©2004-2006, Rocket Racing, Inc. A portion of the disclosure of this patent document and of the related applications listed above contains material that is subject to copyright protection. The owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyrights whatsoever.
1. Field of Invention (Technical Field)
Embodiments of this invention relate generally to rocket-powered entertainment vehicles, racing competitions, display methods and systems related to racing competitions, and methods for generating revenue with respect to racing competitions. More particularly, embodiments of the present invention relate to rocket-powered vehicles and racing competitions comprising racing methods, rocket-powered vehicles, spaceports, methods of observer interaction, methods of pilot navigation, methods of providing separation between rocket powered vehicles, safety monitoring, adaptive display, and virtual participation in a rocket-powered vehicle racing competition and related apparatus. In addition, embodiments of the invention relate to integrated avionics and simulation systems that combine the real world with the virtual word in real-time, and allow for variable porting, such as a hybrid format, to a wide variety of viewing and interactive display formats and architectures.
2. Description of Related Art
Car racing is a well-established industry with such variants as the INDIANAPOLIS 500 races, NASCAR races and FORMULA-1 races. These racing competitions include a pre-specified car design, a specially designed track and direct viewing of the race by the general public in a stadium setting. Automobile races have been extremely successful in attracting very large corporate sponsorship and significant revenue from broadcast rights. These races have also lead to significant breakthroughs in automotive design and performance. Car racing, however, appeals to a limited audience that primarily comprises race enthusiasts.
Yacht racing is also a well-established industry with variants such as the LOUIS VUITTON AMERICA'S CUP competition. Similar to car racing, yacht racing competitions involve a pre-specified yacht design, a specially designed track and direct observation by the general public. Yacht races have also been extremely successful in attracting corporate sponsorship and significant revenue from broadcast rights, and have lead to significant breakthroughs in boating design and performance.
Manned rocket launches have traditionally been high visibility events that garner tremendous public interest beyond enthusiast groups, but which have never attracted significant sponsorships or media/broadcast rights. This is because rocket launches typically cannot be ‘scheduled’, as their actual launch time and date depend on when the payload and rocket are ready for deployment, and on weather conditions. Launch delays are commonplace and lead to great difficulty when scheduling network broadcast time. Networks may only pay for the broadcast of events that they know may occur as scheduled (e.g., football games, Olympic events, etc.). With regard to sponsorships, sponsors enjoy regularity and repeatability in the events that they sponsor (e.g., car races, golf classics, etc.). They also enjoy standardization in the event and in the location of their logos on the hardware or participants. They may require that the events have network coverage in order to extend the value of their sponsorship dollars to millions of viewers worldwide. Further, they desire that the events involve people (e.g., heroes) that participate in the events, which can make the launch of satellites by unmanned rockets uninteresting and inconsequential to the public.
Unfortunately, conventional manned rockets have been government owned and operated (e.g., the U.S. Space Shuttle and the Russian Soyuz), which do not actively market sponsorships. To promote the development and flight of rocket-powered vehicles able to provide low-cost commercial transport of humans into space outside of government sponsorship, the non-profit X PRIZE foundation has established the X PRIZE COMPETITION. The X PRIZE COMPETITION is a competition with a US $10,000,000 prize directed to jump starting the space tourism industry through competition between the most talented entrepreneurs and rocket experts in the world. The $10 million cash prize was awarded on Oct. 4, 2004 to Mojave Aerospace Ventures for being the first team that privately financed, built and launched a rocket-powered vehicle able to carry three people to 100 kilometers (62.5 miles), returned the rocket-powered vehicle safely to Earth, and repeated the launch with the same vehicle within two weeks.
Objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:
The various aspects of the invention may be embodied in various forms. The following description shows, by way of illustration, various embodiments in which aspects of the invention may be practiced. It is understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention.
The term “aerial vehicle” as used throughout the specification and claims is intended to include any and all vehicles capable of traveling through air or through space, including but not limited to airplanes, rockets, jet-powered aircraft, rocket-powered aircraft, rocket-powered vehicles, combinations thereof, and the like.
For purposes of the specification and claims, “rocket plane” or “rocket-powered vehicle” is defined as an airborne vehicle comprising a rocket, including but not limited to space shuttles, spaceships, rocket ships, space vehicles, air ships, and combinations thereof. Although the descriptions herein relate to rocket-powered vehicles, the invention is also useful for other aerial vehicles.
The term “video” as used throughout the specification and claims includes any type of motion picture, including but not limited to those stored on digital and analog mediums.
The invention is further illustrated by the following non-limiting examples.
Although multiple embodiments of the present invention describe a preferred minimum height of 100 km, the multiple embodiments of the present invention are not to be construed as limited to this height. Rather the multiple embodiments of the present invention can comprise any distance from about 1 km to about 250 km, or any other distance further described herein. In embodiments of the present invention, this distance is preferably from about 255 km to about 200 km and more preferably from about 50 km to about 150 km. Further, the term “rocket” as used throughout the specification and claims is used to maintain simplicity and is intended to include not only rocket-powered vehicles, but also jet-powered and propeller driven vehicles. In addition, disclosures made herein relating to rocket fuel or its components are also intended to include jet fuel, or any other vehicle fuel, and/or their components. Although embodiments of the present invention preferably relate to manned vehicles, unmanned and/or remote-controlled vehicles also provide desirable results.
Referring now to
An embodiment of the present invention relates to rocket-powered vehicle competition wherein two or more rocket-powered vehicles race.
The following is one embodiment for practicing a rocket-powered vehicle competition. In this embodiment, the competition may occur as a periodic event occurring at a single spaceport, or it may also or alternatively occur at other intervals and at a plurality of spaceports. Winners of the competition may be presented with cash awards and a trophy, which can optionally be held by the winning team until the next competition. A panel of judges (not shown) may oversee the competition to make sure the rules of the competition are being upheld by participants.
A panel of judges (not shown) may be in charge of scoring during the event. The panel of judges may authorize teams of one or more rocket-powered vehicles 12 to enroll in the competition based on certain pre-determined criteria discussed later. Each team may have one or more rocket-powered vehicles 12 and associated crewmembers with which to perform racing activities.
The panel of judges may include an odd number of independent judges, and the total number of judges each year may be twice the number of teams registered plus a chief judge. The chief judge preferably oversees and coordinates the activities of the judges and reports the results. Any decision rendered by not less than two thirds of the judges may be final and binding on the teams. The timing of the appointment of judges may be 60 days before the first launching day of the competition.
The judges may monitor all flight attempts and vehicles during the competition, and the teams optionally agree to cooperate fully with the judges in monitoring flight attempts and competition requirements. Any challenge to a judge's independence or impartiality is preferably deemed waived by the parties if not made timely and prior to 30 days of the event. The judges should be unbiased and not belong or be affiliated with any of the competing teams.
In one embodiment of the present invention, the panel of judges is optionally in charge of taking necessary measurements during the competition in order to evaluate each team's progress. If a team wishes to make an appeal of a decision made by the judges, they may fill out a redress form within one hour of that decision. A hearing may be held for the requests one hour after the landing of the last launch of that day.
The following describes an optional set of rules for the competition according to an embodiment of the present invention. This set of rules can of course be altered to provide more desirable results for alternative embodiments of the present invention as will be observed by those skilled in the art upon practicing the present invention.
In an embodiment of the present invention, all stages of each team's rocket-powered vehicle preferably return and safely land within a landing zone. Failure to do so may result in the respective team's disqualification from the flight.
In one embodiment of competition 10, the terms “vehicle,” “ship,” or “rocket-powered vehicle” refers to all stages or parts of the launch system (e.g., tow vehicles, balloons, descent chutes, etc.). Exemplary rocket-powered vehicles 12 are described later along with
In an embodiment at the present invention, judges may postpone launches due to weather conditions, accidents or hazardous situations at their discretion. Judges may declare the duration of postponement within five minutes. The Judges may provide an update half way through the postponement with an option to end the postponement or declare an extension.
In an embodiment at the present invention, in advance of the competition, all teams may submit the weather condition restrictions of their vehicles they deem safe and unsafe to launch. A team can petition the judges for a launch delay due to weather, however, the judges may base their decision on the weather conditions submitted in advance by the team.
Referring now to
As shown in
Sensors 36 optionally include a variety of sensing equipment such as accelerometers, altimeters, velocimeters, gimbals, transponders, global positioning systems (GPS) and position sensors, etc., which may include one or more cameras 38, for recording and/or transmitting images during flights. Cameras 38 may be positioned to view both inside and outside vehicle 26. For instance, cameras 38 may be directed toward crewmembers inside vehicle 26 and down toward the earth. Mode switches 40 may be used as necessary to select data feeds received from various sensors and provide it to recording equipment (not shown) or to transmitter 42 for transmission to ground system 44.
In embodiments of the present invention, each team of the competition may carry telemetry unit 34 on any of their competing rocket-powered vehicles. Telemetry unit 34 preferably provides an integrated device that is independently calibrated and verified before and after qualifying flights. Each telemetry unit 34 may receive data from at least two externally mounted cameras 38 and two internally mounted cameras 38, and is preferably connected to associated video recording hardware (not shown) and transmitting hardware. The telemetry unit weight and volume may be counted towards the crew requirement mass if desired.
As shown in an embodiment of the present invention illustrated in
Referring now to
In the embodiment of the invention illustrated in
Spectator portion 18 may include a variety of facilities and areas that are appropriate for the general public, such as fair grounds, exhibition grounds, campgrounds, etc. Further, spectator portion 18 may include viewing facilities located close enough to launch portion 16 and landing zone 20 to permit direct viewing of rocket-powered vehicles 12 as they takeoff and land during competitions. Spaceport 18 preferably comprises general viewing area 82 and box seats viewing area 84. General viewing area 80 is preferably located a relatively safe distance from launch pads 76 and landing zone 20. Viewing area 82 may be located about two to five miles from launch pads 76, and for better viewing, general viewing area 82 may be located from about two to five miles from launch pads 76. From these distances, spectators can directly view the launch of rocket-powered vehicles 12 with or without viewing aids (including but not limited to binoculars) without significant risks from launch failures. Viewing area 80 may be located a greater distance from landing zone 20 than from launch portion 16 due to the generally increased safety risk associated with landing rocket-powered vehicles 12 compared with launching them. To further enhance safety, general viewing area 82 may include debris shutters (not shown), which may be closed quickly in the event of an actual or anticipated unsafe incident (e.g., rocket-powered vehicle crash).
Box seats viewing area 84 is preferably located closer to launch portion 16 and landing zone 20 than general viewing area 80, which increases the risk to the spectators located in this area. As such, box seats viewing area 84 may be enclosed to protect spectators therein, and may provide viewing via view ports made of shatter-resistant transparent materials. To enhance viewing in spectator portion 18, televisions 86 may be provided that show close views of rocket-powered vehicles 12 during launch and landing or at other times, and to show information about competition 10. Televisions 86 may also show substantially real-time status of rocket-powered vehicles 12 during the competitions. For example, televisions 86 may show a graphical representation of a competing rocket-powered vehicle 12 at its present location as it advances along its flight path 22 so that spectators may monitor its progress as it occurs. This information may be obtained via information acquired by the rocket-powered vehicle's telemetry unit 34 (see also
Information shown on televisions 86 may be provided from media center 88 and/or from mission control 96 (discussed later). Media center 88 processes and collates information for display on television 86 and for providing it to spectators at other locations, media outlets, etc. As such, media center 88 may have its own satellite uplink (not shown) for sharing information related to rocket-powered vehicle competition 10. Media center 88 may include a server or other computer 87, which creates graphical representations of the status of rocket-powered vehicles 12 in relation to their flight paths 22, other rocket-powered vehicles, and/or virtual pylons. The term virtual pylon as used herein means a three-dimensional location above the earth's surface. For example, a three-dimensional location may be identified by the judges (e.g., 3-dimensional geographical coordinates for a point in space) as a virtual pylon that rocket-powered vehicle 12 should encounter within a given distance in order to meet a criterion of passing through the virtual pylon. Computer 87 may use location information provided by telemetry units 34 of each rocket-powered vehicle 12 via ground system 44 to provide substantially real-time status and location information to the spectators. Media center 88 may also provide information to a wireless hub 92 for dissemination to spectators located at spaceport 14 and/or for transmission to others via the Internet. For example, spectators may be able to access information personally that is provided on televisions 86 and/or other information via wireless hub 92. For instance, a first spectator may be able to monitor progress of a first team via wireless hub 92 while a second spectator monitors progress of a second team via wireless hub 92. In one configuration, televisions 86 display a virtual crash when a team fails to maneuver around a required virtual pylon.
Much of the information provided to spectators is preferably provided via control facilities 72. Control facilities 72 include control tower 94 and mission control 96. Control tower 94 provides a birds-eye view of spaceport 14 to operational control personnel, such as aircraft controllers, to assist command and control of competition 10. Mission control 96 comprises equipment such as RADAR, tracking and telemetry equipment, ground system 44 (illustrated in
Spaceport 14 provides a controlled venue, which when combined with rocket-powered vehicle competition 10 occurring over a defined time period, creates an exciting atmosphere that appeals to a broad cross-section of the public and to corporate sponsors, and which increases interest in the development of public space travel. To further promote a festive atmosphere at rocket-powered vehicle competitions 10, spaceport 14 may support spaceflight-related activities that keep spectators engaged and provide hands-on experiences to involve them personally in the public spaceflight industry.
For example, spaceport 14 participating in rocket-powered vehicle competition 10 may support an overall mix of events and activities focused on those areas that directly compliment the public spaceflight industry. As such, a Public Spaceflight Exhibition (not shown) may be included in rocket-powered vehicle competition 10 to provide spectators the opportunity to participate in sub-orbital flights, parabolic (zero gravity) flights, and high-fidelity simulations that build public excitement as well as public acceptance of this market arena. In another embodiment, integrating public spaceflight related rides and unique astronaut training opportunities greatly enhances the competition. For a fee, spectators are preferably able to experience the sensations of space flight in rides and simulators. For instance, the Zero Gravity Corporation (ZERO-G) may provide parabolic flights in its Boeing 727 airplane and offer customers a number of parabolas, each with 30 seconds of zero-g time. ZERO-G has the capacity to carry more than 100 paying passengers per day. Additional weightlessness experiences may include neutral buoyancy simulations, which are essentially large water tanks that re-create a spacewalk in a spacesuit. Simulations of the launch and re-entry of rocket-powered vehicles 12 may be provided by a centrifuge to simulate the gravitational forces that rocket-powered vehicles 12 experience. Additionally, a full-motion interactive flight simulator, similar to the ones used for airline and military flight training, may provide additional spaceflight experiences.
