The present invention relates to an electronic control implemented by a rocking bezel.
Various examples of the invention may be particularly applicable to a rocking bezel control for controlling the operation of a portable electronic device, such as a digital music player.
Portable electronic devices have become ubiquitous in our modern society. For example, people ranging from college students to professionals may simultaneously carry a personal digital assistant (PDA), a mobile telephone, and a digital music player (such as an MP3 player). Even young children are beginning to use mobile telephones and digital music players.
While portable electronic devices are convenient, their very portability creates problems that did not exist with larger, semi-permanently located electronic devices.
First, manufacturers are continuously reducing the size of portable electronic devices, in order to enhance their portability. This size reduction inherently reduces the area available on portable electronic devices to place buttons, knobs, switches, or other controls for operating the electronic device. Second, portable electronic devices frequently are operated while the user is moving. For example, many users will operate a digital music player while running, exercising in a gym, bicycling, skiing, or engaging in some other athletic activity. For most people, this movement prohibits the operation of small controls that require precise hand-eye coordination.
Accordingly, it would be desirable to have a control mechanism that allows a user to more easily operate an electronic device. Various embodiments of the invention provide a portable electronic device control including a bezel surrounding a display for the portable electronic device. The bezel is resiliently supported so that it can rock toward and away from the electronic device. One or more portions of the bezel then are positioned relative to inputs for the electronic device, such that rocking of the bezel toward or away from the portable electronic device activates at least one input of the portable electronic device.
With various implementations of invention, the band 103 may be formed of any desirable material, such as, for example, polyurethane, rubber, leather, a woven fabric, interconnected links of inflexible material (such as metal or rigid plastic), or some other combination of material or materials that form a flexible structure. In the illustrated example, the band 103 is semi-permanently affixed to the watch 105. With alternate embodiments of the invention, however, the band 103 may be affixed to the watch 105 so that it is easily removable.
The watch 105 includes a casing 107 and a display module 109. The casing 107 encloses the electrical and/or mechanical components that implement the chronometer and other functions of the watch 105. The display module 109 then displays the output data produced by the functional components of the watch 105. As will be discussed in more detail below, the display module 109 may, for example, include a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting (OLE) display, one or more analog rotating hands or dials, or another type of display using any other desired technology.
The watch 105 also includes a bezel 111. Conventionally, the term “bezel” refers to the surface ring of a watch that surrounds the watch's crystal and holds the crystal in place.
As used herein, however, the term bezel refers to any ring which separates at least the upper portion of a display module for an electronic device from the upper portion of a casing for the electronic device. With various examples of the invention, the bezel may have a circular, elliptical, polygonal or irregular shape. Further, the bezel may be independent from the display module of the electronic device, and serve no function with respect to holding a lens or cover for the display module in position.
With various examples of the invention, the bezel will “rock” relative to a primary plane of the electronic device, as will be discussed in more detail below. That is, the primary plane of the bezel can be rotated relative to the primary plane of the portable electronic device about an axis parallel to both the primary plane of the bezel and the primary plane of the portable electronic device. As will also be discussed in more detail below, the rocking movement of the bezel can thus be used to control the operation of one or more functions of the electronic device.
For example, with the watch 105 illustrated in
As will be discussed in more detail below, however, the bezel 111 is independent from the display module 109. The bezel 111 includes a plurality of bezel control indicators 113. As will also be discussed in more detail below, each of these bezel control indicators 113 marks a location where the bezel 111 can be depressed to control some operation of the watch 105. The bezel control indicators 113 may be graphical marks printed on or engraved into the bezel 111, raised areas on the surface of the bezel 111, depressions in the surface of the bezel 111, or any combination thereof.
In addition to the bezel 111, the watch 105 may optionally include one or more control buttons 115 for controlling one or more operations of the watch 105. In the illustrated example, the control buttons 115 are positioned along the side of the casing 107. With other examples of the invention, however, the control buttons 115 may alternately or additionally be positioned on the upper portion of the casing 107, or even extend through an aperture in the bezel 111. Of course, with some examples of the invention, the control buttons 115 may be omitted altogether.
