey Mar 1979 A
4168046 Hasquenoph et al. Sep 1979 A
4175701 Wojciehowski et al. Nov 1979 A
4228386 Griffith Oct 1980 A
4233652 Oswald Nov 1980 A
4275858 Bolton et al. Jun 1981 A
4287907 Worthy Sep 1981 A
4299361 Webb Nov 1981 A
4326189 Crane Apr 1982 A
4330827 Kettler May 1982 A
4332032 Daniel May 1982 A
4335745 Bouveret et al. Jun 1982 A
4340791 Sorensen Jul 1982 A
4347901 Wilhoit Sep 1982 A
4351394 Enk Sep 1982 A
4372212 Hoelzen et al. Feb 1983 A
4413322 Foster et al. Nov 1983 A
4472780 Chenoweth et al. Sep 1984 A
4476395 Cronin Oct 1984 A
4482018 Enk et al. Nov 1984 A
4492924 Nilsson Jan 1985 A
4502691 Ratliff et al. Mar 1985 A
4531081 Liesegang Jul 1985 A
4573937 Stanzel Mar 1986 A
4616793 Hassler, Jr. Oct 1986 A
4667094 Van-Hecke et al. May 1987 A
4700046 Fristedt Oct 1987 A
4735380 Barousse et al. Apr 1988 A
4737107 Bories et al. Apr 1988 A
4739335 Fourmaud et al. Apr 1988 A
4762294 Carl Sep 1988 A
4765568 Carl et al. Sep 1988 A
4779683 Enk Oct 1988 A
4814579 Mathis et al. Mar 1989 A
4885514 Novis et al. Dec 1989 A
4915185 Olson Apr 1990 A
4936389 Macdonald et al. Jun 1990 A
4968946 Maier Nov 1990 A
4969367 Huber et al. Nov 1990 A
5104062 Glaze Apr 1992 A
5104344 Jancso, Jr. Apr 1992 A
5129826 Munsch Jul 1992 A
5165625 Gutman Nov 1992 A
5222166 Weltha Jun 1993 A
5261778 Zschoche Nov 1993 A
5267709 Koharcheck et al. Dec 1993 A
5367901 Petersen Nov 1994 A
5381987 Carns Jan 1995 A
5391080 Bernacki et al. Feb 1995 A
5404085 Resch et al. Apr 1995 A
5404897 Rozenblatt Apr 1995 A
5479162 Barger et al. Dec 1995 A
5512917 Scott Apr 1996 A
5515898 Alcocer May 1996 A
5621400 Corbi Apr 1997 A
5627744 Baker et al. May 1997 A
5642022 Sanz et al. Jun 1997 A
5659243 Smith Aug 1997 A
5709103 Williams Jan 1998 A
5813630 Williams Sep 1998 A
5824978 Karasik et al. Oct 1998 A
5899411 Latos et al. May 1999 A
5930134 Glennon Jul 1999 A
5984241 Sparks Nov 1999 A
6016016 Starke et al. Jan 2000 A
6062809 Berkey et al. May 2000 A
6134875 Massey Oct 2000 A
6158692 Abild et al. Dec 2000 A
6191547 Fricke et al. Feb 2001 B1
6204590 Audren et al. Mar 2001 B1
6210036 Eberle et al. Apr 2001 B1
6224442 Simpson et al. May 2001 B1
6246564 Sugiura et al. Jun 2001 B1
6286410 Leibolt Sep 2001 B1
6321707 Dunn Nov 2001 B1
6325328 Gabriel Dec 2001 B1
6327994 Labrador Dec 2001 B1
6349537 Newton Feb 2002 B1
6384573 Dunn May 2002 B1
6439512 Hart Aug 2002 B1
6453678 Sundhar Sep 2002 B1
6480091 Scott et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6497389 Rawdon et al. Dec 2002 B1
6550715 Reynolds et al. Apr 2003 B1
6572974 Biscotte et al. Jun 2003 B1
6580497 Asaka et al. Jun 2003 B1
6603216 Costello Aug 2003 B2
