This is a nationalization of PCT/SE01/02709 filed Dec. 7, 2001 and published in English.
1. Field of the Invention
The present invention relates to a rocket launcher system and a method for controlling a rocket launcher system.
2. Description of the Related Art
Modern warships have a large number of different weapons systems to be able to perform an operation against different types of targets or protect themselves from various threats. In the last decades, canons have been replaced by guided missiles as the primary weapons system of the ship. Today's ships are constructed with regard to the missile systems and the associated sensors that are to be available on board. Missile systems are in most cases large and usable against a restricted type of targets while at the same time the missiles are extremely expensive themselves. Therefore many ships also have different types of rocket launcher systems to perform the tasks that the missile systems cannot manage, or as a less pensive complement. The most common type of rocket missile is used for anti-submarine warfare, deception or as self-defence against approaching air-to-surface missiles.
Documents U.S. Pat. No. 5,452,640 A, U.S. Pat. No. 5,129,307 A, U.S. Pat. No. 4,305,325 A and U.S. Pat. No. 5,020,412 A disclose different types of rocket launcher systems. A common feature is that they all consist of a launcher standing on deck and a control unit controlled by an operator. The launcher is charged manually by the crew on deck with the type of rocket missiles for which the launcher is configured.
A drawback of the above rocket launcher systems is precisely that they are placed on deck. One of the more important novelties on new ships is their greatly improved capability of avoiding discovery, and an important way of achieving this is to place all weapons system below deck. Placing a rocket launcher system in a closed space below deck causes, however, a large number of new problems. One is that recharging becomes difficult. When a rocket missile is fired, gases dangerous to health form, which have to be ventilated away before the crew can enter and perform a recharge. This results in unacceptably long recharging times. Another problem is restrictions as to space and weight that will be considerably narrower when placing the rocket launcher system below deck.
Yet another problem of prior-art rocket launcher systems is that they are designed for a particular type of rocket missile. More types of rocket missiles require a larger launcher or more launchers. On a ship where space on and below deck is scarce, this means great compromises.
The object of the present invention is to provide a rocket launcher system and a method for controlling a rocket launcher system which solve the above problems. According to the invention, this is achieved by a rocket launcher system comprising a launcher and a charger that fetches a rocket missile from a magazine and charges the launcher which then sights the rocket missile at a target area. The method of the present invention includes the steps of transferring an operating signal containing preparation data to the rocket launcher system and transferring preparation data to a rocket missile; taking, by a charger controlled by the operating signal, the rocket missile from a magazine, and charging a launcher having a parallel kinematic robot structure with the rocket missile; and sighting, by the launcher as controlled by the operating signal, the rocket missile at a target area.
The invention will now be described with reference to the accompanying drawings.
a–b show a rocket launcher system placed below deck.
a–b show an example of a launcher/charger.
a–c show an example of a launcher/charger of the TAU type.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
a–b show two examples of how the rocket launcher system can be placed on a ship. In
a–b show an example of a hexapod robot which is used as charger as well as launcher. The charger/launcher comprises arms (152) with gripping means (151) and a hexapod part (150). The hexapod part (150) is used for sighting the rocket missile (3) before firing and for gyrostabilising the robot during the sighting and fixing sequence. When the robot operates as a charger, the hexapod part is used for turning about the vertical axis of the robot and to assist the aims (152) and gripping means (151) of the robot to reach the magazine. To be able to communicate with the rocket missile (30), the gripping means (151) has an infological connection (155) to the rocket missile (3). The connection (155) can transfer preparation data and ignition impulses.
a–c show how a TAU robot of SCARA type is used as launcher and charger.
The parallel kinematic robot can be used as launcher only, requiring a small range but great accuracy in gyrostabilising and aligning, as charger, requiring a great range and rapidity, or as both charger and launcher, requiring a great range, rapidity and accuracy. To achieve this in a technically and economically advantageous manner, the robot uses two different modes. The different modes use different coordinate systems. The first mode uses a spatial coordinate system and is used in charging. No gyrostabilising is necessary and accuracy does not have to be very great, the position of the magazine and an optional separate launcher relative to the charger is always the same. This means that the robot can move quickly with a great range. The second mode uses a global coordinate system and is used in sighting and firing the rocket missile. Here accurate gyrostabilising is necessary to compensate for the movements of the ship and exact sighting. Since the movements of the robot are small, they need not be very quick, but very accurate.
The launcher is advantageously made of a non-magnetic material resistant to the hot powder gases forming in connection with firing, corrosive air mixed with salt and flushing with sea water. An example is coating a weight-optimised material, for instance high-strength steel, titanium or aluminium, for the actual robot structure with a heat insulating ceramic material.
The rocket launcher system also has a sighting restricting function which prevents the launcher from being sighted/fired in predefined directions, thereby mainly preventing firing at its own ship.
The rocket missile (3) can be provided with different types of payloads (31), such as torpedo countermeasures (41), anti-submarine ammunition (42), sonar buoys (43), surface target ammunition (44), air target ammunition (45), deception ammunition (46) or telecommunication link buoys (47). The payload (31) can have the same diameter as the rocket engine (
For the system to know what types of rocket missiles (3) are available, how many of each sort are available and where they are located in the magazines (13), each rocket missile (3) has a built-in recognition code (35, 36, 37). The code (35, 36, 37) is conveniently read in a wireless manner and does not require the rocket missile (3) to be provided with its own internal power supply. Examples of suitable code systems are bar code (35), coil (36) or microwave transponder (37).