Further, rocket-powered vehicle competition 10 optionally incorporates an astronaut training facility akin to SPACE CAMP that simulates the full astronaut training experience. In addition, an Air and Rocket Show segment of rocket-powered vehicle competition 10 is optionally provided to provide further entertainment and draw large numbers of spectators. The Exhibition can optionally include a demonstration of Unlimited Class Vehicles, which are piloted non-X PRIZE class rockets and rocket-powered vehicles 12. A thrilling exhibition of rocket vehicles may also be featured during the air show. For example, XCOR Aerospace's rocket powered Long EZ airplane can be a featured attraction. These exciting ships, although not directly eligible for rocket-powered vehicle competition 10, may nonetheless provide an exciting and memorable demonstration of the endless possibilities and unique applications of rocket propulsion. Additionally, the teams may optionally be given the opportunity to display mock-up or partially constructed vehicles.
Referring now to
Rocket-powered vehicle competition 110 may also optionally include racing of two or more rocket-powered vehicles 112 and 113 substantially simultaneously on the same flight path 122 (i.e., racecourse). Flight path 122 may be formed and navigated using virtual pylons 115. For example, each rocket-powered vehicle 112 or 113 may be provided with the three-dimensional locations of virtual pylons 115 prior to and/or during rocket-powered vehicle competition 110. Flight path 122 may also optionally include virtual tunnels described by three-dimensional locations, within which rocket-powered vehicles 112 and 113 should remain during the race. Optionally, rocket-powered vehicles 112 and 113 and/or team may be provided with its own virtual tunnel within which it should remain during the race. Thus, in various combinations, flight path 122 may include virtual pylons 115, racecourse virtual tunnels, and individual team/vehicle virtual tunnels located within a racecourse virtual tunnel. In one embodiment, the pilots of rocket-powered vehicles 112 and 113 may then navigate their respective rocket-powered vehicles around, through and/or proximate to virtual pylons 115 according to the race criteria and flight path 122 data. The pilots may use global positioning technology to determine their precise three-dimensional location with respect to virtual pylons 115 and flight path 122. Each rocket-powered vehicle's three-dimensional position during the race may be provided to telemetry unit 34 during competition and may be transmitted to ground system 44 for monitoring by the judges and spectators.
In an embodiment, rocket-powered vehicles 112 and 113 preferably race by competing with one another according to pre-determined criteria and along the same three-dimensional flight path 122. In this embodiment, at least two rocket-powered vehicles preferably launch and land from spaceport 114 within view of stadium 118 and competing along flight path 122 at substantially the same time. First rocket-powered vehicle 112 vertically launches from launch portion 116 and second rocket-powered vehicle 113 also preferably launches from launch portion 116 at substantially the same time or within a short time period after the launch of rocket-powered vehicle 112 on the same day. Both rocket-powered vehicles 112 and 113 preferably maneuver along flight path 122 and vertically land at launch portion 116. Depending on the pre-determined criteria for the competition, rocket-powered vehicles 112 and 113 optionally repeat flight path 122 several times via several launches and landings.
Stadium 118 is preferably a large arena designed to hold a large number of spectators. For instance, in one embodiment, stadium 118 may be able to hold about 1 million spectators. Stadium 118 may be a semicircle design that provides good viewability of launch pads 121 to most spectators located therein. To provide safe premises in the event of an emergency, a bunker (not shown) may be provided or stadium 118 may be substantially built within a bunker. Other safety mechanisms may exist, such as protective louvers that may be rapidly closed to provide protection, or protective transparent materials that shield spectators from debris in the event of a rocket-powered vehicle crash or collision. To improve viewability of rocket-powered vehicle competition 110, stadium 118 may include multiple high-definition displays that show various views of rocket-powered vehicles 112 and 113. Further, seats within stadium 118 may include personal displays, which individual spectators may control to view status of the competition, information about various rocket-powered vehicles, etc. As described above with spaceport 14 in
Based on the location information received for rocket-powered vehicles 109, 112, and 113, which may be received on a substantially constant, real-time basis from each competing rocket-powered vehicle, CPU 95 generates a graphical display such as display 200 showing the location of each competitor rocket-powered vehicle. In one embodiment, the graphical display may be a three-dimensional display. As illustrated in
In addition to being shown on displays within spaceports 14 and 114, displays generated by telemetry computer 87 may be provided to spectators via the Internet or wireless hub 92 (see
Rocket-powered vehicle competition 110, and spaceport 114 provide an exciting event with which spectators may feel a sense of participation. This is partially because racecourse tunnel 122 is a closed flight path within direct viewing by spectators (e.g., via eyesight, binoculars and telescopes) and via equipment (e.g., graphical representations of race status). To enhance the level of excitement further, rocket-powered vehicle competition 110 may require rocket-powered vehicles 112 and 113 to complete multiple laps on racecourse 122. This may include staying on the ground for periods of time to re-fuel and prepare rocket-powered vehicles 112 and 113 for further flight and multiple takeoffs and landings, which provide many opportunities for spectators to view varied aspects of the competition. Spectators may also be able to view rocket-powered vehicles 112 and 113 on their respective launch pads prior to the beginning of the competition.
Rocket-powered vehicles 112 and 113 (as well as rocket-powered vehicles 12 in competition 10) may be controlled by the human occupants; although, certain aspects may be computer controlled as determined by race criteria (e.g., blast off may be largely computer controlled). This makes the competition very exciting to spectators and provides “heroes” that may be created of exceptional pilots. Add to that the excitement of supersonic, rocket-propelled rocket-powered vehicles competing with one another substantially simultaneously, and a thrilling competition is created that should appeal to a large segment of society and attract corporate sponsors.
Referring now to
Rocket-powered vehicle competition 1410 provides a high level of excitement for spectators and participants alike via direct, head-to-head racing between the race participants to be the first to complete a race course. The exciting atmosphere can be further enhanced for the spectators through various aspects of the racing method that may be practiced alone or in a variety of combinations comprising: vertical take-offs near spectator portion 1422; visual and audible mechanisms for clearly identifying participant rocket-powered vehicles; pre-determined racing parameters comprising rapid refueling and limited fuel quantity, engine burn time and/or thrust options; rocket-powered vehicle configurations based on the parameters and strategic options for the participants in response to the parameters (e.g., choices involving fuel quantity and thrust management); spectator interactivity with the race participants; and user participation in real-time races via virtual rocket-powered vehicles.
In the embodiment illustrated in
In an alternative embodiment, groups of two or more preferably race along the same course. Optionally, the racing may be performed in “heats” where small groups of participants race to qualify, the winners of which progress to the next level. The racing may optionally be performed as comprehensive racing between all participants. The rocket-powered vehicles may be launched abreast or in a staggered fashion, which can be advantageous for logistical and safety reasons. As illustrated in
Racecourses 1429, as illustrated in
In the embodiment illustrated in
For example, in accordance with the navigational monitoring aspects of an embodiment of the invention discussed along with the description of rocket-powered vehicle 12 in
As discussed further along with
As illustrated in
In one configuration of rocket-powered vehicle competition 1410, each rocket-powered vehicle preferably has a pre-determined maximum quantity of rocket fuel as measured by mass or an estimated engine burn time at a certain thrust. Each rocket-powered vehicle may also be limited to a pre-determined maximum burn time for its rocket engine(s), which may be provided in concert with pre-determined maximum thrust parameters. The pre-determined maximums will be selected to ensure periodic refueling of each rocket-powered vehicle during the competition.
Rapid refueling via team-specific pits may be an option or a requirement for rocket-powered vehicle competition 1410. Rapid refueling can permit long duration races while providing the spectators with a close look at the race teams, which can occur during the actual race as the rocket-powered vehicles are being refueled and serviced. For instance, a quantity of rocket fuel sufficient for a burn time of four minutes may be established for the pre-determined maximums, which may permit a rocket-powered vehicle to navigate a single lap of racecourse 1429 in a rapid timeframe if the pilot burns the rocket engine continuously. However, based on this choice, the pilot may need to refuel relatively quickly. A second pilot can strategically choose to proceed at a slower rate that comprises gliding and periodically burning the fuel to maintain speed or to boost the rocket-powered vehicle speed when needed. The second pilot is preferably able to navigate two laps of racecourse 1429 without refueling, but at an overall slower rate than the rate at which the first pilot can complete each lap and undergo rapid refueling. The pre-determined maximums may be established to ensure each rocket-powered vehicle must refuel at least once during the competition or to ensure each rocket-powered vehicle must alternate between boosting and gliding. It will be up to the individual rocket-powered vehicle pilot to decide how to use the fuel throughout the race to conserve fuel, vary thrust, sustain velocity, taxi, etc. The race may be a collection of boost and glide modes as the pilot works to optimally manage the application of rocket thrust while conserving scarce fuel. After the fuel is expended, the pilot preferably glides to land the rocket-powered vehicle and undergo a rapid refueling.
In one embodiment of rocket-powered vehicle competition 1410, each participant may optionally be able to strategically develop his propulsion system to provide a selectively-applied booster engine configuration based on anticipated management of the limited supply of fuel and desired engine performance. Various combinations of rocket engines, types of propellants, and nozzle configurations, comprising various nozzle sizes, types and styles, may optionally be developed by each team to strategically meet the pre-selected maximums while attempting to maximize rocket-powered vehicle performance. For example, a participant team may develop a rocket-powered vehicle that has one or two primary rocket engines for vertical takeoff, as well as one or more smaller engines that can be selectively ignited and/or strategically controlled for navigating the racecourse.
Refueling station 1444 is preferably proximate the maintenance station 1442 for logistical advantages and to provide parallel maintenance and refueling operations during a pit stop of the competition, such as a rapid refueling stop. Alternatively, the refueling station may be separated a safe distance from the maintenance station 1442 and other structures to reduce the likelihood of a fuel accident affecting a large number of people.
Refueling station 1444 may include filled replacement fuel tanks 1446, standard rate refueling equipment 1448, and rapid refueling equipment 1450. In a configuration in which the supported rocket-powered vehicle comprises removable fuel tanks and/or banks of fuel tanks (discussed below along with an example rocket-powered vehicle shown in
For fixed tank rocket-powered vehicle configurations, rapid refueling equipment 1450 may include high-flow rate refueling equipment that provides fuel and oxidizer as needed to the tanks at a high-flow rate, which may also be at a high pressure to support the rapid refueling. In order to avoid potential safety issues that may be associated with high pressure/high velocity refueling, the high-flow rate equipment may have large cross-sectional conduits, which can provide a rapid volumetric flow rate without pumping the fuel at high velocities and/or at high pressures (beyond pressures required to maintain certain fuels and oxidizers in a liquid state). In conjunction with the rapid volumetric flow rate equipment, a corresponding rocket-powered vehicle would preferably have large cross-sectional ports to avoid narrowing the fuel flow and thereby increasing the flow velocity to maintain the rapid volumetric flow rate. The large cross-sectional ports may be in addition to standard fuel ports used for standard refueling procedures.
Propellant 1630 may include a variety of rocket fuels, including but not limited to an oxidizer (e.g., liquid oxygen, nitrogen tetroxide, nitrous oxide, air, hydrogen peroxide, perchlorate, ammonium perchlorate, etc.) plus a fuel (e.g., light methane, hydrazine-UDMH, kerosene, hydroxy-terminated polybutadiene (HPTB), jet fuel, alcohol, asphalt, special oils, polymer binders, solid rocket fuel, etc.). The fuel is preferably stored in fuel tank 1644 and the oxidizer is stored in another fuel tank 1646. The fuel tanks may be disposed within wings of rocket-powered vehicle 1610, within the body of rocket-powered vehicle 1610, or may be carried underneath rocket-powered vehicle 1610. In one configuration, fuel tanks 1644 and 1646 may be removable tanks, such as a single tank or a bank of smaller tanks that can be removed and installed on rocket-powered vehicle 1610 relatively quickly. For example, rocket-powered vehicle 1610 may include a pair of storage bays (not shown) into which a bank of tanks 1644 or 1646 may be secured. Rocket-powered vehicle 1610 may also include detachable couplings (not shown) for connecting to the bank of tanks. The detachable couplings may include a variety of clamps with seals (e.g., O-rings) connecting pressurized piping between the bank of tanks and the rocket-powered vehicle propulsion system. In another configuration, fuel tanks 1644 and 1646 may be fixedly attached or formed within rocket-powered vehicle 1610, such as being formed within the wings.
As shown in
In one configuration, primary rocket engine 1640 is used mainly for vertical takeoff while secondary rocket engine 1642 is principally used for maneuvering through the course, maintaining velocity, and boosting velocity. In another configuration, primary rocket engine 1640 has selectively controllable thrust settings and provides both thrust for vertical takeoff and for maneuvering through the course, whereas secondary rocket engine 1642 provides thrust for taxiing along runways. Both engines 1640 and 1642 can be used simultaneously in other configurations to provide a maximum amount of thrust, but at the expense of consuming fuel at the maximum rate. Alternatively, one engine can be run to conserve fuel while still maintaining a reasonable velocity. Generally, any desired configuration of primary rocket engine 1640 and secondary rocket engine 1642 is possible.
In one configuration, options for engines 1640 and 1642 may be dictated for the race to limit the variety of propulsion systems 1628. For instance, primary rocket engine 1640 may be required to be an on-off engine for all participants, which provides primary thrust for vertical take-off. Secondary rocket engine 1642 may be directed to have a finite number of thrust levels, such as low, medium and full thrust. It is understood that a wide variety of rocket engine types with a wide variety of thrust levels and control features may be possible for rocket-powered vehicle 1610. However, mandating parameters such as the number of rocket engines, the maximum thrust for the engines, thrust levels for the engines, controllability of the engines comprising directional controls, etc. can significantly add to the amount of strategic considerations for the race participants and can, therefore, add to the excitement for the event. Thrust levels may be controlled by adjusting the flow rate of fuel and oxidizer into the combustion chamber via controlling pumps 1652 and valves 1654 illustrated in
As desired, one or both engines can have movable nozzles 1660 and thrust vector control mechanisms for maneuvering rocket-powered vehicle 1610 based on the orientation and magnitude of the rocket thrust vector. The selection of engine configurations and controls may be significant for a particular team according to their strategy for winning the race. As noted above, secondary rocket engine 1642 may be adapted to primarily provide boost augmentation rather than to taxi or sustain velocity. For example, once fired, secondary rocket engine 1642 can generate a significant boost and remain ignited until propellant 1630 burns out. In another configuration, secondary rocket engine 1642 can include a pair of small rocket boosters that are fired at various times as selected by the race team and pilots. In another example, secondary rocket engine 1642 can include a bank of small rocket boosters, such as about five boosters. In a further example configuration, secondary rocket engine 1642 can be powered via a solid propellant alone while relying upon atmospheric oxygen to be an oxidizer. However, such a configuration may have limited applicability to low altitude uses at which sufficient oxygen can be obtained when needed.
