1. Technical Field
The present invention relates to a rocking chair in which a backrest tilts rearwards against a spring portion and, more particularly, to a rocking chair in which the magnitude of resistance of a spring portion to a rearward tilting of the backrest can be adjusted. Furthermore, the present invention includes a spring unit used in the rocking chair.
2. Background Art
A rocking chair includes a spring means that imparts resistance to a rearward tilting of a backrest. However, generally, a resilience adjustment means is provided for changing the magnitude (i.e., magnitude of a reaction force of the backrest acting on a body during rocking) of resistance of the spring means to the rearward tilting of the backrest. A compression coil spring is often used as a spring means. Meanwhile, the resilience adjustment device includes a stepless type using a rotary screw and a step type using a cam or lever.
A mechanism for changing the magnitude of resistance of a spring means is roughly divided into a type of changing the magnitude of initial pressing to the spring means and a type of changing the magnitude of moment acting on the spring means. The former type is disclosed in PTL 1 and PTL 2. In PTL 1 and PTL 2, a compression coil spring is supported by a movable spring mount, the movable spring mount is supported by a peripheral surface cam and an initial elastic force of the compression coil spring is changed by rotating the peripheral surface cam.
On the other hand, PTL 3 discloses a configuration in which a compression coil spring is fitted into two extendable spring mounts and pivotably coupled to one spring mount using the one spring mount as a base and the other spring mount receives the load of rocking. The compression coil spring is pivoted by moving the other spring mount by an adjustment screw having a knob.
Load is applied to a locking spring means even when a person is not leaning against a backrest. Specifically, a pretension (preload) is applied to the spring means. The reason is that the backrest is suddenly largely inclined rearward without resistance by the leaning of a person and this is dangerous when a pretension is not applied to the spring means. Further, in the case of a synchronous type chair in which a seat is tilted rearward in conjunction with the rearward tilting of the backrest, the pretension of the locking spring also serves to hold the seat so that the seat does not tilt rearward just by seating.
When a peripheral surface cam as disclosed in PTL 1 and PTL 2 is used as a resilience adjustment means (reaction force adjustment means) of a spring means, there is an advantage that it is possible to adjust the resilience at the time of rocking by one-touch manner. However, in rotating the peripheral surface cam, it is necessary to temporarily compress the coil spring in order to shift the point of action of load to an adjacent cam surface. Therefore, it is essential to enlarge the knob in order to lightly rotate the peripheral surface cam.
On the other hand, in the case of employing a method in which moment is changed by pivoting the spring as in PTL 3, a force required for operating the resilience adjustment is reduced but it is impossible to change the posture of the coil spring unless the adjustment screw is rotated several times, as compared to a case of supporting the coil spring by a cam. Accordingly, there is a problem that an adjustment operation is cumbersome.
The present invention has been made in consideration of such a situation and an object thereof is to provide an improved resilience adjustment mechanism. Further, the present application discloses many improvements and it is also an object of the invention to provide such improvements.
A chair of the present invention includes, as a basic configuration, a seat, a backrest that is tiltable rearward, a locking spring portion that imparts resistance to the rearward tilting of the backrest and a resilience adjustment member that changes the degree of resistance of the spring portion to the rearward tilting of the backrest. Further, the present invention can be variously deployed using the basic configuration as a base. First, a first invention is intended to form a broader concept. In the present invention, the resilience adjustment member is a cam that can be rotationally operated by a person seated and the position in which rocking load due to the rearward tilting of the backrest is applied to the spring portion is changed by the cam, so that moment applied to the spring portion changes and the degree of resistance of the spring portion is adjusted.
The first invention can be variously deployed. In a second invention as a deployment example of the first invention, the rocking chair includes a base that is provided at an upper end of a leg and a back frame that is connected to the base so as to be tiltable rearward. A pushing part is provided at a front end portion of the back frame that is located across a tilting center and on the opposite side of the backrest, the pushing part being brought into contact with the spring portion. The spring portion is a compression coil spring that is long in a longitudinal direction and wound around an axis thereof and attached to the base so as to be pivotable vertically about a front portion thereof and a rear end thereof is configured as a load support part that is pressed by a pressing part of the back frame. The pushing part of the back frame has a circular arc shape that is concave forward, as seen from the side, so as to allow the pivoting of the spring portion.
A third invention is a deployment example of the second invention. In the third invention, the compression coil spring is incorporated in a spring holder that is stretched in a longitudinal direction, the cam is a peripheral surface cam, a plurality of cam surfaces are formed at an outer peripheral surface of the cam and distances of the cam surfaces from an axis are different from each other and, the spring holder is provided with cam mount parts with which a plurality of cam surfaces of the peripheral surface cam is selectively brought into contact.