Turning now to
For example, the spring 203 may be formed of a polyurethane or rubber. As will be discussed in greater detail below, forming the spring 203 of sufficiently resilient material will pressure the bezel 111 to maintain its primary plane at a constant position relative to the primary plane of the watch 105. With the watch 105 illustrated in
As previously noted, the bezel 111 may be rocked, potentially exposing the inner casing 201 to debris and moisture. Accordingly, the spring 203 may additionally act as a barrier to prevent debris and moisture from collecting underneath the bezel 111 is rocked. As will be appreciated by those of ordinary skill in the art, forming the spring 203 of a resilient material will improve the ability of the spring 203 to block debris and moisture from reaching underneath the bezel 111.
The functional components of the watch 105 are contained within a watch module assembly 205. With various examples of the invention, one or more functions of the watch 105 are implemented by electronic circuitry. For example, the watch 105 may provide a chronometer function, a stopwatch function, a timer function, an altimeter function, a digital music player function, a thermometer function, a barometer function, or a remote control function for another electronic device using a microprocessor, a memory circuit, and one or more electronic sensors. Similarly, if the watch 105 implements one or more functions (e.g., a chronometer, stopwatch, or timer function) using mechanical components, then these mechanical components may be housed within the watch module assembly 205 as well.
As will be appreciated by-those of ordinary skill in the art, the electronic circuitry used to implement one or more functions of the watch 105 will require some input from a user. For example, if the watch 105 includes electronic circuitry to implement a chronometer function, then that circuitry will include one or more input devices that a user can manipulate to set a desire time. Likewise, if the watch 105 includes electronic circuitry to implement a digital music player function (or to implement a remote control function for operating a remote digital music player), then that electronic circuitry typically will include one or more input devices that a user can manipulate to begin, stop, pause, forward and reverse the playback of a digital music file.
Accordingly, the watch module assembly 205 will include one or more input devices 207 for controlling the operation of electronic circuitry housed within the watch module assembly 205. With some examples of the invention, the input devices 207 will be simple switches (i.e., electronic devices that have only an on or off state). For example, the input devices 207 illustrated in
Depending upon the configuration of the electronic circuitry housed within the watch module assembly 205, the functions of the watch can be controlled by some designated actuation of the input devices 207. For example, an operation of the electronic circuitry can be initiated by actuating an input device 207, actuating multiple input devices 207 (either together or in a particular sequence), maintaining one or more input devices 207 in an “on” or “off” state for a preset amount of time, etc. A wide variety of techniques for controlling electronic circuitry using input devices is well known, and thus will not be discussed here in further detail.
In addition to the input devices 207, the watch module assembly 205 also includes a display 109A, which forms a component of the display module 109. As previously noted, the display 109A may be a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light committing display, one or more conventional analog rotating hands, or a display implemented using any other desirable technology. The display module 109 also include a transparent lens 109B, such as a mineral lens (i.e., a crystal), which covers the display 109A to protect it from damage. In the illustrated example, the lens 109B is adhered to the top surface of the watch module assembly 205. With alternate examples of the invention, however, the lens 109B may be held in place by grooves formed in the bezel 111, and thus rock with the bezel 111.
A hatch plate 209 is affixed to a strap assembly formed by the bottom casing portion 107B and the strap 103. The strap assembly is then affixed using, e.g., screws to the module assembly 205. The battery hatch 107C is removably attached to the hatch plate 209. In this manner, the battery hatch 107C can be removed to connect a battery to power the electronic circuitry housed in the watch module assembly 205. The battery hatch 107C can then be reattached to the hatch plate 209 to protect the battery and the watch module assembly 205 from debris and moisture.
The watch 105 also includes a plurality of pushers 211. As illustrated in
The interaction of the bezel 111, the spring 203, the pushers 211, and the input devices 207 will be more apparent with reference to
The effect of rocking the bezel 111 can be seen in
It should be appreciated that alternate examples of the invention may employ different type of input devices 207. For example, with some embodiments of the invention, each input device 207 may consist of two or more separate electrodes, and the bottom portion of the pusher 211 may be provided with a conductive surface. Accordingly, when the pusher 211 contacts the electrodes, the conductive surface of the pusher 211 will connect the electrodes to complete an electric circuit. Alternately, each input device 207 may consist of a transistor, with one electrode of the transistor (e.g., a gate electrode) facing its corresponding pusher 211. Each pusher 211 may then be connected to a voltage source sufficiently large such that, when the pusher 211 contacts the transistor electrode, the voltage carried by the pusher 211 activates the transistor. Still further, the input device 207 may consist of a light source and an optical detector. With this arrangement, movement of the bezel 111 will push the pusher 211 between the light source and the optical detector, to trigger a change in the state of the optical detector. Of course, still other structures can be used to implement the input devices 207. Thus, the watch module assembly 205 detects the rocking of the bezel 111 toward (or away from) the watch module assembly 205 through some type of input device 207. In response, the watch module assembly 205 will perform some function.