As further shown in
As further shown in
Referring now to FIGS. 17 and 18A-C, rocket-powered vehicle 1710 according to another embodiment of the invention is shown. Rocket-powered vehicle 1710 generally comprises the aspects and features of rocket-powered vehicle 1610, except as discussed hereafter. As shown, rocket-powered vehicle 1710 comprises plume visualization system 1712, which enhances the visibility of the rocket plume. In addition, plume visualization system 1712 may mark the plume from one or more of the rocket engines in a persistent manner such that the plume remains viewable for a period of time after rocket-powered vehicle 1710 creates it. For instance, the plume may mark the trail of rocket-powered vehicle 1710 for a period between 5 seconds to 1 minute, which permits spectators to easily follow rocket-powered vehicles 1710 along the directly viewable portions of the racecourse. In one configuration, each rocket-powered vehicle 1710 marks its plume in manner specific to that rocket-powered vehicle or racing team, such that the plume identifies rocket-powered vehicle 1710 and its path. For instance, each rocket-powered vehicle 1710 or team may have one or more colors associated with it. Thus, each rocket-powered vehicle 1710 may have a visual signature via its plume, and it may also have a sound signature as discussed above along with
As shown in
The visual identifier may be generated via a chemical reaction that occurs in response to the heat of the plume, which causes the chemicals to burn or radiate a particular color. In one configuration, the intensity of the color may vary according the thrust level of the engine. This may be accomplished by providing temperature-sensitive chemicals to the plume that cause radiant light energy at different temperatures, thereby displaying to spectators a piecewise spectrum of colors that vary in wavelength according to thrust level. For instance, as shown in
In another configuration, the intensity of color may be deliberately varied based on the flow rate of plume seed sprayed from injector nozzles 1716. For example, an intense color may deliberately be provided during vertical take off or as rocket-powered vehicle 1710 crosses a finish line marker. The pilot may be able to control plume visualization system 1712 via controls of the flight system. Alternatively, plume visualization 1712 system may be controlled remotely via ground control communications to the flight system. In another configuration, the flight system may be programmed to control automatically plume visualization system 1712 according to location of rocket-powered vehicle 1710.
The chemicals of the plume seed may include one or more metal salts. When metal salts are exposed to the flame of the rocket plume, they typically give off light characteristic of the metal. The metal ions combine with electrons in the flame, which are raised to excited states because of the high flame temperature. Upon returning to their ground state, they give off energy in form of light (including but not limited to a line spectrum) that is characteristic of that metal. Several metal salts, for example alkali metal salts, give off a characteristic color visible to the human eye. Examples of chemicals that may be used various combinations include sodium, potassium, aluminum chloride, boric acid, calcium chloride, cobalt chloride, copper chloride, lithium chloride, magnesium chloride, manganese chloride, sodium chloride, and strontium chloride. Pyrotechnic chemicals commonly used in fireworks displays may used as well, comprising antimony trisulfide, ammonium perchlorate, ammonium chloride, aluminum, and more.
In an alternative configuration (not shown), rocket-powered vehicle 1710 comprises a non-reactive smoke generator, which provides non-reactive identification smoke when the rocket engine is not being fired. The non-reactive smoke generator preferably turns off when the rocket engine is being fired to capture the natural combustion colors, such as the yellow color of burning kerosene or the violet/blue of burning alcohol. When the rocket engine turns off and vehicle 1710 is gliding, the smoke generator may emit identification smoke to demonstrate the rocket-powered vehicle's glide path. Thus, rocket engine combustion highlights rocket-powered vehicle 1710's flight path when powered, and the non-reactive smoke generator highlights its flight path when gliding. In another configuration, a plume visualization system may be used during rocket firing to identify the plume of the particular rocket-powered vehicle or team, and a non-reactive smoke generator may be used by the same rocket-powered vehicle while gliding to produce identification smoke that generally matches the colors produced by the plume visualization system. Thus, regardless of the firing status of rocket engines, a visual signature may be constantly provided that highlights the rocket-powered vehicle's flight path.
Referring now to
Competition information 1922 may include warnings 1926, such as a warning when a pilot approaches or enters bubbles of other vehicles, moves out of their vehicle-specific tunnel, moves out of the racecourse tunnel, or misses a virtual pylon or other waypoint of the race, etc. The warning can flash red or some other color on the display for certain warnings. In addition, tactile and audible warnings can be provided to the pilot, such as vibrating a control handle the pilot is using, or the seat or helmet, or playing an audible warning sound. Similarly, positive indications (not shown) can be provided when the vehicle successfully hits a waypoint, such as navigating around a virtual pylon or flying through a virtual gate. For instance, a green light or message can flash on the display to show the vehicle successfully passed a virtual pylon. In addition, tactile or audible indications can also be provided for successfully completing the task. Overall view 1928 may also include warnings 1926 and positive visual indicators, such as flashing in red a missed virtual pylon or flashing the same pylon in green when the pilot successfully navigates around it. Such visual, tactile and audible indicator techniques may also be applied to those who participate virtually, either through gaming or in another way, as a way to provide a further immerse and interactive experience.
Referring now to
As shown in
As shown in
Browser-based software and/or racing specific software stored on spectator computing device 2110 may allow spectators to accomplish a wide variety of functions related to rocket-powered vehicle races, which may be selectable in an interactive manner to provide the user with a hands-on experience. In one configuration, a spectator may select a soft key that brings up an actual racecourse and shows a virtual vehicle thereon for the spectator to race. The display would preferably show computer generated images depicting the actual rocket racers, driven by differential GPS or the equivalent, so that the placement of the computer generated vehicles on the screen matches that which is taking place in the real live race. If the user clicks on a specific vehicle, the spectator may then select from a number of functions that might include listening in on the cockpit conversation and other audibles, viewing either a virtual instrument cluster driven with real-time telemetry data, or viewing a live video feed of the actual instrument cluster. Other options might allow the spectator to stream a video of the pilot's face, or stream a variety of video feed from a number of different cameras or telemetry stream from various instrumentation suites installed on the rocket vehicles. The spectator can bring up multiple pilots on the screen and pit one against the other.
In one configuration, preferably operated under stringent safety protocol, a spectator using the computing device may compete via spectator server 2010 for the opportunity to speak with a pilot during the race. Optionally, with safety being a primary concern, spectators can even compete for the opportunity to ignite remotely a rocket engine boost from their laptop computer by hitting a specific button during a pre-selected timeframe and after providing the winning username and password. Thus, spectators could actually and virtually participate in a rocket-powered vehicle competition. Optionally, a mock cockpit or other configuration can be established at a race event that allows the spectator an opportunity to ignite remotely a rocket engine boost or to activate or manipulate another function of the rocket powered vehicle. Such a process of allowing remote users to operate some portion of an actual rocket powered vehicle would need to be performed under guidance and with safety as a priority.
A system to enable the implementation of an immersive piloting, safety and entertainment experience may be referred to as a rangeless air racing maneuvering instrumentation network (“Network”). It preferably involves the capture, processing, distribution and display of data in a variety of formats with varying degrees of end-user interactivity.
Users of the Network include, but are not limited to, pilots, navigators, co-pilots, air crew, ground crew, race teams, race league officials, safety officials, Federal Aviation Administration (FAA) personnel, training personnel, on-site fans, remote fans, garners, technology developers, TV stations, satellite broadcast stations, mobile content providers, archival agencies, news broadcaster, online media sources, camera operators and automated data collection and data redistribution infrastructure.
The technological worldview of the Network embraces convergence of the real and virtual worlds to lift spectator perceptions of excitement, awe, thrill and danger to entirely new levels. Fans of rocket powered racing events are able to access the sport both live and remotely via use of the Network—and are rewarded with an accessible, information-rich environment no matter what their chosen interface with the sport. Formats can range from real, to melded real and virtual, to purely virtual.
The Network preferably uses simulation technology to enhance the experience of racing for all audiences. Simulation technology is an aspect of the Network that contributes to bringing the revolutionary sport of rocket powered vehicle race competition to millions of fans worldwide.
The Network is preferably a hybrid of live and virtual simulation action that blends live action with a virtual world of rich data overlays to create a hybridized form of entertainment.
For illustrative purposes, the system may be visualized as a collection of rocket-powered vehicles connected to the ground through wireless telemetry links, as shown in
Referring to
Each rocket powered vehicle 2200 may also carry one or more cameras or digital video recorders (“DVRs”) 2210 for the recording of digital video or stills. Transmitter/receiver 2212 in rocket powered vehicle 2200 can send the position and orientation data, the digital video data and other data to a ground station (not shown) at the broadcast center, and receive pertinent information for display and processing inside rocket powered vehicle 2200. Transmitter/receiver 2212 may optionally include compress/encrypt package 2214, datalink antenna 2216, and/or removable memory module 2218. Video may be captured in multiple resolution formats, from standard definition to high, and stored onboard in one format and transmitted to the ground in another. In one embodiment, high resolution video can be stored onboard, regardless of what is transferred to the ground over the telemetry system. This ensures that the best quality imagery is stored for post production, and that it is free from the degrading visual artifacts that are introduced over the telemetry system. Additionally, because of bandwidth limitations of the telemetry system, sending down a lower resolution video stream will allow for a higher number of video streams to flow. Composite techniques may be employed where multiple video streams are grouped into one, for example in quad format, for transferring down via telemetry, then they could either be shown as a quad display or the individual feeds can be extracted from the quad feed and the individual videos reproduced for view, though preferably at lower resolutions.
Each rocket powered vehicle may carry radio/com system 2210 for two-way interface, RLG/GPS box 2222 that is in direct link to mission data recorder (“MDR”) 2204, MDR control and display 2224 as well as control display unit (“CDU”) and display 2226.
Each rocket powered vehicle 2200 may have an in-panel, heads-up display (“HUD”) or head-mounted display (“HMD”), each equipped with a multi-function display (“MFD”) capability able to display simulated data overlay information from the onboard computer, as well as any received data from the ground. In the case of an in-panel display, the simulated data overall can be melded with the imagery from one or more forward looking cameras, such that the melded real and virtual forward looking world video show the forward line of sight imagery with virtual tracks and the like for the pilot to navigate or gain a higher level of situational awareness.
As part of each ground station support infrastructure, there may be an information hub/pod that keeps a constant, two-way data link with each racer, and with each ground team.
The hub/pod can be configured to manage all aspects of the race, the safety protocols, and also serve as a broadcast and media center for creation and transmittal of the official race broadcast streams to both spectators and at-home fans.
Each hub/pod preferably allows fans to connect wireless devices the race network for access and interface customizations available to the at-home fans. Each Race Site may be able to monitor racers in real-time that are within a designated radius.
All pods may be capable of GPS position determination, may have data recording capability, and may utilize pod-to-pod UHF data communications to facilitate rangeless communication.
All data transmissions may be unclassified or encrypted for secure transmission of sensitive data.
The system may accommodate at least two race participants, but may be capable of supporting many more vehicles of varying design, whether airborne or ground vehicles.
The hub/pod may execute race simulations and transmit results to the race site hub as well as wirelessly to spectator handsets or other devices.
The processing capability may be located either onboard the vehicle, on the ground, or draw from the combination of both, and can enable the real-time merging of real-time video with rich data overlays. The processing capability preferably enables the real-time insertion of synthetic objects into real-time video using sophisticated occlusion dynamics to designate what objects, real or synthetic, appear in the foreground, and what objects appear in the background. The data overlays preferably depict a virtual world that possesses rules, properties and dynamics that make it appear as though it is real, not an afterthought generated through computer simulation. In one configuration, the virtual data overlay preferably contains a series of parallel three dimensional tunnels in the sky, inside of which, individual rocket powered vehicles are directed to remain in order to affect vehicle to vehicle separation and guide the pilots of such vehicles through the sky on a race track that is both exciting to watch from the perspective of a viewer and, from an absolute level, is safe.
The virtual tunnel may be depicted by a series of rings or other shapes that are either connected along longitudinal paths about the ring circumference, or other means of connectivity, or stand alone. The rings may be positioned in three-dimensional space, along the desired track at intervals that give the pilot and viewers a good presentation of where the rocket powered vehicle should be traveling in this three dimensional space inside of which the rocket powered vehicle race is intended to occur.
The data characterizing the virtual tunnel system is made available to a variety of sources for a variety of purposes. In one configuration, pilots of the rocket powered vehicles are delivered to the virtual tunnel system on an in-panel, heads-up or head mounted display with the objective of providing the pilot with a visual guide inside of which he/she would be directed to pilot the rocket-powered aircraft for the purpose of maintaining separation from other vehicles engaged in the race, and for the purpose of flying a race course that is both entertaining for spectators to watch and safe to fly within the performance capabilities of the particular rocket powered vehicles.
In another configuration, the data characterizing the three-dimensional tunnel system is made available to various display outlets on the ground, for processing and display to a variety of end users. In such an embodiment, the data characterizing the virtual tunnel system is generated precisely in three dimensional space with a fixed earth reference system. Then, based on the location and orientation of various ground or airborne cameras, the virtual tunnel system is accurately overlaid in three dimensional space. If the camera angle or location were to change in real time, the manner in which the three-dimensional virtual tunnel system would also be adjusted.
One particular implementation feature of the virtual tunnel system is to preferably use the process of occlusion dynamics to portray the rocket powered vehicles as flying through the virtual rings that comprise the virtual tunnel.
In another configuration, the virtual overlay preferably contains not only the virtual tunnel, but additionally, a virtual bubble around each rocket powered vehicle depicting a safety bubble.
In yet another configuration, the data overlay may contain, in addition to the aforementioned overlay elements, virtual depictions of other rocket powered vehicles, data containing information of position within the race, vehicle performance information, predictive artificial intelligence designed to improve pilot performance, general race information and other artificially generated synthetic objects that tend to improve the race safety posture or deliver enhanced visual entertainment to fans.