A fourth invention is a preferred deployment example of the third invention. In the fourth invention, the spring holder comprises two spring mounts that are fitted to each other so as to be slidable in a longitudinal direction and support the spring from one end and the other end and the two spring mounts are inseparably retained in a state where the compression coil spring is pre-compressed. The second invention can be deployed as a fifth invention. In the fifth invention, the rocking chair includes a separation prevention portion that holds the spring portion in a state of being close contact with the cam and the separation prevention portion includes an elastic part that allows the rotation of the cam.
The present invention also includes a spring unit. A sixth invention pertaining to the spring unit includes a compression coil spring and two spring mounts that support the compression coil spring from one end and the other end thereof. The two spring mounts are fitted to each other so as to be stretchable and inseparably held in a state where the compression coil spring is pre-compressed. One mount of the two spring mounts is provided with a load support part to which a rocking load of the chair is applied and the other mount thereof is provided with a connection part that is pivotably connected to a constituent member of the chair.
The present invention is intended to perform the resilience adjustment of rocking by changing moment acting on a locking spring portion but does not change an initial load (pretension) applied to the locking spring. Accordingly, it is possible to prevent or significantly suppress that an elastic restoring force of the spring portion serves as resistance to the rotation of a cam. Therefore, the cam can be operated to lightly rotate even in the case of a compact operation member. In other words, it is possible to lightly perform the resilience adjustment of the locking spring portion by a compact operation member.
However, in the case of PTL 3, when the coil spring is pivoted so that a load supporting point thereof is away from a tilt supporting point of a backrest, the moment acting on the coil spring is decreased and therefore the spring becomes a “rigid” state at the time of rocking. On the contrary, when the coil spring is pivoted so that the load supporting point thereof is close to the tilt supporting point of the backrest, the moment acting on the coil spring is increased and therefore the spring becomes a “soft” state at the time of rocking. When the resilience adjustment is performed by changing the moment in such a way, it is preferable that the coil spring has a constant elastic restoring force, irrespective of the posture thereof.
However, in PTL 3, a surface (working surface of load) which applies moment of rocking to a compression coil spring is in a straight posture, as seen from the side. Therefore, as the compression coil spring is pivoted, the entire length of the compression coil spring changes and an initial elastic force changes. To be described accurately, when the compression coil spring is pivoted so that the point of action of load thereof is away from the tilt supporting point of the backrest, the compression coil spring is stretched and an initial elastic force thereof is decreased. On the contrary, when the compression coil spring is pivoted so that the point of action of load thereof is close to the tilt supporting point of the backrest, the compression coil spring is shrunk and an initial elastic force thereof is increased. Accordingly, expansion and contraction of the compression coil spring acts to cancel the intensity change of moment.
On the other hand, in the second invention of the present application, since the pushing part of the back frame has a circular arc shape that is concave forward, as seen from the side, it is possible to pivot the compression coil spring without changing the length thereof. Therefore, it is possible to change the resilience of rocking to a proper level and also it is possible to more accurately prevent or suppress that an elastic force of the compression coil spring is applied to the cam. In the case of the second invention, it is preferable that the shape of the cam mount part is a circular arc shape of radius of curvature around a pivot support point of the compression coil spring, as seen from the side.
When the compression coil spring is incorporated in an extendable spring holder, as in the third invention, it is possible to more simply realize the posture change of the compression coil spring. In this case, when the constituent members of the spring holder are inseparably held, as in the fourth invention and the sixth invention, not only efforts of managing the members can be reduced but also assembly of the chair becomes easy. Further, since it is possible to prevent or suppress that an elastic force of the compression coil spring is applied to the cam mount part, operability of resilience adjustment can be more improved.
To be described further, although a pretension is applied to the compression coil spring even in a non-rocking state, as described above, members such as the compression coil spring and the spring mount are individually produced as a separate member and then assembled, in a prior art. Therefore, mounting or the like of a movable spring mount is performed in a state where the compression coil spring is shrunk. Accordingly, efforts of managing the components are caused and assembly of the chair is also troublesome. However, since, in the fourth invention and the sixth invention of the present application, the compression coil spring is incorporated in the spring holder in a state where a pretension is applied to the compression coil spring in advance, effort of managing the components can be reduced and assembly of the chair can be performed in an extremely simple manner.
When moment is changed by changing the posture or the like of the spring portion, the spring portion or the like is pressed by the cam surface of the cam and pivoted. However, since, in the case of a simple peripheral surface cam, the spring portion or the like can be pressed but cannot be pulled, it is necessary to maintain, by any portion, reversibility that the spring portion or the like is moved, irrespective of the direction of rotation of the cam.