6622963 Ahrendt et al. Sep 2003 B1
6695264 Schaeffer et al. Feb 2004 B2
6708929 Gabriel Mar 2004 B1
6733358 Wuest May 2004 B1
6779758 Vu et al. Aug 2004 B2
6803532 Lee Oct 2004 B1
6865690 Kocin Mar 2005 B2
6880466 Carman Apr 2005 B2
6894625 Kozma et al. May 2005 B1
6914201 Van Vooren et al. Jul 2005 B2
6929222 Djuric Aug 2005 B2
6980104 Pahl et al. Dec 2005 B2
7014148 Dominguez Mar 2006 B2
7042693 Sillence et al. May 2006 B2
7044335 Aguirre et al. May 2006 B2
7219023 Banke et al. May 2007 B2
7230292 Graettinger Jun 2007 B2
7246771 Wisch et al. Jul 2007 B2
7273384 So Sep 2007 B1
7176811 Parry Dec 2007 B1
7336473 Gross Feb 2008 B2
7397209 Hirai Jul 2008 B2
7469862 Layland et al. Dec 2008 B2
7472863 Pak Jan 2009 B2
7482709 Berenger Jan 2009 B2
7513458 Layland et al. Apr 2009 B2
7546186 Yang Jun 2009 B2
7546981 Hoffjann et al. Jun 2009 B2
7556224 Johnson et al. Jul 2009 B2
7592783 Jarvinen Sep 2009 B1
7598625 Yu et al. Oct 2009 B2
7629718 Gruendel et al. Dec 2009 B2
7651052 Delort Jan 2010 B2
7677529 Siska, Jr. et al. Mar 2010 B2
7688084 Erdmann et al. Mar 2010 B2
7723935 Kneller et al. May 2010 B2
7726606 Graf et al. Jun 2010 B2
7823967 Pamis et al. Nov 2010 B2
7825830 Joyner Nov 2010 B2
7828247 Greene Nov 2010 B2
7845263 Miller Dec 2010 B1
7857107 Yamamoto et al. Dec 2010 B2
7870726 Matsui Jan 2011 B2
7875993 Gudo Jan 2011 B2
7891605 Nguyen et al. Feb 2011 B2
7901115 Chien Mar 2011 B2
7942370 Hillgren et al. May 2011 B2
7975960 Cox et al. Jul 2011 B2
7994939 Salvaudon Aug 2011 B2
8052311 Khunga Nov 2011 B2
8083392 Chien Dec 2011 B2
8089415 West Jan 2012 B1
8096499 Osswald et al. Jan 2012 B2
8104129 Tang et al. Jan 2012 B2
8152247 Colin Apr 2012 B2
8181903 Posva May 2012 B2
8209107 Rozman et al. Jun 2012 B2
8217630 Markunas et al. Jul 2012 B2
8274383 Mitchell et al. Sep 2012 B2
8287326 Huang et al. Oct 2012 B2
8371526 Shearer et al. Feb 2013 B2
8378510 Tanaka et al. Feb 2013 B2
8390972 Simper et al. Mar 2013 B2
8408494 Garcia Rojo Apr 2013 B2
8417995 Davy et al. Apr 2013 B2
8418956 Fukui Apr 2013 B2
8436485 Smith May 2013 B1
8547675 Maier Oct 2013 B2
8567762 Venturini et al. Oct 2013 B2
8581155 Leary et al. Nov 2013 B2
8600584 Fervel et al. Dec 2013 B2
8604741 Lebrun Dec 2013 B2
8612067 Leon et al. Dec 2013 B2
8616492 Oliver Dec 2013 B2
8753122 Bohlender Jun 2014 B2
8757542 Hopdjanian et al. Jun 2014 B2
8783611 Peryea et al. Jul 2014 B2
8786232 Chai et al. Jul 2014 B2
8787031 Hania Jul 2014 B2
8829737 Carrillo Sep 2014 B2
8830888 Shin et al. Sep 2014 B2
8840070 Boucaud et al. Sep 2014 B2
8843660 Galibois et al. Sep 2014 B1
8868808 Galibois et al. Oct 2014 B1
8886370 Carlavan et al. Nov 2014 B2