The connectivity of the technology modules is show in
A description of each module follows:
Rocket-Powered Vehicles
The rocket powered vehicles are the combined airframe and propulsion means, including tanks for fuel and oxidizer, configured for the purpose of rocket-powered vehicle racing.
There are preferably up to 10 or more rocket-powered vehicles during an individual race event, although there may be only one vehicle or more than 10 vehicles.
Vehicle Ground Support Equipment
The vehicle ground support equipment is the supporting infrastructure enabling the rapid refueling and general servicing of rocket-powered vehicles during pit stops. Vehicle ground support equipment allows connectivity to the individual rocket-powered vehicles to facilitate the monitoring of performance and maintenance of an audio communications link between the ground crews and their pilots.
The cockpit-based augmented reality system may contain other service elements that are needed during pit stops. For example, because the rocket-powered vehicles rely on batteries to power all electrical systems, including engine ignition, it may be required that batteries are swapped out during pit stops. Depending on the on-board data storage, it may also be necessary to swap digital storage media.
There are preferably up to ten or more vehicle ground support equipment systems or stations, and most preferably one for each competing rocket powered vehicle.
Augmented Reality Engine
The augmented reality engine is the primary subsystem that performs the insertion of synthetic objects into a video stream based on inputs characterizing the time variant line of sight of the viewing object, which may be a camera (onboard or ground) or the actual line of sight of the pilot of the rocket powered vehicle.
The augmented reality engine comprises the stored digitized depiction of the race course in three-dimensional space relative to a fixed inertial reference frame. Depending on the position and attitude of the viewing object, the race course may be dynamically inserted into the line of sight of the viewing object such that the rocket-powered vehicle(s) appear to be flying through a network of clustered tunnels in the sky. For cases where the viewing object is outside of the cockpit (for example ground based cameras), accounting for occlusion dynamics becomes a necessary step in the insertion of the synthetic objects.
Both the ground-based augmented reality system and the cockpit-based augmented reality system use the same augmented reality engine, modified slightly to perform the functions specified above.
Occlusion Dynamics
Occlusion dynamics, or the process of creating the perception that synthetic objects are dynamically inserted into a live or offline video feed that are in front of or behind other real objects in the video image, is accomplished in a number of ways. One such method uses information on the position and attitude of a real object within or passing through the camera field of view to determine what parts of a synthetic object inserts are in front and what parts of the synthetic object inserts are behind the real object within or passing through the field of view.
In the case of rocket-powered vehicles, the real object(s) are the rocket-powered vehicle(s), the sky, the terrain, other airborne vehicles, ground vehicles, etc. In such a case, the primary objects that are moving in the video are the rocket-powered vehicles. Knowing the position of each rocket-powered vehicle in three-dimensional space, along with the angular orientation of the vehicle at each specific point in three-dimensional space, one creates a raceway in the sky that is dynamically inserted into a real-time or off-line video such that the rocket-powered vehicles appear to be flying through the synthetic race way in the sky; not on top of, or behind, but through.
With regard to the synthetic objects that are inserted into the offline or real time video, each of the objects is inserted in such a way that it has the correct position and orientation in three-dimensional space within the frame of reference that is captured.
Such a process is well suited to a ground-based camera system that is dynamically tracking the fleet of rocket-powered vehicles as they compete through a virtual track in the sky. In this case, a wireless data telemetry link communicates to a ground station the position and attitude of the all the rocket-powered vehicles through this process, each of the rocket-powered vehicles are made to appear as if it they are traveling inside of a three-dimensional tunnel instead of sitting on top of or behind it. This process for handling occlusion dynamics is unique because the ground cameras know the position and attitude of the objects that are moving dynamically though the field of view of the camera. In most all other industry-standard methods for handling occlusion dynamics, there is no such information. In making it available, the real and virtual worlds that are created have a look and feel that is far more realistic than would otherwise be achievable.
Occlusion dynamics may be applicable to both the cockpit and ground-based augmented reality systems. In the cockpit, a camera scan in any direction may show other race vehicles. Use of occlusion dynamics in the cockpit may make the host vehicle, as well as the other vehicles, appear as if they are either in front of or behind certain synthetic objects that are inserted, creating a more realistic presentation of the combined real-virtual video stream.
Taking the occlusion dynamics discussed above to still a further application, and in more generalized terms, where there exists a camera with line of sight information, and objects moving through the field of view that are recording and transmitting their position and attitude through three-dimensional space, the invention may use that information to properly display the objects in front of and/or behind the synthetic objects that are dynamically or statically inserted.
In general, the invention for handling occlusion dynamics is readily applied to a variety of display means other than video from a camera. Such alternate applications include but are not limited to convention heads-up displays commonly found on military aircraft and less frequently found on civilian aircraft. An additional alternate display means includes, but is not limited to, head-mount displays, which are also commonly found on military aircraft. In both cases, instead of looking at the displayed image of a video to view the surroundings, the user uses a direct line of sight to view the surroundings through a transparent screen which forms an important part of the heads-up or head-mount display. The insertion of synthetic objects to merge the real world with the virtual is then accomplished by projecting the synthetic objects onto the transparent screen. The result for the user is to see the real world through direct line of sight and to also see the virtual world as a projected overlay onto the transparent screen component of the heads-up or head mount display. The process of using recorded and transmitted object metrics from the real world to properly position the synthetic object inserts as described above is effective, yielding a highly realistic and intuitive merging of the real and virtual worlds.
In another embodiment of the cockpit based augmented reality system (“CBARS”), the creation of the track-related synthetic objects which are inserted into the in-panel display, HUD or HMD, are created in real time as opposed to being retrieved from a predetermined set. For example, typically the virtual track inside of which the rocket powered vehicles will race is known in advance of the race and is programmed into the computers of each of the rocket powered vehicles. During the race, the track is pulled from storage on the computer and presented to the pilot along with a variety of other information that collectively allows him to successfully navigate his way through the race course. In one embodiment, the track is not pulled from storage on the computer but is instead created in real time depending on predictive algorithms that forecast where the rocket plane will be in the next segment of time based on its current position and flight dynamics. Such a system is called real time adaptive CBARS and is primarily used for demonstration, flight test and training purposes. In its implementation, the pilot flies normally through the sky in his rocket powered vehicle and the real time adaptive CBARS create and overlay a racetrack and other navigation aids such that they appear normally in front of the rocket powered vehicle on the normal flight path being flown without any deviations. If the pilot is flying at a constant altitude with zero rates in roll, pitch and yaw, the real time adaptive CBARS will simply lay down a straight track. If the pilot then pulls up, the real time adaptive CBARS will sense and measure the change in flight path and will create a modified track that pulls upwards keeping the new track in front of the vehicle at all times. To accomplish this, real time adaptive CBARS measures position, attitude, rates and accelerations (both linear and angular) and lays down a track in front of the vehicle that projects itself forward a distance which is preferably several hundred vehicle lengths. As new information comes into real time adaptive CBARS and the vehicle moves further along the track, a new track is preferably extended. In extreme cases wherein the flight characteristics are not accurately predicted by the real time adaptive CBARS due to extreme changes in orientation, the track may be adjusted in real time as the new information flows in. The net result is a system that lays down a track that is perfectly centered around the rocket powered vehicle, regardless of where the rocket powered vehicle flies. Such a system can be used for demonstration purposes to the viewing public, teaching viewers about the melded real and virtual worlds, training pilots and ground crews, proving out instrumentation onboard the rocket powered vehicles, or a wide variety of other uses.
The inventions described above and the more general inventions of augmented reality systems are used in a very wide variety of applications outside of racing rocket-powered vehicles. The invention is applicable to competition of any vehicle that travels through three-dimensional space, regardless of propulsions system. Such vehicles can be traveling underwater, on the surface of the Earth, in the air, in space or along a path that spans multiple domains, for example a vehicle that first travels along the surface of the Earth, transitions to the air, then space and back. Any combination is possible, the point being that there exists significant value in augmenting the reality through the realistic dynamic insertion of synthetic objects. In one embodiment of the invention described herein, the dynamic object insertion creates a virtual track or path that the user navigates along to get from one point to another with some deliberate purpose, or for pure entertainment. The virtual track overlay allows for better and more rapid navigation, safer travel, gaming, and general entertainment.
In a more generalized sense, the synthetic object inserts allow for the virtual insertion of almost anything, including but not limited to virtual advertisements, virtual products, virtual objects, etc. An architect may use it to visualize a new building by wearing augmented reality goggles as a client is shown a new home site, taking in the actual land view then synthetically inserting the buildings to give a realistic sense of what it would ultimately look like. In such a case, the client completes a walk through the virtual house on the actual land. In yet another application, a golfer may be given a variety of virtual tracks to drive along without requiring actual physical trails to be constructed.
Within the embodiment related to the racing of rocket-powered vehicles, and in any other application of the augmented reality system described herein, the synthetic objects that are inserted into either a video or the line of sight of a user may be dynamically adjusted based on external inputs. For example, in the racing of rocket-powered vehicles, if an in flight emergency occurs, rapidly creating an emergency tunnel that provides the pilot with an optimal flight path to safely glide back to the surface has great value. Or in another application, a new virtual tunnel or track can be created to assist the pilot in navigating to a more competitive position within the race. In the more generic embodiments, using external information to dynamically alter the stream of synthetic objects that are inserted is of great value. Even for the golf cart invention contemplated here, if a golfer decides at any time that it is time for a visit back to the club house, on the selection of a button, for example, a path is calculated and dynamically inserted regardless of the golfer's location on the course.
Such applications of static and dynamic augmented reality systems are of great value to the general aviation markets, as well as military, both for general navigation and emergency operation. For example, the current invention can be used for rapidly presenting a pilot with the best path to an emergency landing site, providing a tunnel to fly within, navigation aids to assist in flying through the tunnel, detailed approach information to the landing site, and any other information that may assist the safe return home. The synthetic inserts presented to a general aviation pilot take into account external conditions and are changed in real time. Such external inputs include traffic, weather, vehicle performance, desired destination, emergency declaration and type, keep out zones as mandated by the FAA, other information from the FAA or aircraft advisory agencies, and more.
The automated safety systems built into the rocket craft preferably have visual representations displayed both in-cockpit and streamed to the ground crews in real time. The pilot is riding a rich flow of information as well as throttling his or her rocket-powered vehicle through the sky.
The cockpit-based augmented reality system comprises avionics, display means, cameras, data collection means, data processing means, the augmented reality engine, data storage means and telemetry means.
The cockpit-based augmented reality system is manufactured to:
The cockpit-based augmented reality system enables the rocket racers to run autonomously through the three-dimensional race track during the course of a race. The system runs independently from the ground-based augmented reality system. There is no connectivity from vehicle to vehicle expect for emergency broadcasts. However, queues and certain data elements are made available to the individual rocket powered vehicles from the ground-based augmented reality system to improve the safety posture of the race. For example, information characterizing the position of the other rocket powered vehicles in three dimensional space may be made available over the telemetry link from the ground-based augmented reality system. Additionally, safety information or emergency broadcasts are made available to each rocket-powered vehicle from the ground-based augmented reality system.
Avionics play a critical role in driving the augmented reality engine with high-fidelity information that characterizes the line of sight of the viewing object, specifically, its position and angular orientation (attitude) in three-dimensional space relative to a common reference system. In order to ensure safe navigation of individual rocket powered vehicles, the position and attitude data must be of sufficiently high resolution throughout the duration of the race event. Any significant build up of errors will cause the pilot to fly outside of his or her designated track. The avionics position and attitude solution may draw INS or GPS-based technologies, individually or in combination.
There are two primary display means embedded within the cockpit-based augmented reality system. The primary means of display shows the virtual track overlay. The secondary means of display allows for the toggling of camera views without the virtual assist. Depending on the phase of implementation, the primary display may take on one of four forms:
The in-panel display requires a forward-looking video feed along the longitudinal axis of the rocket-powered vehicle. Drawing from the position and attitude data source, the augmented reality engine creates a data overlay that shows the tunnel in three-dimensional space which is designed for the flight path of a particular rocket-powered vehicle. Each rocket-powered vehicle will have its own tunnel in three-dimensional space inside of which the pilot is instructed to remain to provide adequate separation of one rocket-powered vehicle from another. In total, there are multiple individual tunnels (one for each rocket-powered vehicle) clustered together along a primary flight path.
The remaining three primary display options (HUD, HMD without line of sight tracking and HMD with line of sight tracking) do not require a video feed to drive the augmented reality engine. In this case, the virtual track is made available to the pilot on a transparent screen through which the pilot is able to see the real world ahead. In the case of a HUD and the HMD without line of sight tracking, the line of sight information remains fixed relative to the rocket-powered vehicle. In the case of the HMD with line of sight tracking, the line of sight information fed to the augmented reality engine, varies according to the direction the pilot is looking; for example, forward, up the lift vector, or some other variation. In any case, the viewing object line of sight information is simply an input to the augmented reality engine.
At the same time, fans at home are treated to broadcast feeds to their home media centers. There is a lot going on in the air during the race, and the broadcasts tell the story of the race as it unfolds. The simulation technology platform driving the broadcast allows each fan to customize his or her view of the race, and experience it at home in an infinite variation of viewpoints, information overlays, and virtual camera angles.
The ground-based augmented reality system is at the core of all activity. It provides the primary connectivity between the rocket-powered vehicles and the outside world. It collects, processes and redistributes data in a similar manner to the cockpit-base augmented reality system.
The ground-based augmented reality system comprises display means, cameras, camera trackers, data collection means, data processing means, an augmented reality engine, data storage means, telemetry means and signal conditioning/output means.
Specific functions of the ground-based augmented reality system include, but are not limited to:
Physically, the bulk of the ground-based augmented reality system is contained within a mobile truck or other vehicle. Once the truck is located at a race venue, the network of high-definition cameras, camera tracking capability and display means, are unloaded and located about the venue.
The inputs to the ground-based augmented reality system are the telemetry from the multiple rocket-powered vehicles and the emergency broadcast information from central control. Input from the rocket-powered vehicles is wireless. Input from central control is preferably wired.
Output to the fleet of rocket-powered vehicles is wireless. Output to the remainder of end user outlets preferably is a combination of wired and wireless.
The video and tracking information from the ground-based cameras are part of the ground-based augmented reality system and are not treated as external inputs. The connectivity from the ground cameras and tracking are both preferably wired and wireless.
Representative building blocks for the ground-based augmented reality system are shown below.
Central control is a multi-station console presenting its user with selectable information necessary to monitor safety, broadcast emergency protocol, maintain a scoring of the race and provide play-by-play commentary to the venue.