With regard to this, in the case of providing the separation prevention portion by employing the fifth invention, it is possible to secure the reversibility and therefore it is possible to guarantee the function of the cam. Further, in the case of providing the elastic member in the separation prevention portion, as described in claim 5, the elastic member is temporarily deformed at the time of being shifted to an adjacent cam surface and therefore it is possible to secure a rattling click felling at the time of shifting the cam surface. This is preferable because a person can accurately grasp the adjusting state of resilience.
Next, an illustrative embodiment of the present invention will be described with reference to the drawings. First, a first embodiment shown in
First, an outline of a chair will be described mainly with reference to
As shown in
Further, as shown in
As shown in
As shown in
As shown in
As shown in
The back frames 14, 14 and the backrest 4 tilt rearward about the first shaft 16. Thus, as shown in
The chair of the present embodiment is a synchronous type chair in which the seat 3 is tilted rearward while retreating in conjunction with the rearward tilting of the backrest 4. Thus, as can be inferred from
Hereinafter, details of each part will be described with reference to
For example, as can be seen from
For example, as shown in
As shown in
Further, while square-like lock holes 36 that are oblong in left and right directions are provided on a rear end portion of the upper plate 5a of the intermediate bracket 5, lock claws 37 are projected downward at a rear end portion of the recessed part 33 of the fixed outer shell 9 and fitted into the lock holes 36. The lock claws 37 are fitted into the lock holes 36 after being elastically deformed. In this way, the fixed outer shell 9 is mounted to the intermediate bracket 5 in such a way that the fixed outer shell 9 cannot be separated.
For example, as shown in
Resin slider mounts 41 are fitted into the protruding portions 29a of the base 2 and the wing parts 39 of the support bracket 38 from the left and right outside. As shown in
As shown in
Meanwhile, as shown in
Next, a resilience adjustment mechanism will be described with a focus on the resilience adjustment unit 23. For example, as shown in
As shown in
Since the second spring mount 55 has a substantially square shape, an interior of the first spring mount 53 also has a shape close to a substantially square shape. Further, while guide ridges 56 are provided on left and right sides of the second spring mount 55, guide grooves 57 are formed on an inner surface of the first spring mount 53. The guide ridges 56 are fitted into the guide grooves 57. On the basis of the expansion and contraction direction, the first spring mount 53 is not moved and the second spring mount 55 is moved. Accordingly, it is also possible that the first spring mount 53 is referred to as a fixed spring mount and the second spring mount 55 is referred to as a movable spring mount.
As an example of the separation preventing portion, a pin 58 that is oblong in left and right directions penetrates the first spring mount 53 and the second spring mount 55. By forming a pin insertion hole 59 of the first spring mount 53 as an elongated hole that is longitudinally long, the longitudinal sliding of the second spring mount 55 (expansion and contraction of the spring unit 50) is allowed. A front end portion of the first spring mount 53 is provided with a support shaft 60 that protrudes outward in the left and right directions. The support shaft 60 is fitted into a hole 61 provided in the support bracket 38 via a bushing. Accordingly, in the present embodiment, the support shaft 60 is configured as a connection part described in claim. Since the support bracket 38 is fixed to the base 2, the spring unit 50 is vertically pivoted about the support shaft 60.
Further, for example, as shown in
As can be easily appreciated from
Further, as shown in
For example, as shown in
For example, as can be seen from
The left and right peripheral surface cams 70 are connected to each other via a cylindrical part and formed integrally with one cam member 73. The operation shaft 51 and the peripheral surface cams 70 are adapted to rotate integrally by inserting the square-like operation shaft 51 into the cam member 73. For example, as shown in
For example, as shown in
On the other hand, the posture holding member 52 is made of metal plate and is pivotably fitted into the support shaft 60 of the first spring mount 53. The posture holding member 52 includes an upper contact portion 52a that comes into contact with the posture holding cam part 77 obliquely from the above and a lower support portion 52b that extends rearward so as to be located below the cam mount part 71 of the posture holding member 52. A support piece 52c is projected outward at a lower end of the lower support portion 52b and three rubbers 78 are supported by the support piece 52c. The rubber 78 is an example of an elastic part described in claim and holes 79 for positioning the rubbers 78 is formed in the cam mount part 71. Here, the number of the rubber 78 may be one or more. Instead of the rubber 78, a coil spring may be used. Alternatively, an elastic part may be integrally provided as a part of the posture holding member 52.
The peripheral surface cam 70 and the cam mount part 71 are in a state of being sandwiched by the posture holding member 52 from the above and below. Therefore, the spring unit 50 and the peripheral surface cam 70 are retained in such a way that the spring unit 50 and the peripheral surface cam 70 cannot be separated from each other. Accordingly, the spring unit 50 is pivoted, irrespective of the rotation direction of the peripheral surface cam 70.