It also should be appreciated that structures other than the spring 203 may be used to resiliently support the bezel 111. For example, with some embodiments of the invention, different types of springs, such as leaf springs, coiled springs, or any other desired type of spring may alternately or additionally be used to resiliently support the bezel 111. The springs may be, for example, leaf springs positioned between the bezel 111 and the upper casing portion 107A or the watch module assembly 205, or between the pushers 211 and the lower casing portion 107B or the watch module assembly 205. The springs also may be coil springs that, e.g., are wrapped around the pushers 211 or positioned between the bezel 111 and the upper casing portion 107A or the watch module assembly 205. Of course, still other structures can be used to resiliently support the bezel 111 while allowing portions of the bezel 111 to rock toward and back from the input devices 207. With some implementations of the invention, the spring walls 401 of the input devices 207 may be used, either by themselves or in conjunction with one or more other types of springs, to support the bezel 111 so that it can rock toward and away from the watch module assembly 205.
With various examples of the invention, the watch 105 will provide a digital music player function, or a remote control for a digital music player function. Accordingly, with these implementations of the invention, rocking the upper portion of the bezel 111 (relative to
Still further, it should be appreciated that various embodiments of the invention may include fewer or more input devices 207 than the four input devices 207 illustrated in the particular example of the invention shown in
Conclusion
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2472351 | Tyler | Jun 1949 | A |
3675414 | Cachelin | Jul 1972 | A |
4178751 | Liataud | Dec 1979 | A |
4194351 | Kume et al. | Mar 1980 | A |
4229936 | Schneider | Oct 1980 | A |
4462697 | Thompson | Jul 1984 | A |
4638409 | Berman | Jan 1987 | A |
4704037 | Kroner | Nov 1987 | A |
4708492 | Mock et al. | Nov 1987 | A |
4727524 | Shoji et al. | Feb 1988 | A |
4897826 | Rigberg et al. | Jan 1990 | A |
4958279 | Proellochs | Sep 1990 | A |
5010532 | Perrot | Apr 1991 | A |
5500837 | Flury | Mar 1996 | A |
5899370 | Bould | May 1999 | A |
6224254 | Hayek et al. | May 2001 | B1 |
6556222 | Narayanaswami | Apr 2003 | B1 |
D474984 | Wilson | May 2003 | S |
6619836 | Silvant et al. | Sep 2003 | B1 |
6728166 | Grupp | Apr 2004 | B2 |
6766182 | Janninck et al. | Jul 2004 | B2 |
6775206 | Karhu | Aug 2004 | B2 |
6796708 | Kawamata et al. | Sep 2004 | B2 |
6857775 | Wilson | Feb 2005 | B1 |
6968508 | Lucaci et al. | Nov 2005 | B2 |
6971789 | Nakamura | Dec 2005 | B2 |
7114845 | Wilson | Oct 2006 | B2 |
20010004397 | Kita et al. | Jun 2001 | A1 |
20020101457 | Lang | Aug 2002 | A1 |
20030043698 | Guerry et al. | Mar 2003 | A1 |
20030174589 | Kawamata et al. | Sep 2003 | A1 |
20070008824 | Cretin | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
0383180 | Aug 1990 | EP |
0389441 | Sep 1990 | EP |
52-036060 | Mar 1977 | JP |
62-239081 | Oct 1987 | JP |
2004012176 | Feb 2004 | WO |
Entry |
---|
International Search Report and Written Opinion in corresponding PCT Application No. PCT/US2007/016854. |
International Preliminary Report on Patentability for Application No. PCT/US2007/016854, mailed Mar. 12, 2009, 7 pages. |
PCT/US2008/056491, International Search Report and Written Opinion, dated Feb. 26, 2009. |
Final Office Action for U.S. Appl. No. 11/725,154, mailed Feb. 16, 2010, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20080049562 A1 | Feb 2008 | US |