8935018 Hughes et al. Jan 2015 B2
8939401 Pereira et al. Jan 2015 B2
8973393 Atkey et al. Mar 2015 B2
8978840 Lang et al. Mar 2015 B2
8981265 Jial et al. Mar 2015 B2
8982441 Schlam et al. Mar 2015 B2
9010959 Edelson et al. Apr 2015 B2
9030557 Wende et al. May 2015 B2
9033273 Edelson et al. May 2015 B2
9064646 Wavering Jun 2015 B2
9067691 Pugh et al. Jun 2015 B2
9071050 Kamihara et al. Jun 2015 B2
9081372 Fervel et al. Jul 2015 B2
9106125 Brandt et al. Aug 2015 B1
9121487 De Mers et al. Sep 2015 B2
9166400 Jiao et al. Oct 2015 B2
9242728 Morrison Jan 2016 B2
9295114 Trinschek et al. Mar 2016 B2
9302636 Schult et al. Apr 2016 B2
9327839 Giles et al. May 2016 B2
9335366 Handy May 2016 B2
9379642 Lagorce et al. Jun 2016 B2
9422905 Anastasio et al. Aug 2016 B2
9428271 Becks et al. Aug 2016 B2
9435263 Chai et al. Sep 2016 B2
9435264 Chai et al. Sep 2016 B2
9448557 Maalioune Sep 2016 B2
9459640 Courteille et al. Oct 2016 B2
9464573 Remy et al. Oct 2016 B2
9469410 Peake Oct 2016 B2
9469415 Harvey Oct 2016 B1
9476385 Moore et al. Oct 2016 B2
9477629 Petillon Oct 2016 B2
9484749 Brombach et al. Nov 2016 B2
9508267 Galibois et al. Nov 2016 B2
9553467 Yasui Jan 2017 B2
9611049 Esteyne et al. Apr 2017 B2
9614465 Shriver et al. Apr 2017 B2
9623978 Anton et al. Apr 2017 B2
9630707 Jaber et al. Apr 2017 B2
9637210 Thomson May 2017 B2
9639997 Chai et al. May 2017 B2
9643729 Walter-Robinson May 2017 B2
9670917 Nakajima et al. Jun 2017 B2
9676475 Goldman et al. Jun 2017 B2
9701414 Vaughan et al. Jul 2017 B2
9714636 Newburg Jul 2017 B2
9718390 Hadley et al. Aug 2017 B1
9729096 Edwards Aug 2017 B2
9748060 Knonowski et al. Aug 2017 B2
9764822 Morrison Sep 2017 B2
9821915 Giles et al. Nov 2017 B2
9849849 Vieillard et al. Dec 2017 B2
9950785 Onfroy et al. Apr 2018 B2
9960597 Andrieu et al. May 2018 B2
9964044 Juarez Becerril et al. May 2018 B2
9969378 Howell et al. May 2018 B2
9981738 Di Zazzo et al. May 2018 B2
9988158 Lebrun et al. Jun 2018 B2
10063047 Duarte et al. Aug 2018 B2
10082360 Hartman et al. Sep 2018 B2
10114783 Galibois et al. Oct 2018 B2
10119495 Nestico et al. Nov 2018 B1
10150433 Pal Dec 2018 B2
10168072 Lucas et al. Jan 2019 B2
10189574 Zhou et al. Jan 2019 B2
10207839 Hearing et al. Feb 2019 B2
10208620 Montoya et al. Feb 2019 B2
10218251 Hartman et al. Feb 2019 B2
10220949 Thomaschewski Mar 2019 B2
10230574 Montrichard et al. Mar 2019 B2
10239621 Hoch et al. Mar 2019 B2
10277037 Brantl et al. Apr 2019 B2
10287030 Lutze et al. May 2019 B2
10293922 Cox et al. May 2019 B2
10295457 Ocheltree May 2019 B1
10315771 Rao et al. Jun 2019 B1
10323906 Dejong Jun 2019 B2
10336461 Mackin Jul 2019 B2