Although the peripheral surface cams 70 are shown in
Then, in a state where any one of the cam surfaces 70a to 70e of the peripheral surface cam 70 is in contact with the cam mount part 71, the rubber 78 is slightly compressed or not compressed at all. As the peripheral surface cam 70 is rotated, there occurs a phenomenon that the cam mount part 71 is pushed to compress and deform the rubber 78 and then the cam mount part 71 is pivoted to return by an elastic restoring force of the rubber 78 when a corner portion that is an intersection between adjacent cam surfaces passes over the cam mount part 71. In this way, a user can recognize by feel the fact that the cam surface in contact with the cam mount part 71 is switched and thus the magnitude of the resistance to the rocking changes. In other words, a user's hand can feel a click feeling owing to the changes in the rotation resistance when elasticity changes.
Then, upon rotation of the peripheral surface cam 70, the cam mount part 71 is pushed downward and therefore a spacing dimension between a lower surface of the cam mount part 71 and the support piece 52c of the posture holding member 52 is reduced to E4. However, since (E1+E2) is substantially the same at each stage, E4 is held substantially the same at any stage. Therefore, an amount of compressive deformation of the rubber 78 is substantially constant even in switching the elasticity to any stage. Accordingly, rotation resistance (or click feeling) is held substantially constant when the operation shaft 51 is rotationally operated.
Next, a lock device for controlling the rocking of the backrest 4 will be described mainly with reference to
In the support member 80, a mounting groove 81 into which the third shaft 32 is fitted is formed in a state of being opened substantially upward. Accordingly, as shown in
As shown in
The other end of the cable conduit 87 is connected to a left portion or right portion of the fixed outer shell 9 and the other end of the wire 88 is connected to a manual operation lever (not shown). The operation lever is adapted to be selectively retained in one of a lock posture and a free posture. In
A fourth shaft 91 that is oblong in left and right directions is mounted to a front end portion of the locking gas cylinder 26. The fourth shaft 91 is fitted and held to a pin receiving member 92 from the above. The pin receiving member 92 includes left and right bottom plates, left and right side plates 92a and flap pieces 92b. In other words, the flap pieces 92b of the pin receiving member 92 protrude outward from an upper end of the side plates 92a. From the above, the fourth shaft 91 is fitted into pin receiving grooves 93 which are cut and formed in the flap pieces 92b and the side plates 92a. The flap pieces 92b of the pin receiving member 92 are fixed to a lower surface of the intermediate bracket 5 by a screw 94.
The fourth shaft 91 is held by a stopper 95 in such a way that the fourth shaft 91 cannot be shifted upward and shifted laterally. The stopper 95 is inserted and mounted to the intermediate bracket 5 from the front. The stopper 95 is made of resin and includes left and right foot members 95a extending rearward from the front side plate. As shown in
A front plate 5c is formed at the front end of the intermediate bracket 5. The front plate 5c is provided with mounting holes 97 through which the foot members 95a of the stopper 95 extend. The foot members 95a are overlapped with a lower surface of the intermediate bracket 5. Therefore, bending deformation does not occur even when an upward external force is applied to the fourth shaft 91. As can be clearly understood from
Meanwhile, a technique using a gas cylinder as a control portion of a rocking posture is widely used conventionally (for example, Japanese Utility Model Registration No. 2555498). The gas cylinder includes a cylindrical body and a piston rod (plunger) that is fitted into the cylindrical body. Locking is released by pushing and operating a push valve protruding at one end of the piston rod. Generally, while a base end of the cylindrical body is pivotably connected to a base or the like by a pin, a leading end of the piston rod is fixed to a backrest side or the like by a nut. However, an operation such as insertion of the pin or fastening by the nut is troublesome.
The lock device of the present embodiment is intended to solve the above problem and the locking gas cylinder 26 can be simply mounted in one-touch operation by fitting the support member 80 to the third shaft 32 and then fitting the fourth shaft 91 to the pin receiving groove 93 of the flap piece 92b and the side plate 92a.
Upon rocking, the pusher 62 moves forward and the second spring mount 55 is pushed so that resistance to the rocking is imparted. Further, the degree of resistance to the rocking can be switched in multiple steps (five steps) by rotationally operating the operation shaft 51 and thus rotating the peripheral surface cam 70. It goes without saying that the switching stage of resilience adjustment is not limited to five steps but can be set to any number of steps.