When supplying rocket missiles (3) to the magazine (13), the code (35, 36, 37) is read and the rocket missile is registered. This information about the number of rocket missiles, types and their location in the magazine is stored in the rocket launcher system so that the operator/operators (2; 21, 22, 23, 24, 25) can see what is available. The supply of rocket missiles to the magazine is conveniently carried out manually by a charger.
Preparation of rocket missiles suitably takes place in the magazine (13). In this manner, several missiles (3) can be prepared simultaneously, independently of each other. For the preparation of the rocket missiles (3), the magazine (13) has one or more infological connections to the rocket missiles. The preparation can also take place in the charger (12) and/or the launcher (11), but advantageously only updating of preparation data takes places there. The charger (12) and the launcher (11) then need only to fetch the correct rocket missile, optionally update preparation data, sight and fire the rocket missile.
Using rocket missiles comprising rocket tubes has advantages as well as disadvantages. The advantages are mainly handleability inside and outside the system. Launcher, charger and magazine need not have special connections to each type of rocket missile, but all types of rocket missiles have the same dimensions and the same information-transferring connection to the system. A disadvantage, however, is that the empty rocket tubes must be quickly and easily removed from the launcher before the next charging. One way of solving this is to have a special place in the magazine to which empty rocket tubes are supplied. A different way is charging just every second row in the magazine. The empty rows are then used to dump the empty tubes. In this way, the charger moves to the correct type of ammunition for the next shot and chooses the adjacent row for empty rocket tubes to be dumped. This means that the dumping place and the charging place are very close to each other, which saves a great deal of time.
Alternatively, rocket missiles without rocket tubes can be used. This necessitates a more advanced charger and launcher. The charger/launcher is then equipped with, for instance, a rocket the divided into the parts, where the two front parts are movable and serve as the active parts of the gripping means and thus integrate the functions of the rocket tube and gripping means.
One of the most important properties of the rocket launcher system is that it can handle a large number of different types of rocket missiles, which can be handled by several operators simultaneously.
Below follows an example. A number of operators (operations) (2; 21, 22, 23, 24, 25) can use the rocket launcher system (1) at the same time. The operations which above all are of interest are: anti-submarine warfare (42, 43) and underwater defence (41), air defence, electric and electronic warfare and surface warfare (44). Before use, a captain or the like distributes the rocket launcher system to the operators involved who can thus use the system. All operators carry out planning and preparation of their own operations independently of each other. An operation can take place simultaneously and independently of whether the system has several launchers or a launcher accommodating two or more rocket missiles. If a bottle neck arises somewhere in the system, for instance if the charger or launcher is not quick enough, queuing is arranged. Redistribution and listing different functions in order of priority is made directly by the captain, or else the system makes up a dynamic list. The dynamic list is continuously updated by means of the ship's sensors and other available sensors and the operators, so that the operations can be listed in order of priority in an optimal fashion. The advantage of a dynamic list is mainly when the ship encounters a situation that requires a plurality of operations at the same time and a manual listing of the operations in the order of priority is too slow.
Examples of data for a rocket launcher system according to the invention. The total system weight is 2500 kg, the launcher accommodates one rocket tube and has a recharging time for a rocket tube of 20 s. The recharging can be repeated continuously until all rocket missiles in the magazine are finished. The magazine holds 40–80 rocket missiles of four different types. The rocket missiles weigh about 50 kg each and comprise a two meter long rocket tube having a diameter of 0.13 m. The launcher has some kind of insert for accommodating/holding rocket tubes having a varying diameter of 0.10–0.30 m.
The rocket launcher system is here described on a ship. However, the system can also be used on shore when rocket launcher systems are to be concealed or placed in closed spaces, for instance in installations below ground or on vehicles.
The invention being thus described, it will be apparent that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be recognized by one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0004531 | Dec 2000 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE01/02709 | 12/7/2001 | WO | 00 | 12/2/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/46682 | 6/13/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2985072 | Carlberg et al. | May 1961 | A |
3054330 | Carlberg | Sep 1962 | A |
3113486 | Kongelbeck | Dec 1963 | A |
3166975 | Landstrom et al. | Jan 1965 | A |
3288421 | Peterson | Nov 1966 | A |
3526166 | Pfister | Sep 1970 | A |
3567163 | Kepp et al. | Mar 1971 | A |
4305325 | Lange et al. | Dec 1981 | A |
5020412 | Adams | Jun 1991 | A |
5119627 | Bradford et al. | Jun 1992 | A |
5129307 | Cain et al. | Jul 1992 | A |
5177318 | Martinez et al. | Jan 1993 | A |
5452640 | Bovee et al. | Sep 1995 | A |
Number | Date | Country |
---|---|---|
32 08 169 | Sep 1983 | DE |
33 41 875 | May 1985 | DE |
2 757 440 | Jun 1998 | FR |
2 780 670 | Jan 2000 | FR |
507 662 | Jun 1998 | SE |
Number | Date | Country | |
---|---|---|---|
20040069135 A1 | Apr 2004 | US |