Central control draws its data from the ground-based augmented reality system and naked-eye inspection. Output is in the form of emergency broadcast data to the ground-based augmented reality system. Certain scoring information may also be made available to the ground-based augmented reality system so that the fleet of rocket-powered vehicles are made aware of their ranking and also so the ground display means may also broadcast the ranking and scoring of the rocket-powered vehicles throughout the course of the race.
The simulation-based platform is the simulation technology platform that applies itself to each individual interfacing with the league. This platform adapts itself, due to the versatile applicability of simulation technology, to all end users. Simulation-based platform touches each one of the cited technology modules.
Examples of specific applications of the simulation-based platform not already addressed within individual technology modules include, but are not limited to:
Rocket-powered vehicle specifications are as follows: The league develops a suite of simulation-based platform (“SBP”) tools for licensing to all teams and airborne components manufacturers. This software program runs on a commercial off-the-shelf (“COTS”) PC, and is suited to developing and testing components for league-sanctioned airborne activities. The system allows anyone involved in air platform manufacturing to develop and test new configurations in a simulated, physics-based environment developed to the league's exacting specifications. The air platform design tools provide a rich, virtual world that fosters innovation (and a culture of safety) within the racing community.
The race course design is as follow: The league uses this SBP tool for course and race design. The true-physics, simulated environment of the air platform design tools are tools for designing courses the vehicles can actually fly, and that have maximum entertainment value. The league develops new course designs for the different races, and the simulation tools at its disposal allow for rapid and collaborative design through all levels of decision-making.
Race team pre-race planning is as follows: Beyond the design of air platforms and race courses, the racing teams use the league simulated environment for true-to-life mission planning. Team management uses the tools to plan the flow of each race upon receipt of the course specifics. The league releases the race path configuration to all teams before each event (e.g. 24 hours prior to the event). Team managers use the simulation platform for race “mission planning” to accommodate all variables inherent in each race. Rocket burn-time, course difficulty and layout, pit stops and other items are combined in myriad ways until the team's optimal flight and race plan are achieved. Again, the true physics environment of the simulation gives an accurate representation of what to expect in the race itself, and is easily accessible to any user familiar with a Windows PC.
The pilot and crew training infrastructure includes but is not limited to:
Pilots and crews undergo live instruction from league staff in all areas of the league primarily focusing on vehicle and GSE operation and safety. Simulation plays a significant role in this process.
Both rocket racer pilots and their ground crews train and prepare for races using a custom designed simulation technology platform. The same simulated environment that is used for design and management of the races is applicable to individual and group training.
Pilots use the league technology platform for simulation based training (“SBT”) curricula for initial pilot training and recurrent flight operations training. Pilots may have the flexibility to train at any time, in any location. When the virtual course is released to the teams at a specified time (e.g. 24 hours) before the race, the pilots find the data transmitted to their approved training devices. Pilots fly the course over and over as they “cram” for the race the next day. Each pilot thus enters the race with a flight path through his or her course already mapped out. Additionally, the pilots interface with the crew training exercises and race planning being held in parallel for final integration of all race personnel in a simulated, distributed environment mimicking race conditions for optimal readiness, competitiveness and safety.
The ground support crew takes part in the race planning and train on the timing and flow of pit stops and likely service issues during the race. The crew is thus optimally prepared to function seamlessly as part of each racing team. The league technology platform keeps the crews up to date on proper safety procedures, and allows them the flexibility to customize their approach to race support.
Flight simulators may be made available on standard PC platforms and as cockpit mock-ups of the rocket-powered vehicles.
Pilot and crew instructions using actual race qualified hardware may be mandatory for all pilots and crew. Flight training occurs in both piston and rocket-powered trainers. Ground crew operation training occurs with actual GSE hardware using non-volatile and actual fuel sources.
Qualification testing may be mandatory for all pilots and crew prior to being given authorization to engage in a racing event.
During each race event, the ground-based augmented reality system and the cockpit-based augmented reality system records all events for offline playback, review and study.
All aspects of the pilot and crew training infrastructure are designed for a safe event, in full compliance with the FAA.
The invention can operate as part of business process leading to revenue generation as one form of entertainment through racing competition. Such an infrastructure ultimately yields a model where the racing property takes on value as a form of entertainment.
Rocket-powered vehicle racing competitions can allow for the generation of revenue from a multitude of traditional sources comprising media (broadcast, theatrical, internet, reality, cartoon, documentary, etc.), sponsorship (races, venues, ships), ticket sales, merchandise (toys, apparel, etc.), land development, video games, and touring exhibitions. Each of these can be enabled and enhanced via the rangeless air racing maneuvering instrumentation network, such as the example Network discussed above and illustrated in
Sponsorships can be a major revenue driver for racing events, racing teams and racing promoters. Racing competitions attract racing fans of all ages, ranging from 8-year old children enthralled with the idea of spaceflight, to 40-year old car race fans looking for bigger thrills, to 70-year-old grandparents inspired by Sputnik and the Apollo moon landings. Sponsorship opportunities can be available both in exclusive and non-exclusive categories. Sponsors have the opportunity to be “official” racing sponsors and/or sponsors of individual vehicles. Sponsors can also serve as “race event sponsors,” “racing series sponsors,” and/or could sponsor race awards similar to race car events such as “fastest lap,” “fastest pit stop,” “half way leader,” and “overall series champ,” as examples.
Revenues from sanctioning fees and ticket sales may be generated when promoters pay an annual fee or a portion of ticket sales and race revenues to the owners of the racing competition for the rights to host a sanctioned racing competition event at their facility. In exchange, promoters may recoup their investment and profit from ticket sales, concessions, merchandise, corporate sales, and sponsorship.
Revenues generated from media and broadcast venues may offer a broad range of opportunities to increase awareness about the racing competitions and to drive revenue from the packaging of media comprising, for example, reality television, an animation series, a feature film, an IMAX documentary, dramatic series and broadcast rights to the racing competitive series. The racing competitions may support a media strategy with the production and distribution of a number of DVDs following the race events and series, rocket race vehicle development, and profiles of independent teams/pilots. The racing competition may establish these opportunities as revenue opportunities independently and may also explore “packaged deals” with major producers.
Revenues may be generated through merchandising and licensing of racing competition brands and may serve the market's demand for racing-branded items memorabilia such as hats, t-shirts, posters, bomber jackets, etc. The rocket racing competition may market these offerings both at racing events and through a variety of websites. The racing competition may also license trademark and marketing rights to merchandisers for the production and distribution of toys and other related merchandise.
Revenues may be generated through related racing touring and theme parks. A racing competition tour of major U.S. cities may be instituted where racing fans may be able to seeing a rocket-powered vehicle up-close, meet pilots and enjoy educational initiatives that focus on aviation and aeronautics. The racing competition may pursue theme park sales through offerings such as a racing ride and a racing interactive package comprising film, simulators and games.
Revenues may be generated through gaming. A rocket-powered vehicle based video game and flight simulation package may operate on popular platforms such as the X-BOX, GAME CUBE, PLAYSTATION and personal computers (PCs). Video gaming and flight simulators may enable fans and enthusiasts to race their own virtual rocket race vehicles and compete against friends online while learning about aviation and aerospace.
Fans are able to purchase the league gaming platform and enjoy all of the benefits of being their own racing team without having to actually buy and fly a rocket racer. The simulation technology adopted by the league allows for a rich, immersive gaming environment where they can design, build and fly their own racers on their own, or networked online with each other. Entire competitions of future and armchair racketeers may take place year-round on the gaming platform.
During the races, fans can take their involvement in racing activity further: they can fly in real-time against the racers. Combinations of virtual and live pilots can square off in the simulated world of the distributed simulation platform. Guest racers may appear virtually on the race broadcasts going up against the live racers for promotions or any other league purpose.
The range of gaming and education applications includes but is not limited to a variety of networked and non-networked flight simulators and video games operating on popular platforms, such as the X-Box, Game Cube, PlayStation and PC, enabling fans to race their own virtual x-racers in real time against actual rocket-powered vehicles during race events, as well as compete against friends online while learning about aviation and aerospace.
Specifically, gaming and education applications include but are not limited to:
Revenues may be generated through the licensing of intellectual property associated with technologies realized throughout the development and evolution of racing competitions, such as, aircraft designs, navigation systems, fueling capability, and other research and development (R&D) initiatives. This may lead to licensing agreements and the opportunity to sell different applications of the intellectual property.
Revenue may be generated through a variety of other ancillary manners as well. Rocket-powered vehicle competitions may cause technical developments that may have markets outside of the entertainment industry. NASA and the US Department of Defense may be interested in developments in airframes, engines, electronic systems as well as in navigation and position systems.
Many, if not most, of the revenue sources may benefit significantly from use of a Rangeless Air Racing Maneuvering Instrumentation Network, such as the example Network discussed above. Sponsors may target specific audiences by tailoring messages in the virtual world that makes up a significant element of the racing competition. By manipulating synthetic objects, images or messages and combining with real time video of the rocket competition, sponsors gain a new and unmatched level of flexibility of controlling what they display, when it is displayed and to what selective audience certain information is channeled.
In another embodiment, data is collected, archived and available to many end users, preferably in real time. For example, data from an aerial vehicle is collected, archived and available to end users. Examples of data from aerial vehicles include, but are not limited to geospatial data, position, thrust, throttle, velocity, speed, distance from another vehicle or object, engine data, pilot's heart rate and other functions or parameters, G-force, temperature, altitude, location, pressure, photographs, video, audio, and other data streams. This data is available for each vehicle and is distributed to multitudes of end users.
Venue data is also preferably collected, archived and distributed to end users. Examples of venue data available to end users includes but is not limited to photographs, audio, and video streams from ground, aerial or satellite cameras, information from pit crews, augmented reality data, fuel and refueling information, data from racing officials such as scores and rules, penalties and real time modification of a race course and data from the spectators or fans.
In addition, data from other end-users is also collected, archived and distributed to the same or different end-users. This data includes but is not limited to, for example, a person from anywhere in the world can race on a desktop in real time and that person can then distribute his data to other end-users. Or, that end user can provide any other data collected, and/or modified.
End-users for this system can include, but are not limited to garners, FAA officials, TV and cable and radio networks, race officials, online broadcast companies, engineers, designers and advertisers.
Aircraft avionics have recently experienced the introduction and increasing adoption of the “glass” cockpit, whereby conventional clusters of analog gauges are replaced by one or several computer driven displays that present to the pilot a large and customizable volume of information never before possible. An example is the Garmin G-1000. Another example is the Rocket Racing League's RITS system (“Raceway in the Sky”) that enables a pilot to fly pre-constructed “boxes” that act as guidance queues through three-dimensional space, particularly useful in giving a pilot a “track” to glide home through, following, for example, the loss of an engine. Other advances in the areas of advanced materials, design, electronics, communications networks, information technology, computing processing power, extended wireless networks, bandwidth and advanced manufacturing have each individually advanced the state-of-the-art within their respective domains, making far better in recent years what once was the accepted norm. An embodiment of the present invention melds these advances together in a way that has not yet been implemented, redefining safety as the grounds-up, deliberate and integrated outcome flowing from the merging of these many disciplines and technologies.
An embodiment of the present invention comprises an aircraft/spacecraft safety, security, diagnostics and convenience system (“ASSDC system”) that is preferably located in the aircraft/spacecraft. In this embodiment, the ASSDC system is preferably live and establishes an integrated architecture that, through activating a button, preferably a single-click highly visible call button, allows a user to connect to a variety of ground-based services. The ground-based services are preferably both manned and automated and provide audible and visual feedback data. The ground-based services also preferably give general guidance on matters of both emergency and convenience.
In another embodiment of the present invention, an activation button comprises an emergency aircraft-specific guidance service that is preferably live, easily accessible, universal and activated in case of emergency. In this embodiment, the ground-based service is comprised of a network of people with access to relevant information to address the matter, whether emergency or convenience. To facilitate a state of readiness, service centers are preferably alerted as soon as an aircraft comes online, and then an ASSDC system is preferably activated. In this embodiment, once an aircraft comes online, the ASSDC system provides appropriate back-end queues to ensure that aircraft-specific expertise is available should the need arise. The ASSDC system preferably comprises tracking, impact assessment, and emergency beacons. As an aircraft moves toward its destination, geographic updates are preferably collected to further enhance the readiness of the system. Updates can include, but are not limited to, preloading information on nearest airports, connectivity to control towers, and the like.
A further embodiment of the present invention comprises a back-up power source such that users remain confident of an ASSDC system's availability in the event of an emergency involving a main power outage. In this embodiment, the ASSDC system connects and communicates with aircraft using wireless technology. Examples of wireless technology include but are not limited to, satellite, cell phone signal, or any other form of wireless technology known to those skilled in the art.
In another embodiment of the present invention, an ASSDC system requires a monthly subscription or use fee or some combination thereof.
In yet another embodiment of the present invention, an ASSDC system comprises remote monitoring of aircraft/spacecraft that further comprises a safety diagnostics report preferably for the pilot and the pilot's family, trajectory plotting and user enhanced browser-based graphics. These features make the flying experience friendly, educational and informative. In an alternative embodiment, the ASSDC system comprises remote diagnostics that evaluate an aircraft's diagnostics prior to take-off. Examples of diagnostics include, but are not limited to, fuel level, oil level, necessary maintenance checks, engine condition, tire pressure and condition of safety devices, such as but not limited to, air bags. In this embodiment, the ASSDC system preferably collects high resolution tracking information, and monitors the vehicles for signs of anomalies through the use of on-board diagnostics instrumentation that are monitored and fed back to the ground where they are analyzed remotely. On-board diagnostics instrumentation can include, but is not limited to, load sensors, accelerometers, attitude indicators, engine diagnostics, environmental sensors, temperature, and possibly physiological indicators from the pilot and crew (pulse, heart rate, etc.), where applicable and combinations thereof.
In a further embodiment of the present invention, an ASSDC system preferably communicates with the ground wirelessly. The ASSDC system preferably draws from already installed infrastructure and is patched together in such a way that multiple levels of redundancy are provided with minimal bandwidth and range limitation, free from dropout associated with moving from one coverage area to the next. Such infrastructure can make use of, but is not limited to making use of, satellite, cellular and other short and long range communication systems currently in use in North America and around the rest of the world. In this embodiment, as wireless communications systems mature, the ASSDC system can make use of the enhanced capability.