The pusher 62 may be molded integrally with the pushing shaft 18. However, in a case where the pusher 62 is configured separately from the pushing shaft 18, as in the present embodiment, there is an advantage of being able to improve the function of the pusher 62 by forming the pusher 62 with the material that is different from the first back frame 14 or there is an advantage of being able to simply exchange the pusher 62 when being worn, etc. More specifically, as a preferred aspect, the first back frame 14 and the pushing shaft 18 are configured as an integral molded product made of an aluminum die-cast, for example, and the pusher 62 is made of resin (for example, nylon-based resin or polyacetal, etc.) having excellent strength and wear resistance. Further, it is also possible to eliminate the need for mounting the lining material by forming the pusher 62 with the material having excellent strength and wear resistance.
In the present embodiment, as can be appreciated from
In the present embodiment, since the spring unit 50 or the support bracket 38 and the operation shaft 51 having the cam member 73 are configured as the resilience adjustment unit 23 of one mass, there is an advantage that it is possible to suppress the efforts of assembly or storage and it is possible to contribute to accuracy up by eliminating unevenness of assembly errors.
The assembly of the support mechanism part is performed in the following procedures. Specifically, the assembly is performed in the order of a step of fitting and mounting the pusher 62 to the pushing shaft 18 in advance and setting the first back frame 14 in the base 2, a step of setting the resilience adjustment unit 23 in the base 2, a step of mounting and fixing the slider 44, a step of inserting the front portion of the intermediate bracket 5 to the slider 44 from the rear, a step of connecting the intermediate bracket 5 and the first back frame 14 to each other by the second shaft 25, a step of setting the locking gas cylinder 26 and a step of setting the stopper 95 to the intermediate bracket 5. The pin receiving member 92 is fixed to the intermediate bracket 5, in advance. Since the number of the screw fastening sites is small in the present embodiment, there is an advantage that it is possible to perform the assembly of the chair more efficiently and more accurately.
Next, a second embodiment shown in
In the second embodiment, the posture holding members 52 are made of resin. The left and right posture holding members 52 are connected to each other by a joint 100. A spring part 101 as an example of an elastic part described in claim is provided integrally with the left and right posture holding members 52. From the below, the spring part 101 comes into contact with a guide ridge 71a that are projected at the cam mount part 71 of the cylindrical member 51. The spring part 101 is a thin linear form and has a mountain shape that is convex upward, as seen from the side. Accordingly, rotation of the peripheral surface cam 70 is allowed by the flexing deformation of the spring part 101. Since the spring part 101 is molded integrally with the posture holding member 52 in the present embodiment, it is possible to contribute to the assembly operability up or cost saving by reducing the number of parts.
The joint 100 is intended for integrally connecting the left and right posture holding members 52 and has a mountain shape that is convex forward, as seen in a plan view. Therefore, the spacing between the left and right posture holding members 52 can be widened by deforming the joint 100 so as to extend in the left and right directions. As a result, the left and right posture holding members 52 are integrally molded and can be fitted into the support shaft 60 of the first spring mount 53.
It goes without saying that the left and right posture holding members 52 may be separated from each other or may be connected to each other by a separate joint, instead of being integrally molded. The support bracket 38 is provided with a corner portion 38a protruding forward. The corner portion 38a is provided with a bearing hole 102 into which the first shaft 16 is fitted.
The spring unit 50 often exhibits a tendency to pivot upward when being pressed by the pusher 62. Therefore, the support bracket 38 also exhibits a tendency that a rear portion thereof is floated. However, when the corner portion 38a is fitted into the first shaft 16 as in the present embodiment, it is possible to securely prevent the floating of the support bracket 38 with a simple structure. As shown in
In the first embodiment, as a pivot stroke restricting portion of the spring unit 50, the circular arc-shaped guide holes 68 are formed at the support brackets 38. However, in the present embodiment, the pivot stroke is restricted by the peripheral surface cam 70. Specifically, by referring also to
Other embodiments are schematically shown in
In a fourth embodiment shown in
A fifth embodiment shown in
The present invention can be embodiment in various ways, in addition to the above embodiments. For example, the present invention is not limited to a movable swivel chair but can be applied to a fixed chair such as a theater chair. Components such as the base can take various forms, as necessary. The cam is not necessarily limited to the peripheral surface cam but can employ an end surface cam or grooved cam, etc. As a portion for holding the cam and the spring portion so as not to be separated from each other, a method of pulling the cam and the spring portion just by a spring may be employed.
As a connection part of the spring unit, a pin hole may be provided in either of the first spring mount or the second spring mount. In the spring unit, it is essential that the first spring mount and the second spring mount are stretched. However, the spring may be exposed to the outside.