10343767 McCormick et al. Jul 2019 B2
10358980 Morioka et al. Jul 2019 B2
10364032 Kammerer et al. Jul 2019 B2
10369393 Wright Aug 2019 B2
10370088 Morrison Aug 2019 B2
10374416 Duarte et al. Aug 2019 B2
10383434 Enzinger et al. Aug 2019 B2
10427784 Parks Oct 2019 B2
10432016 Brookfield Oct 2019 B2
10443507 Schwarz et al. Oct 2019 B2
10450056 Joseph et al. Oct 2019 B2
10457413 Prakesh et al. Oct 2019 B2
10464678 Brunaux et al. Nov 2019 B2
10494117 Bosma Dec 2019 B2
10508567 Stachowiak et al. Dec 2019 B2
10508601 Sheridan et al. Dec 2019 B2
10509304 Chien Dec 2019 B2
10513481 Lepine et al. Dec 2019 B2
10543749 Carailler et al. Jan 2020 B2
10574131 Lutze Feb 2020 B2
10587261 Kamiewicz et al. Mar 2020 B2
10598047 Clauson et al. Mar 2020 B2
10604240 Goyez et al. Mar 2020 B2
10608565 Singh et al. Mar 2020 B2
10618659 Boulet et al. Apr 2020 B2
10637724 Johnson et al. Apr 2020 B2
10730633 Anghel et al. Aug 2020 B2
10750575 Rochell Aug 2020 B2
10759536 Bajorat et al. Sep 2020 B2
10787933 Clauson et al. Sep 2020 B2
10793137 Boecke et al. Oct 2020 B2
10822099 Barone et al. Nov 2020 B2
10826409 Lacaux et al. Nov 2020 B2
10829203 Huynh Nov 2020 B2
10840040 Abdelli et al. Nov 2020 B2
10866271 Pradier et al. Dec 2020 B2
10879022 Levay Dec 2020 B1
10907656 Newberry Feb 2021 B2
10913530 Cox et al. Feb 2021 B2
10923920 Loefflad Feb 2021 B2
10934008 Vondrell et al. Mar 2021 B2
10964221 Vana et al. Mar 2021 B2
10967954 Nakagawa et al. Apr 2021 B2
10968825 Mackin Apr 2021 B2
10979509 Ma et al. Apr 2021 B2
10981660 Mackin Apr 2021 B2
10981665 Arany-Kovacs et al. Apr 2021 B2
11001388 Parvizian et al. May 2021 B1
11015480 Waun May 2021 B2
11027824 Huynh Jun 2021 B2
11046433 Trotter Jun 2021 B2
11053019 Mackin Jun 2021 B2
11059603 Trinschek Jul 2021 B2
11104444 Knapp et al. Aug 2021 B2
11155365 Soejima Oct 2021 B2
11159102 Underhill et al. Oct 2021 B2
11174012 Brunetti Nov 2021 B2
11174040 Beck Nov 2021 B2
11196585 Auerbach et al. Dec 2021 B1
11198502 Huynh Dec 2021 B2
11225318 Seeley Jan 2022 B1
11230384 Lynn et al. Jan 2022 B2
11235861 Joseph et al. Feb 2022 B2
11240311 Binder et al. Feb 2022 B2
11245765 Binder et al. Feb 2022 B2
11248524 Djelassi Feb 2022 B2
11260988 Sure et al. Mar 2022 B2
11267574 Benson et al. Mar 2022 B2
11274484 Tendyra et al. Mar 2022 B2
11319054 Weder et al. May 2022 B2
11336511 Johnson et al. May 2022 B2
20050006214 Fujii Jan 2005 A1
Foreign Referenced Citations (3)
Number Date Country
1283537 Dec 2003 EP
2004087290 Mar 2004 JP
20160087923 Jul 2016 KR
Related Publications (1)
Number Date Country
20220293363 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
63160303 Mar 2021 US