In one embodiment of the present invention an ASSDC system comprises remote diagnostics for the aircraft or spacecraft owner to check on the craft prior to arrival for use. The types of diagnostics fed back to the owner, preferably through a browser based system, include but are not limited to, oil and fuel level checks, local temperature, maintenance intervals, and other parameters relevant to safe operation. Connectivity is preferably enabled through a variety of devices, portable or otherwise, including but not limited to, cell phones, PDA's, Blackberry devices, tablets, laptop computers, standard televisions sets and the like.
In another embodiment of the present invention, an ASSDC system comprises family remote monitoring, preferably through a special browser-based interface, or other means. In this embodiment, families or interested parties receive a real-time safety diagnostics report designed to give loved ones peace of mind. Such a system also provides trajectory plotting with user-enhanced and user-personalized browser-based graphics to make the flying experience friendly, educational for children and the rest of the extended family, exciting and informative for all. Graphical based safety checklists are preferably provided, certifying to others that safety features such as impact seats, air bags and ballistic parachute are all operable and ready for use should the need arise. In a preferred embodiment, the ASSDC system comprises built-in provisions allowing communication from a personal computer or grand station to the aircraft, both visual and audible, all designed to enhance the flying experience for the entire extended family, regardless of whether they are in the air or on the ground. Such an ASSDC system is a major selling point to prospective buyers as it helps reduce or remove the barrier associated with perceptions of risk and safety that prevent many from not only taking the initial plunge into aircraft ownership but also sticking with it.
An embodiment of the present invention comprises an ASSDC system that further comprises a theft protection and recovery function. This embodiment provides tracking information that is preferably fed back to ground service and can assist in recovery. Additionally, a station-keeping function alerts the owner or law enforcement by cell phone, text message, email and/or other means, should an aircraft be moved from its primary location by more than a pre-designated distance. Such functionality is useful in monitoring when an aircraft is moved form its tie-down and hangar location, regardless of whether a theft is in process or an aircraft is being moved for a service call or some other authorized activity. A user can locate an aircraft on a conventional satellite map source such as, but not limited to, Google Earth. The display illustrates integrated graphic time-stamped “trajectory” information from location to location. In this embodiment, a user can preferably monitor G-loads during movement, temperature and other parameters, as well as monitors when electrical is activated and the engine is turned over, among other parameters.
In a further embodiment of the present invention, an aircraft comprises safety features that allow the aircraft capable of withstanding more gravitational force, roll and impact. In this embodiment and within the scope of integrated mechanical design enhancements that enhance safety, lies the convergence of materials, design methodologies and the understanding of human tolerance to high G impact and resulting injuries. The automobile race industry has produced a variety of design enhancements that make survivable today what would have resulted in sure death 20 years ago. This embodiment of the present invention draws from best practices in the auto race industry and applies them to the unique situation of aircraft safety. Technologically advanced safety enhancements include, but are not limited to, the following:
1. Roll and crash cage designs capable of absorbing energy on impact and effectively withstanding more G's during impact or subsequent rolling that may occur after impact. For example, cockpit seats are reinforced to withstand impacts of up to 20 G forces.
2. New advanced composites materials and manufacturing techniques that are strong, lightweight and fire resistant
3. Airbags for passenger and pilot
4. Flotation apparatuses for water landings addressing water landing buoyancy issues
5. Ballistic parachute systems
6. Collapsible structures to absorb impact, including modern collapsible foam and composite seats
7. Conformal seats that are triggered by a user once and emergency is established, or are rapidly converted once certain parameters are measured onboard the spacecraft or aircraft. Such conformal seats change through inflation or other means to better capture and restrain where appropriate a passenger to minimize or altogether remove the potential for harm resulting form the emergency situation, such as a crash landing.
8. Wing release or breakup devices that when in crash landing situation are a benefit if it would otherwise cause a spaceship or aircraft the process of making an emergency landing tumble. In such a case, the wings are designed in such a way that they separate from the main fuselage on impact, preventing them from “catching” and causing a tumbling motion to ensue.
9. Carbon nanotubes and other advance materials are preferably used in the manufacture of certain aircraft or spacecraft parts or subassemblies. As safety becomes an always-on design feature, use for light weight strong materials becomes increasingly important.
In a preferred embodiment of the present invention, an ASSDC system responds to an emergency using state of the art electronics. This embodiment removes the burden of responding to the emergency from the pilot of the aircraft and shifts the burden to the system. Pilots very often become overwhelmed with process in the event of an emergency. In a preferred embodiment, an ASSDC system comprises a “go home” or “safe” button that, once activated, will quickly diagnose an emergency and take appropriate actions. For example, in the case of an engine failure, the “safe” function equates to establishing the best glide. Establishment of best glide may be audibly delivered guidance queues by the ASSDC system, or the ASSDC system could alternatively take over in autopilot mode and establish best glide for the aircraft or spacecraft through feedback use of control surfaces. Additionally, once best glide is established, the ASSDC system contemplated herein then provides navigation queues to the nearest airport, and provides audible and visual feedback to users. In a preferred embodiment, the ASSDC system flies the aircraft or spacecraft to the nearest airport, the ultimate goal being a system that, in event of emergency, removes the burden from the pilot.
In another embodiment of the present invention, an ASSDC system comprises a network of visible and/or infrared cameras that are positioned around an aircraft or spacecraft to provide human-in-the-loop or automated inspection capability. Camera inspection is preferably provided for all main areas including but not limited to, engine compartment, wheel wells, prop area behind aircraft and control surfaces. In one embodiment, an infrared camera is capable of detecting hot spots and is useful in low light conditions. This embodiment further comprises synthetic vision and melded vision.
In yet another embodiment of the present invention, powering critical electronics is of paramount importance to effective use of emergency aircraft systems. This embodiment preferably comprises a ram air turbine that extracts energy from an air stream to turn a turbine that powers an electrical generator and recharges batteries or provides power direct to critical components. Such a device may be located anywhere on a vehicle as long as an air passageway is included which channels outside airflow to the face of the turbine, thereby creating the face pressure necessary to drive such a device such that it produced electricity.
Another embodiment of the present invention comprises a rocket propulsion system capable of being installed in a conventional aircraft for the purpose of providing the aircraft with an emergency rapid-action method of thrust augmentation during take-off for the purpose of gaining sufficient altitude to enact recovery and/or abort procedures. This embodiment further comprises providing an aircraft with an emergency rapid-action method of thrust augmentation during any other in-flight condition for the purpose of gaining altitude to enact recovery and/or abort procedures.
In yet another embodiment of the present invention, a rocket propulsion system comprises a solid and/or liquid propulsion system. In a preferred embodiment, the system uses self-contained tanks of liquid oxygen and alcohol, such as, but not limited to, ethanol. In an alternative embodiment, the propulsion system comprises liquid oxygen and kerosene. In a preferred embodiment, a salt water solution is added to the fuel to produce a bright yellow glow from the aircraft/spacecraft.
In a further embodiment of the present invention, a rocket propulsion system comprises a self-contained module enabling the rapid addition of the system into a conventional aircraft. In this embodiment, the propulsion system alternatively comprises a specified number of subsystems to facilitate the rapid integration to an aircraft in its various stages of manufacture.
In another embodiment of the present invention, a rocket propulsion system comprises one or more ignition times during the course of any flight event. This provides the pilot with a low cost, light weight on-demand method of rocket boost that is safe and reliable. Examples of such rocket propulsion systems include, but are not limited to, liquid propulsion systems manufactured by XCOR Aerospace in Mojave, Calif. These rocket propulsion systems are developed and proven at thrust levels that range from tens of pounds of thrust to many thousands of pounds, completely scalable at all intermediate thrust levels. This embodiment differs from previous systems in that conventional rocket assist devices are one-time firing and run to burnout, without the ability to be restarted more than one time.
In yet another embodiment of the present invention, a rocket propulsion system comprises a safe, low-cost, reliable rocket propulsion module capable of being toggled on and off and reused from flight to flight. This embodiment can preferably be used for all civilian and/or military aircraft applications regardless of primary propulsion methods.
An embodiment of the present invention comprises a rocket powered airborne vehicle or rocket plane. The application of the rocket plane is preferably in the area of rocket racing or exhibition flying with the objective of generating direct or indirect revenue sources or providing entertainment. Other applications include, but are not limited to, adventure seeker experiences, space tourism, satellite insertion, terrain mapping, pilot/astronaut training, and a variety of government/military applications both defensive and offensive.
In one embodiment of the present invention, a rocket plane comprises a multi-role rocket powered aircraft (“MRPA”). The MRPA is essentially an airplane that is powered by a rocket engine, or combination of rocket engines and other means of airplane propulsion. The MRPA is a performance vehicle used in airborne competitions within the sports and entertainment business. The MRPA can also be used recreationally by individuals wishing to own a unique flying machine.
An embodiment of the present invention comprises methods of manufacturing and fielding a rocket plane. This embodiment preferably comprises a rocket plane further comprising unique performance characteristics that make it different from other planes of conventional propulsion means. Design features of this embodiment preferably create a unique flying platform, different from conventional airborne vehicles. Examples of rocket planes are illustrated in
One embodiment of a rocket plane comprises a winged vehicle, capable of horizontal take-off and landing. However, in a secondary embodiment of the invention, a wingless vehicle is contemplated that takes off and lands vertically (see
In either embodiment of winged or wingless rocket planes, certain features can be included so that viewers from afar can readily distinguish one plane from another. At a fundamental level, visual aids are used to distinguish one rocket plane from another. Color or other markings can also serve this purpose. It is further possible to seed the plume with certain substances in order to color the plume a unique color, thereby enabling the rocket plane to be identified by the color of its plume. In such a case the seed that is injected into the plume is designed to react to produce color when exposed to the heat of the plume in the wake of the rocket plane. Smoke generators that release colored smoke can also be used to correlate specific signatures to specific rocket planes. This is particularly useful for those periods when the rocket engine is off and therefore a plume is not otherwise present.
In one embodiment of the present invention, a rocket plane comprises an airplane that is powered by a rocket engine. As illustrated in
The airframe can be custom designed specifically for the intended purpose of fielding a rocket plane, or it can be a modified version of an airframe typically used with propeller or jet engines.
The airframe preferably provides the structural integrity to house the pilot, propulsion module, and avionics package, and provides the aerodynamic shape necessary to support and control the rocket plane throughout its entire operating range. The airframe can be made from any of a variety of conventional methods involving composite materials that provide strength, are light weight and lend themselves to forming a variety of shapes that are typically more difficult to achieve with conventional sheet metal based designs. One preferred feature of the rocket plane is extended glide capability, which allows other functionality of the system that involves significant glide portions of flight, while facilitating more robust power-off landing scenarios during normal flight procedures, as part of a competition where total time aloft may dictate combinations of boost and glide, and in any emergency where procedure or necessity dictate that the rocket plane land in a power-off mode.
In another embodiment of the present invention, the process of designing and fielding a rocket plane with a conventionally designed airframe originally intended as a propeller or jet powered aircraft, is preferably modified such that the airframe can accept a rocket propulsion system. This modification is preferably known as a conversion package. In this embodiment, modifications to an airframe preferably include, but are not limited to, structural enhancements to carry unique static and inertial loads associates with propellants and engines of rocket planes, relief areas to allow for the protrusion of propellant tanks through the normal envelope of the airframe, rerouted and enhanced control systems, enhanced braking systems to accommodate high takeoff and landing speeds, a custom instrument panel to allow the pilot and flight engineer to safely operate and monitor the rocket propulsion system, and combinations thereof.
As illustrated in
The rocket propulsion system preferably includes, but is not limited to, a method of carrying and storing propellants, a method of delivering propellants to the engine, an ignition source, a plurality of valves for venting lines, purging lines, loading propellants, unloading propellants, dumping propellants, and combinations thereof. The rocket propulsion system further preferably comprises a combustion chamber, a nozzle, a blast shield system to contain debris should there be an engine failure, instrumentation for operations, diagnostics, monitoring operation, an injector plate through which propellants are preferably delivered to the combustion chamber, a mounting apparatus, one or more pressurant tanks, one or more propellant pumps, engine controls, one or more engine control computers, a fire suppression system, a video systems for diagnostics and entertainment means, custom avionics for flying a virtual raceway in the sky, one or more batteries, burst disks for emergency pressure relief, plume seeding systems for coloring the plume different colors, mechanical mounting systems for components, custom burn-though detectors to detect the burn through of gases, preferably high temperature gases, through the engine wall or critical weld lines, and combinations thereof.
In an embodiment of the present invention, propellants for the rocket plane comprise fuel and an oxidizer. In one embodiment, the rocket plane contains a single liquid rocket engine. The propulsion module is made of propellant tanks, flight computer and engine, as well as all of the enabling components to enable the safe and reliable operation during all phases of the activity including but not limited to pre-flight inspection, propellant and pressurant loading, and leak checking, to flight, pre-flight test firing, boost, relight, shutdown, propellant and pressurant dumping, landing, offloading propellants and pressurant, and post flight activities. The propellants are preferably liquid oxygen (LOX) and ethanol. Other propellants are possible, such as liquid oxygen and kerosene, among others. In one embodiment of the present invention, the main propulsion systems run at two power settings, either zero power (off) or 100% power (on). In another embodiment, the single propulsion module is capable of being set at an increasing number of throttle positions, which provide continuously throttleable power from zero to 100%. It is not the intent of this embodiment to detail the various designs and functional capabilities of such a propulsion module, but instead to point out that in the limit, the rocket plane need be powered by only one propulsion system. By contrast, it is the intent of this embodiment to disclose a form of rocket plane with multiple propulsive means, drawing from any combination of liquid rocket engine, solid fuel rocket motor, hybrid rocket engine, turbojet, turbofan, turboramjet, ramjet, scramjet, conventional propeller or turboprop, or other forms. This embodiment considers every propulsive method a viable candidate for the rocket plane in order to enable it to fly.
In a preferred embodiment, the oxidizer comprises liquid oxygen (LOX) and the fuel comprises ethanol and/or a form of kerosene. Other fuels and oxidizers are possible. In an alternative embodiment, the oxidizer is preferably extracted from the atmosphere at low altitudes, then transitioned into a contained source of oxidizer at altitudes where the atmosphere is thin and the concentration levels of oxygen drops. In a further embodiment, a rocket plane is preferably fielded with solid propellant boosters instead of, or in addition to, liquid rocket propulsion systems.