Next, details of a seat and a support mechanism part therefor will be described. Meanwhile, as a technique for adjusting a longitudinal length (depth of front end) of a seat in a chair, a method of winding a front portion of the seat downward has been suggested (for example, Japanese Examined Patent Publication No. Hei 07-77567). In this prior art, the front portion of the seat is configured as a deformation allowing part, a front end of the deformation allowing part is fixed to a front bar that is oblong in left and right directions and the front bar is longitudinally moved whereby the deformation allowing part is wound or stretched. A side bar extending rearward is fixed to both left and right end portions of the front bar. The side bar is supported by a mount member so as to be slidable longitudinally.
As an operation method for adjusting the longitudinal length of the seat, a person grabs a front end portion of the seat by hand and pulls or pushes the grabbed portion longitudinally or the side bar is longitudinally moved by an operation tool that is provided separately. However, since a body pressure of a person is applied to the side bar in a state where a person is seated on the chair, it is difficult to adjust the longitudinal length of the seat by a person seated. Therefore, in some cases, an operation of changing the longitudinal length of the seat should be performed in a state where a seated person lifts his waist. Accordingly, there is a problem that the longitudinal length adjustment (depth adjustment) of the seat is troublesome. The present application provides a chair having improved such a situation.
A basic configuration of the chair disclosed herein is as follows. The chair includes a seat part and a chair. The seat part includes a seat inner shell having a cushion function and a seat outer shell that supports the seat inner shell from the below. A front portion of the seat inner shell is configured as a deformation allowing part that can be wound downward whereby the longitudinal length of the seat can be adjusted.
In the above basic configuration, the seat outer shell includes a fixed outer shell that configures at least a rear half of the seat outer shell and a slide outer shell that has a portion protruding to the front of the fixed outer shell. The slide outer shell is mounted to the fixed outer shell in such a way that the slide outer shell is movable longitudinally. The front portion of the seat inner shell can be wound downward by connecting the front end portion of the seat inner shell to the front end portion of the slide outer shell.
Furthermore, the slide outer shell has a wide spread surface so as to support the seat inner shell over a wide range, a body pressure of a seated person is mainly supported by the fixed outer shell and a downward pressing force of the seat inner shell is hardly applied to the slide outer shell.
In the present invention disclosed herein, the longitudinal length of the seat is changed by moving the slide outer in a longitudinal direction. However, since the fixed outer shell configures at least the rear half of the seat outer shell, most of the body pressure of a seated person can be supported by the fixed outer shell in a normal seating state where a back of a person abuts against the backrest, for example. Further, since the slide outer shell is not pressed by the seat inner shell from the above in a state where the body pressure of the seated person is mainly supported by the fixed outer shell, little or no load is applied to the slide outer shell in a normal seating state. As a result, it is possible to adjust the longitudinal length of the seat by a person seated. Therefore, the chair has excellent operability and is user-friendly.
Further, in the present invention, since the slide outer shell has a wide spread surface, the seat inner shell is not excessively deformed and securely supported by the outer shell even when the body pressure of the seated person is applied to the front portion of the seat. Therefore, the support strength is excellent. Further, since the seat inner shell is supported by the slide outer shell over a wide area when the seat inner shell sinks or comes into contact with the slide outer shell by the body pressure of the seated person, there is no problem that the seat inner shell is largely deformed over a local range and thus gives a push-up feeling to the thigh of the person. Accordingly, the comfortable feeling is excellent. In other words, it is possible to adjust the longitudinal length of the seat without sacrificing the comfortable feeling or strength.
The seat inner shell 7 is a molded product made of resin such as PP. For example, as clearly shown in
A plurality of intermediate slits 112 is formed at the main support part 7a of the seat inner shell 7. Further, the main support part 7a and the rear support part 7b are connected only at left and right sides. A releasing groove 113 that is oblong in left and right directions is formed between the main support part 7a and the rear support part 7b. Therefore, the downward stretching deformation of the main support part 7a by the body pressure of the seated person is allowed.
Horizontally long front slits 114 are formed at the deformation allowing part 7c of the seat inner shell 7 by three rows in a lateral direction and multiple rows (multiple steps) in a longitudinal direction. With the presence of the group of these front slits 114, the deformation allowing part 7c is allowed to be wound downward in a posture of being extended linearly, as seen from the side.
Bridge portions 115 are formed at an intermediate portion and left and right ends in a lateral direction of the deformation allowing part 7c. The bridge portion 115 has an inverted U shape, as seen from the side. Strip-like portions that are longitudinally divided across the front slit 114 are connected to each other by the bridge portions 115. With the presence of the inverted U-shaped bridge portions 115, the deformation allowing part 7c can be largely stretched in a longitudinal direction and therefore the wound deformation can be securely performed without resistance.