Propellant storage is typically dictated by propellant type, temperature and propellant delivery method. LOX is a cryogen, operating at subzero temperatures which creates a very harsh environment. LOX is preferably kept cool to prevent it from boiling. If LOX boils, the vessel containing it must be vented. Equally important to LOX boiling off is the loss of a useful working load—the more boiling that occurs, the less LOX is available as propellant. Time over which the engine runs prior to depleting its propellant reserves is generally short (2-4 minutes for the current embodiments). Thus, any reduction in LOX through boil-off can degrade overall system performance. To avoid boil off and to ensure that the containment system can withstand the harsh environment of the cryogen, LOX is preferably stored in spherical stainless or aluminum tanks that are insulated, as illustrated in FIGS. 30 and 32-34. This creates a unique design constraint as a sphere does not lend itself to conformal integration of tankage along the natural lines of a typical airframe without wasting considerable space.
Two methods for delivering propellants to an engine are disclosed; pump fed and pressure fed. In one embodiment of the present invention, pump fed propellant delivery uses any of a variety of pumps to transport the propellants from storage tanks to an engine under pressure. While a variety of pump types may be used, a piston pump that is driven by high pressure helium is preferred. In an alternative embodiment, no pump is used and the propellant is driven by overhead pressure introduced into a storage tank.
In a further embodiment of the present invention, LOX is pressure fed by introducing a high pressure gas, preferably helium, into the empty space above the LOX in a tank, preferably a spherical tank. In this embodiment, helium is introduced at preferably approximately 100-500 psi and more preferably approximately 200-400 psi and most preferably approximately 300 psi. The helium is preferably either regulated to a pressure with an onboard source of preferably between approximately 1000 to 10000 psi helium, more preferably between approximately 2000 to 6000 psi helium, and most preferably 4,000 psi helium, or simply allowed to “blow-down” over time. In a non-limiting example, three high pressure bottles of helium are regulated to deliver a constant approximately 300 psia driving pressure to the spherical LOX tank throughout the entire duration of the burn cycle.
In yet another embodiment of the present invention, helium is preferably introduced into the empty space in the spherical LOX tank pre-flight and allowed to blow down over time. This results in less driving pressure as the LOX is depleted and the helium drops in pressure. This embodiment creates a situation where the amount of LOX delivered to the engine decreases over time, in turn this results in a thrust profile that decays over time (see
In one embodiment of the present invention, the delivery of fuel to the engine is preferably at a pressure that is higher than atmospheric. A constant thrust level throughout is preferred. Conventional wing tanks to hold the fuel is also preferred. However, because wing tanks cannot support a significant level of pressurization without failure, a pump can be used to transport the fuel from the wings to the engine under pressure. The pump is preferably a piston pump that uses regulated helium from the same high pressure sources as described above. In an alternative embodiment, fuel is stored in a tank, preferably a spherical tank that is not insulated, and uses an overhead “ullage” pressure technique to pressure feed the fuel from the tank to the engine, under pressure.
One embodiment of the rocket plane comprises a throttleable LOX-alcohol liquid rocket engine for primary boost, a bank of 10 small solid rocket motors for secondary boost, and a small turbojet for sustain, taxi and landing. The primary boost may be located along the centerline of the rocket plane. The 10 solid rocket motors can be located in clusters of 5 on either side of the aft fuselage, and the turbojet may be located on top of the aft fuselage. The turbojet is used: (1) to taxi during ground operations when not under tow; (2) for sustain mode in flight when the primary of secondary boost are off; (3) during landing to facilitate best approach and provide for emergency go-arounds; (4) during emergencies; and (5) in other scenarios. The primary boost is preferably used during the take-off roll and for acceleration through the second and third gates as contemplated above. The secondary boost is preferably fired to push through a vertical portion of the course to a finish. The secondary boost, preferably comprised of two sets of 5 solid rocket motors, can be fired in pairs to eliminate the induced yaw on the rocket plane. One or more “pairs” of solid rocket motors can be reserved for purposes other than boost along the vertical. For example, it may be desired to hold one pair for emergency climb to altitude, or go-arounds, or pure entertainment during a post-run low-altitude fly-by.
Other combinations of propulsion are easily contemplated to accomplish the purpose of flying a specified mission along a given course. The combination of propulsion systems can be means chosen to meet the needs of performance, safety and entertainment within the design limitations of the rocket plane itself.
Regardless of which storage and propellant delivery scheme is employed, both preferably rely on the use of helium. This creates the requisite need for onboard storage. Helium can be stored in high pressure bottles, and/or as overhead pressure within the LOX and/or fuel tanks, both preferably spherical. In either case, helium preferably serves a second function, that of serving as a high pressure gas to purge the lines, injector plate, manifolds, and engine. This is intended to clear the lines of residual propellants or other contaminants. Purging is preferably performed at a variety of points along the timeline that begins before propellants are loaded and ends after propellants are dumped or unloaded. Purging can occur at any time, for example, in-flight, before and/or after an in-flight engine restart, on the ground between powered taxis and/or static runs. Purging is a safety measure that prevents unintended mixing of propellants and the pooling of unburned propellants, clears lines of water, water vapor or other contaminants.
Rocket planes are preferably reusable. For example, a rocket plane can preferably turn around from a flight and fly again in under 10 minutes between flights. During this time a quick inspection occurs, the propellants are reloaded, batteries and recording media would be swapped if necessary, pressurants are reloaded, igniter consumables are replenished, and any other consumable are replaced as necessary. Key to this operation is rapid turn around of ground support equipment that preferably reloads propellants quickly and safely.
The rocket planes of the several embodiments preferably possess a variety of unique performance features. Examples of performance features include but are not limited to:
An engine that operates unencumbered at points above typical engines. Because the engine carries it own oxidizer source on-board, it does not need to be in the sensible atmosphere to operate. Instead, it can fly to points high in the sky where normal propeller or piston engines would cease to function.
Where rockets typically take off vertically, a rocket plane preferably takes off and lands horizontally on a conventional runway.
Rockets known in the art are typically not reusable. The rocket planes disclosed in these embodiments can be restarted and reused tens if not hundreds of times without a rebuild or major refurbishment.
Rockets known in the art typically cannot be turned around for another flight in a short period of time. The rocket planes of these embodiments are preferably able to be flown again within a very short period of time, ranging from about 5 minutes to 1 hour. This is not at all typical of conventional rockets of any type.
The propulsion modules are also preferably able to be restarted many times in flight. This is not typical for rocket engines.
One embodiment of the present invention comprises a rocket plane with a modulated thrust. The thrust is preferably modulated between two points, zero and 100%. More preferably, the thrust modulates in steps, for example, from zero, to 50% to 100%. As the sequence evolves, the stepwise thrust modulation eventually becomes continuous.
Because of the unique characteristic of the rocket planes of these embodiments, the ability to generate high thrust levels for a given system weight allows for the realization of thrust to weight ratios that are high, and in some instances exceeds 1, and allows for acceleration in purely vertical flight. This typically is not possible except for a certain class of military jets.
In an embodiment of the present invention, airframes are made from composite materials. Generally these materials enable a strong and lightweight airframe in comparison to conventional sheet metal style airframe designs. The light weight composite design further makes realizable the high thrust to weight ratios discussed, giving the rocket planes the ability to perform certain aerobatic routines that would otherwise not be possible if the airframe were driven by a propeller based power plant.
In one embodiment of the present invention, instrument suites employed by the rocket plane designs require a unique set of reporting and display functions (see
In one non-limiting example, a Blue Mountain EFIS (electronic flight control system) was modified to accept inputs from a variety of instrumentation used for performing monitoring and diagnostic of the rocket propulsion module. This information was converted to digital form and presented on the EFIS display to the pilot. In this example, the data refresh rate was set for use with a conventional propeller driven aircraft. This data refresh rate was insufficient to capture the more aggressive and higher rate maneuvers that are preferable for rocket planes. The result was that the instruments lagged the rocket plane, and the pilot could not rely on the instrumentation. Thus, in an embodiment of the present invention, a refresh rate preferably ensures that the time response and dynamic range of each of the instruments feeding the EFIS are sufficient to properly capture high rates of change.
In another non-limiting example, a custom VGA display was used to display relevant parameters. In this example, a flight computer collected the data, converted the data to the proper digital format for display, and the data was then displayed both numerically and graphically on a display preferably mounted in the instrument panel in front of the pilot.
In an embodiment of the present invention, rocket planes use computer control to varying degrees. The operation of a propulsion system and a flight control system are preferably controlled using a combination of computer control, electro-mechanical and mechanical control. Computer control systems preferably comprise back-ups. In this embodiment, a rocket plane comprises a secondary computer to preferably monitor the performance of the first computer. This secondary computer is preferably called “the watchdog”. In one embodiment, if “the watchdog” detects a malfunction of the primary engine control computer, a signal is sent to the pilot, flight engineer and ground support. The watchdog may then take over and proceed to shut the engine down if warranted, or put the control and shutdown of the engine in the hands of the pilot. In an alternative embodiment, ground support intervenes, shutting down the engine from a ground computer that is linked wirelessly to the flight computer on board the rocket plane. In these embodiments, if a pilot needs to shut down the engine, a number of options are available that all eventually shutdown flow of propellants to the combustion chamber. This process is preferably performed by shutting the valves in the lines that feed the injector plate that in turn feeds the combustion chamber.
Computer control of the rocket propulsion module is one preferable method of operating a rocket plane.
In an embodiment of the present invention, a rocket plane preferably comprises a plurality of embedded video systems that preferably provide visual diagnostic information to the pilot during operation and the ground crew post-flight. For example, video cameras point from the wingtip back toward the engine. This video camera position shows a pilot a visual method of monitoring the engine for anomalous behavior. These video cameras preferably provide the pilot with a visual queue, enabling him to interrogate other sensors and/or take immediate corrective action.
Another embodiment of the present invention comprises a fly-by wire throttle system. In this embodiment, there is preferably no mechanical linkage from the throttle to the valves that allow propellants to flow into the engine.
In one embodiment, the throttle comprises a two position lever that causes an electrical switch to change position when the throttle is moved forward. On changing position, an electric change in state is recorded and the ignitions sequence is initiated.
In a second embodiment, the throttle position is preferably a continuous or stepwise-continuous function of position that is translated by electrical or electronic means into appropriate propellant valve positions necessary to achieve the commanded thrust levels. In an alternative embodiment, a pilot has two throttle positions, zero and 100%. In a preferred embodiment, there are three throttle positions, the pilot is able to command zero, 50% and 100%. In a more preferred embodiment, a pilot is ultimately able to command thrust levels continuously along the entire power curve.
Cooling the combustion chamber and nozzle on the rocket propulsion systems disclosed herein is critical to the life, integrity and safety of the engine. There are a variety of methods available for cooling the walls of the chamber and nozzle. In one embodiment of the present invention, case fuel is circulated through a jacket surrounding the nozzle and chamber thereby picking up heat and reducing the temperature of the nozzle and chamber walls sufficiently to maintain steady state operation. Once the fuel has picked up heat from the chamber and nozzle wall, it is forced into the injector and ultimately burned in the chamber on mixing with the oxidizer.
In another embodiment of the present invention, fuel is injected in a circumferential ring of holes along the inner surface of the combustion chamber and nozzle walls. In this embodiment, up to approximately 25% of the total fuel flow is used for this purpose.
There are a variety of design features that enhance the safety of rocket planes.
In an embodiment of the present invention, a burn-through sensor activates when hot gases inside the combustion chamber and nozzle burn through the wall. The sensor is preferably a wire that is wrapped in a deliberate pattern around and along the outer surface of the engine. When the wire is broken, continuity of signal is interrupted and an appropriate signal is presented to the pilot and engine control computer so that corrective and appropriate action maybe taken.
In another embodiment of the present invention, the LOX tank is isolated from the crew compartment by a composite bulkhead to prevent gaseous oxygen from migrating forward in the event of a leak. The LOX tank compartment is maintained at a positive pressure so that any escape of gaseous or liquid oxygen is forced through a vent in the fuselage to the outside atmosphere. Positive pressure is maintained by running a blower fan forcing air from the crew compartment through an opening into the LOX compartment. In this embodiment, an air scoop is preferably set in place on the upper surface of the fuselage above the LOX tank such that ram air is captured and forced into the LOX compartment to maintain a positive pressure.
Another embodiment of the present invention comprises a fire suppression system that is used in the engine compartment behind the firewall and also in the LOX compartment. In this embodiment, a standard Halon fire suppression system is preferably employed. In an alternative embodiment, helium is vented into the compartments to starve the fire and displace combustibles.
In situations where the pilot may be unaware of certain safety issues, a ground crew is preferably always monitoring the rocket plane both visually and through computer driven interrogation of data received back from the rocket plane in real time on a board wireless telemetry system. By placing the ground crew in the loop, a second level of safety is provided. The ground crew further preferably maintains the option to issue a certain set of commands that are uplinked to the rocket plane wirelessly such that corrective action is taken to mitigate safety concerns in the absence of the pilot's direct authority or intervention. The number of actions available from the ground is affected by where the pilot is operating the rocket plane and under what conditions. Intervention from the ground without pilot consent is not always allowed.
Another embodiment of the present invention comprises navigation that melds the real and virtual worlds (see
In one embodiment of the present invention, rocket planes comprise components of a larger entertainment platform having certain features that allow fans an unprecedented interactive experience. These features include, but are not limited to:
1. On-board camera network: each rocket plane is preferably equipped with a variety of video cameras, each capturing a different view of the space in and around the rocket plane (see
2. Audio capture: There are a variety of audio feeds that lend themselves to the goal of recreating the experience of flying in a rocket plane at remote locations, either live or post-event. These audio feeds include, but are not limited to, interaction of the pilot with flight engineer, interaction of the pilot with the ground crew, interaction of the pilot with the air boss, interaction of the pilot with air traffic control, the sounds of flight created by air passing over the rocket plane, the sound of the rocket engine firing from the cockpit, the sound of the rocket engine firing from outside the aircraft, the sounds experienced in the cockpit from other rocket planes passing nearby, and combinations thereof. Each of these audio streams are preferably recorded onboard the rocket plane for post-production activities, and are also transmitted to the ground for live production. It is also preferable to allow audio/visual interaction between the fans on the ground.
3. Crew biometrics: As part of the on-board entertainment platform, the health of the crew, in particular the pilot, is monitored as a means of recreating the experience for remote viewer. Heart rate and pulse are well known to vary with the intensity of an experience and are useful in conveying to remote viewers the experience of being in a rocket plane. Other biometrics, such as temperature and blood pressure are also preferably monitored.