The fixed outer shell 9 and the slide outer shell 10 to configure the seat outer shell 6 are molded products made of resin such as PP. For example, as can be appreciated from
For example, as shown in
Basically, the base part 10a of the slide outer shell 10 is plate-shaped (may be grid-shaped). Reinforcing ribs are formed on an upper surface of the base part 10a so as to extend vertically and horizontally. As shown in
As can be appreciated from
As shown in
As shown in
The seat inner shell 7 is connected to both the fixed outer shell 9 and the slide outer shell 10 of the seat outer shell 6. This point will be described below.
As shown in
Further, a deterrence piece 128 is provided integrally with the side support portion 123 of the fixed outer shell 9 and adapted to surround the stopper piece 126 from the above. Specifically, both left and right ends of the main support part 7a of the seat inner shell 7 are held so as not to be movable inward. Therefore, the main support part 7a is deformed to sink downward by the load of the seated person. Further, since both left and right sides of the main support part 7a are held by the side support portion 123 so as not to sink, the arm part 10b of the slide outer shell 10 is not pushed downward by the main support part 7a of the seat inner shell 7 even when a person seats. Accordingly, it is possible to easily slide the arm part 10b of the slide outer shell 10 in a longitudinal direction even in a state where a person remains seated.
The through hole 127 protrudes rearward of the stopper piece 126. Therefore, the deterrence piece 128 can be fitted into a rear portion of the through hole 127 by positioning the seat inner shell 7 slightly in front of a predetermined position and then overlapping the seat inner shell 7 with the fixed outer shell 9. When the seat inner shell 7 is shifted rearward in that state, the deterrence piece 128 is positioned on the stopper piece 126.
As shown in
As shown in
As shown in
As shown in
A connection structure of the front end portion of the seat inner shell 7 is shown in
Accordingly, since the front end of the deformation allowing part 7c is pulled rearward when the slide outer shell 10 retreats, the deformation allowing part 7c is wound downward in a state of being folded back. In this way, it is possible to adjust the longitudinal length (depth of the front end) by changing the front end position of the seat 3. Arrangement positions of the pair of the support shaft 137 and the bearing part 138 are not limited to two left and right sites but the number and arrangement position thereof can be selected arbitrarily. For example, the pair can be provided at three sites of an intermediated portion and both left and right sides. Further, the support shaft 138 may be provided at the slide outer shell 10 and the bearing part 138 may be provided at the deformation allowing part of the seat inner shell 6. Further, another connection portion may be employed.
Next, an operation device for adjusting a longitudinal length of the seat 3 will be described mainly with reference to
As clearly shown in
The lock member 141 has a rod shape that is long in a lateral direction. The lock member 141 is slidably fitted into a guide groove 146 that is provided at the lower surface of the slide outer shell 10. The guide groove 146 is long in a lateral direction. The guide groove 146 is continuous integrally with the concave region 143. Further, the guide groove 146 is formed in a state of dividing the convex rail part 121.
As shown in
A groove 168 is formed at an upper surface of the lock member 41. The spring 142 is fitted into the groove 168. One end of the spring 142 is in contact with an inner surface 146a of the guide groove 146. Accordingly, the lock member 141 is urged outward (in a direction toward the finger contact lever 140). Since the concave region 147 of the finger contact lever 140 has a V shape, the lock member 141 retreats outward and the contact portion 141a is fitted into a deep position of the concave region 147 when an external force is not applied to the finger contact lever 140. As a result, a stable state is held. On the other hand, upon sliding the finger contact lever 140 in one of the front and rear directions, the lock member 141 is advanced inwardly by the guide action of the slant surface 147a.
A stopper protrusion 149 is provided integrally with an inner end portion of the lock member 141 and projected downward toward the fixed outer shell 9. On the other hand, the fixed outer shell 9 is provided with a stopper mount part 150. The stopper protrusion 149 is fitted into or detached from the stopper mount part 150 when the lock member 141 moves laterally. The stopper mount part 150 is configured by providing inward ribs at intervals to a vertical rib 151 that is long in a longitudinal direction. In the present embodiment, five stopper mount parts 150 are formed side by side in a longitudinal direction. Accordingly, the longitudinal length of the seat 3 can be adjusted in five steps.
For example, as shown in
In the present embodiment, both left and right sides of the main support part 7a of the seat inner shell 7 are held in a state of being placed on the side support portions 123 and therefore the body pressure of the seated person is not or little applied to the arm part 10a of the slide outer shell 10. Accordingly, it is possible to perform the longitudinal adjustment of the seat 3 lightly in a state where a person remains seated. The thigh of the seated person may be brought into contact with the deformation allowing part 7c of the seat inner shell 7 from the above. However, since the deformation allowing part 7c is just stretched, wound or deformed but does not move in a longitudinal direction, the contact of the thigh of the seated person with the seat inner shell 7 does not affect the longitudinal adjustment of the seat 3.