4. Augmented Reality: The on-board entertainment platform preferably comprises an augmented reality system that melds the real world with the virtual world (see
The preferred avionics suite is standard to conventional aircraft except for the inclusion of the cockpit based augmented reality system (“CBARS”) (See
In one embodiment of the present invention, rocket planes lend themselves to serving as a racing vehicle as part of a larger racing platform and comprise the entertainment features discussed above.
In another embodiment of the present invention, rocket planes comprise training opportunities for astronauts flying other rocket powered vehicles in the suborbital or orbital classes.
In yet another embodiment of the present invention, rocket planes educate people interested in learning about flight, rockets, or other aspects within the aviation or space industries.
In one embodiment of the present invention, rocket planes comprise a plurality of performance enhancements. These enhancements can include, but are not limited to:
Rocket planes of this embodiment are preferably battery powered. Powering critical electronics assists in effective use of emergency aircraft systems. This embodiment comprises a ram air turbine that preferably extracts energy from the air stream to turn a turbine that powers an electrical generator and recharges batteries or provides power directly to critical components. The ram air turbine can be located most anywhere on a rocket plane as long as an air passageway is included. The air passageway preferably channels outside airflow to the face of the turbine, thereby creating the face pressure necessary to drive the ram air turbine such that it produces electricity.
The display which presents to the pilot and flight engineer the augmented reality system, navigation aids or other performance and monitoring metrics is preferably configured along a user's line of sight and not in the instrument panel. There are a variety of heads-up display options, as well as helmet and visor mount options. A key feature of helmet mount and visor mount display is to preferably track the movement of the user's head and adjust the augmented reality system as a function of look angle.
In one embodiment of the present invention, a rocket plane is configured for higher altitudes. This embodiment preferably comprises an airframe design capable of high G aerodynamic loading. Pressurization of the cabin and a heat shield protection system are also included in this embodiment. The rocket plane of this embodiment preferably reaches suborbital altitudes and more preferably orbital altitudes. In an alternative embodiment, a rocket plane comprises point-to-point flight, whether city to city, state to state or continent to continent.
One embodiment of the present invention comprises methods to sustain, ferry and taxi, thereby expanding the mobility and usability of rocket planes. Rocket planes using these methods comprise either a separate propulsion system or a fully throttleable system. For the sustain method, when the rocket engine is not firing, a lower level of thrust is preferably provided to sustain flight and maintain altitude. Likewise, the rocket plane is preferably ferry capable, and increases its range to a staging where it would then fire its rocket engine. A low level of thrust enables taxi capability while on the runway without firing the rocket engine. There are a variety of engine options to perform these functions including but not limited to, microjets and small propeller engines,
Solid rocket boosters are preferably used in place of or as a supplement to, the liquid rocket engine. As a supplement, solid rocket boosters enhance performance for specific maneuvers. As a replacement to liquid rocket engines, solid rocket boosters are preferably the primary propulsion mechanism, and are preferably in clusters such that one booster is fired between extended glides.
As an alternative means of providing a low level of thrust for sustain, taxi or ferry, an embodiment of the present invention comprises an igniter which produces a low thrust level when it runs, and is powered by the same fuel used by the primary rocket propulsion module.
Pilots very often become overwhelmed with procedure in the event of an emergency. One embodiment of the present invention comprises a “go home” or “safe” button that, once activated, quickly diagnoses the emergency and takes appropriate actions. In a non-limiting example, in the case of an engine failure, the “safe” function equates to establishing the best glide. Establishment of best glide is preferably audibly delivered guidance queues by the “safe” button system, or alternatively, the system takes over in autopilot mode and establishes best glide for the rocket plane through feedback use of control surfaces. Once best glide is established, the system provides navigation queues to the nearest airport, providing audible and visual feedback to the users. In a preferred embodiment, the system flies the aircraft or spacecraft to the nearest airport, removing the burden of an emergency situation from the pilot.
In an embodiment of the present invention, towing on a flat bed truck is the primary method for transporting the rocket plane. As illustrated in
The automobile race industry has produced a variety of design enhancements that make survivable today what would have resulted in sure death 20 years ago. Embodiments of the present invention draw from best practices in the auto race industry and apply them to the unique application of rocket plane safety. An embodiment of the present invention comprises advanced safety enhancements, including but not limited to:
1. Roll and crash cage designs capable of absorbing energy on impact and effectively withstanding more G's during impact or subsequent rolling that may occur after impact.
2. New advanced composites materials and manufacturing techniques that are strong, lightweight and fire resistant.
3. Airbags for passenger and pilot.
4. Flotation devices for water landings addressing water landing buoyancy issues.
5. Ballistic parachute systems.
6. Collapsible structures to absorb impact, including a modern collapsible foam and composite seat.
7. Conformal seats that are triggered by the user once an emergency is established, or are rapidly converted once certain parameters are measured onboard the rocket plane. Such conformal seats change through inflation or other means to better capture and restrain where appropriate a passenger to minimize or altogether remove the potential for harm resulting from the emergency situation, such as a crash landing.
8. Wing release or breakup in crash landing when making an emergency landing tumble. In this design, the wings separate from the main fuselage on impact, preventing them from “catching” and causing a tumbling motion.
9. Carbon nanotubes and other advanced materials are preferably used in the manufacture of certain rocket plane parts or subassemblies. These nanotubes and other advanced materials are light weight and strong materials.
This non-limiting example comprises an engine specification for a rocket plane.
Construction:
Fully welded
All 310 Stainless Steel
Integral igniter w/ radial injection
Double concentric rings of FOOF injector elements (Fuel-Oxidizer-Oxidizer-Fuel)
Annular film cooling holes
No parts consumed in the normal operation except propellant
Reusable with loading of new propellants
Dimensions:
Propellants:
Igniter:
Performance:
Operation:
Throttle: Three position (engine OFF, HALF power, FULL)
Typical provisional burn profiles are illustrated in
A typical burn profile is illustrated in
In one embodiment of the present invention, the rocket plane serves as a racing vehicle that competes with other like vehicles in pursuit of the fastest time to the finish line. In such an embodiment, one or more rocket planes line up at the start line for the competition. The start line may be a physical line drawn across the width of a runway where each of the rocket plane lines up to compete. Alternatively, the starting line may be a point in the sky, governed by a three dimensional point or line in space. Such a starting line in the sky can be visualized by suspending a string or fabric between multiple points supported by structures protruding from the ground, or suspended by other airborne vehicles such as, but not limited to, blimps, balloons or helicopters. Alternatively, the starting line can be a virtual element that is fixed in space as governed by a set of three dimensional coordinates describing its position, but viewable only with the aid of special display means that present either a purely virtual depiction of the world that the users (pilots, viewing public, race officials, pit crews, TV networks, safety officials, etc.) view or some form of melded real and virtual depiction of the playing field.
Such display means are preferably presented to the pilot in one or several of a variety of forms including but not limited to a display in the instrument panel of his rocket plane, a display separate from his instrument panel but not in his direct line of sight, a conventional “heads-up” display of the type commonly employed by the military and by high end jets, or so-called visor-mount or head-mount display where the display means is worn by the pilot or attached to his helmet. In the latter example of head-mount or visor-mount display, the graphic presented to the pilot can be allowed to vary depending on where the pilot is looking. This is accomplished through a tracking capability where the look angle of the user is monitored and tracked through one or more of a variety of means and the graphic that is presented to the pilot is adjusted according to the where he is actually looking.
The starting line is an established place in three dimensional space where the competition begins. If the starting line is on the ground and runs across the runway, then the race may begin with each of the rocket planes sitting statically on the runway, waiting for the appropriate queue to begin the race, at which time the engines are engaged and the pursuit for victory commences. Alternatively, if the starting line is in the sky, then commencing the race from a static or zero-velocity condition is not realistic. In such a case, one contemplates a moving start where the competition vehicles (rocket planes) position themselves in the sky such that they are flying toward the starting line in a manner that causes them to arrive at the same velocity within some allowable variability. At that time the race begins and the pilots engage the engines in pursuit of victory. In one scenario, the rocket planes glide to the starting line in the sky so that the engines are ignited simultaneously with reaching the starting line. In another scenario, the rocket planes reach the starting line by modulating the thrust level from a propulsion means that may or may not be the primary propulsion means used during the official portions of the race. In either case, on reaching the starting line the competition begins.
The competition itself is in one embodiment a simple race to the finish. The shortest time from the starting line to the finish line wins. However, there are a variety of race features that can further influence the outcome of the competition such that best time alone is not enough to win. Opportunities for extra points and penalties for non-adherence to a nominal rule set can also influence the outcome of a race. For example, pilots can be given the opportunity to gain extra points by performing certain maneuvers, or a pilot can lose points for starting the engine early. Regardless, once the rocket plane hits the starting line the race commences.
In one embodiment of the present invention, the rocket planes begin from a runway in a static position, engage the propulsion system, undergo a low transition take-off, then fly low over the runway to a series of gates. A gate is a physical or virtual element that may be presented to the pilots in a manner similar to the starting line. In one embodiment, the entire track forms an “L” with four gates: [1] starting line, [2] gate 1 of first turn, [3] gate 2 of first turn, and [4] finish line. In such a case, the rocket planes may undergo a short-roll take-off from gate 1 (starting line), high powered flight down the runway at low altitude to the second gate where the pilot may fly beneath it, immediately turn vertical such that the third gates passes beneath the rocket plane, then powered vertical flight to the forth gate (finish line). The gates 2 and 3 can be positioned such that upon flying under the first gate the pilot can pull up hard in order to fly over the second gate that is located some distance behind and above the first gate, staggered in such a way to force the pilot to pull an aggressive, high acceleration maneuver to pass. In this embodiment of a race course, gates 2 and 3 form the corner of the “L”. Gate 4, or the finish line, can be at any altitude from several thousand feet to many hundreds of thousands of feet.
There are an infinite number of racetrack shapes, with an infinite combination of turns at an infinite number of altitudes. The desirable outcome of shape and gate selection is to create content that is valuable to the viewing public as a live spectator sport or sport for television. In either case, the rocket planes are preferably heavily rigged with multiple video cameras, data acquisition systems and other capabilities designed to capture content in real time that can be produced live for display to end users whether they are on site viewing content on a large panel or hand-held displays, or on the other side of the world with a streaming video being pulled down from the World Wide Web. Programs for delayed viewing are, of course, also possible.
Within the variety of track shapes and collection of gates, there can be opportunity for pilots to gain extra points or suffer a penalty. Gains or losses preferably show up on the pilot's display as they are incurred, as well as on display means for the public. It is the general goal to be able to communicate to all viewer and end users of the content the real-time and race running summary of point gains and losses as the race progresses.
As may be the case with a physical gate suspended between two or more fixed points or airborne stations, should a physical string or ribbon-like element be cut, or not, can dictate whether the gate was properly passed and whether points are gained or lost. If, for example, it is required that the pilot passes beneath one gate that forms the beginning of the corner of the “L” and above the other, should the pilot sever the ribbon, points can be lost. Alternatively, the goal may be to sever the ribbon, and the absence of such action at, for example, the finish line would result in a penalty.
It is contemplated in an embodiment of the present invention that there exist multiple types of race series. In one scenario, all the rocket planes are identical and edge is gained through better piloting and energy management. In another scenario, competitive teams are allowed to draw from a mixed set of propulsion systems from a specified inventory in order to attain the mix that best meets their competitive strategy. At the far end of the spectrum is an unlimited class where competitors can bring vehicles to the competition that are of their own custom design as long as they meet basic criteria in, for example, safety, weight and propellant load.
It is further contemplated in embodiments of the present invention that a closed loop can be formed between the scoring elements of the competition and the rocket plane itself. For example, if the competition's rules authority sets a limit on the maximum acceleration, or “G's”, that can be pulled by a pilot as he traverses the course, should the G limit be exceeded, it can cause some physical adjustment to be imparted on the rocket plane itself. In one scenario, should the pilot violate the G limit, the system can be set up so that a certain amount of pressurant would be bled off resulting in a reduced performance potential for the rocket plane. Likewise, if points are gained by flying through a secondary gate that serves as an “extra point” the pilot can be given extra boost capability for a finite period of time. There are many other ways in which point gains or losses can be translated into vehicle performance gains or losses.
In yet another example, the pilot can be presented with a variety of virtual elements that he may “hit” during the race in order to gain extra points. By “hit” the pilot can be required to fly through the virtual element. Knowing the real-time position of the rocket plane and the equivalent three-dimensional position of the virtual element allows scoring officials and the viewing public, as well as other end users, to know whether the attempted hit is successful so that appropriate scoring and/or performance adjustments can be made. Hitting a virtual element may or may not translate into added performance potential. Such virtual elements or “cherries” can be scattered about the track and fixed, can vary with time, can vary with performance, can be controlled in whole or in part by race officials, the viewing public or the users, and/or can be purchased through sponsorship opportunities by corporations or other entities.
The invention also allows for private ownership of the rocket plane ships under a variety of propulsion packages, such that those people wishing to own a race vehicle may do so outside of the boundaries of the organization running the competitions. This can involve retrofitting the rocket plane with a piston engine only or turbojet only.
While the present invention has been described in connection with the illustrated embodiments, it may be appreciated and understood that modifications may be made without departing from the true spirit and scope of the invention. In particular, the invention may apply to various types of racing competitions, comprising races between vehicles on land, on water, in the air, and/or in outer space. In addition, the invention may apply to manned vehicles (human occupied) and to unmanned vehicles, such as remotely controlled vehicles.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.
This application claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 61/084,345, entitled “Methods and Apparatuses for Construction, Operation and Use of Rocket Powered Aircraft”, filed on Jul. 29, 2008, and the specification thereof is incorporated herein by reference. This application also claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 61/096,244, entitled “Multi-Role Rocket Powered Vehicle”, filed on Sep. 11, 2008, and the specification thereof is incorporated herein by reference. This is also a continuation-in-part application of U.S. patent application Ser. No. 11/932,698 entitled “Collection and Distribution System”, filed Oct. 31, 2007, which is a continuation-in-part application of U.S. patent application Ser. No. 11/875,745 entitled “Rocket-Powered Vehicle Racing Reality System”, filed Oct. 19, 2007, which are continuations-in-part applications of U.S. patent application Ser. No. 11/538,014, entitled “Aerial Vehicle Racing Information System”, filed Oct. 2, 2006; and the specifications and claims of those applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61084345 | Jul 2008 | US | |
61096244 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11875745 | Oct 2007 | US |
Child | 11932698 | US | |
Parent | 11538014 | Oct 2006 | US |
Child | 11875745 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11932698 | Oct 2007 | US |
Child | 12511939 | US |