Further, in the present embodiment, even though the finger contact lever 140 is moved in any direction of the longitudinal direction, the lock member 141 is detached from the stopper mount part 150 and unlocked, so that the slide outer shell 10 can be directly moved in a longitudinal direction. Accordingly, upon adjusting the depth of the seat 3, the locking is released by moving the finger contact lever 58 in a desired moving manner of the slide outer shell 10. As a result, the unlocking and the movement of the slide outer shell 10 can be performed in one-action. Accordingly, operability is good.
Since the slide outer shell 10 is overlapped with the fixed outer shell 9 from the above in the present embodiment, the slide outer shell 10 is operated to be close contact with the fixed outer shell 9 even when a body pressure is strongly applied to the front portion of the seat 3, for example. In other words, as the body pressure is strongly applied, there is a tendency that the integration of the slide outer shell 10 and the seat outer shell 9 becomes stronger. As a result, there is no case that the slide outer shell 10 is detached from the fixed outer shell due to the body pressure of a person. Accordingly, support strength/support stability is excellent.
Since the arm part 10b of the slide outer shell 10 is disposed on the outside of the side support portion 123 in the present embodiment, it is possible to accurately prevent the arm part 10b from being pressed by the seat inner shell 7. In other words, since the main support part 7a of the seat inner shell 7 is placed on the side support portion 123, the portion of the seat inner shell 7 that is located outside the side support portion 123 has a tendency to float upward by the body pressure of the seated person. Thereby, the slide outer shell 10 is prevented from being pressed by the seat inner shell 7 and therefore it is possible to lightly move the slide outer shell 10 in a longitudinal direction.
When the convex rail part 121 provided at a lower end of the arm part 10 and the concave rail part 122 provided at the fixed outer shell 9 are fitted into each other, as in the present embodiment, this is desirable since the backlash of the slide outer shell 10 is eliminated.
In the chair disclosed herein, a mechanism for changing an initial posture (basic posture, initial angle) of a backrest is also improved. This point will be described below.
A chair has been suggested in which an initial posture of a backrest in a state of being non-tilted rearward can be changed (for example, Japanese Examined Patent Publication No. S47-49543, JP-A-2002-142897, Japanese Patent Application Publication No. 2010-516433, Japanese Utility Model Publication No. S46-8447, Japanese Patent Publication No. 4185754 and Japanese Patent Publication No. 4220191).
Meanwhile, importance of supporting a lumbar region (in particular, around the third lumbar vertebra) of a seated person is pointed out in a chair and therefore a chair has been widely spread, which is provided with a lumbar support part protruding forward, as seen in a side sectional view. In other words, when a person sits on a chair and works in the office or the like, a person can take a proper erecting posture by supporting a waist with the lumbar support part. In this way, it is possible to reduce the burden on the body.
On the other hand, although an initial posture of a backrest is changed in order to match the preference of a user, it is not preferable that hitting on the body is changed due to the changes in the initial posture. Specifically, it is not preferable that the body support position is shifted in a longitudinal direction or the hitting position on the body is shifted in a vertical direction, due to the changes in the initial posture of the backrest. In a chair including the lumbar support part, it is preferable that the initial posture of the backrest can be changed in a state of accurately holding a lumbar support function.
However, in Japanese Examined Patent Publication No. S47-49543, JP-A-2002-142897 and JP-A-2010-516433, an initial posture of a backrest is changed by tilting the backrest about a pivot supporting point of a back frame. Accordingly, the backrest generally moves back and forth in accordance with the adjustment of the initial posture. As a result, there is a possibility that the push-up feeling occurs in the body or the body support function is decreased.
Further, in Japanese Patent Publication No. 4185754 and Japanese Patent Publication No. 4220191, the lumbar support part is moved back and forth. Accordingly, it is difficult to meet the requirements of changing an initial posture of a backrest without changing the lumbar support function.
Since the backrest disclosed in Japanese Utility Model Publication No. S46-8447 is pivoted about a vertically middle portion thereof, it can be said that fitting property to the body is high. However, since the backrest does not include a lumbar support part, there is a possibility that a lower end protrudes forward and a push-up feeling is imparted to a person when the backrest is in a posture lying rearward. Further, since the posture is changed by operating a pin provided on an upper end of a bracket, there is also a problem that it is difficult to change the posture in a state where a person remains seated and therefore operability is poor.
The adjustment mechanism disclosed herein is intended to improve such a situation. In the adjustment mechanism, an initial posture of a backrest can be changed in a state of properly maintaining the body support function and the operability or the like of the posture change is taken into consideration.
The chair disclosed herein includes a seat and a backrest that is disposed behind the seat. The backrest is mounted to a back frame extending rearwardly from below the seat. The backrest includes a lumbar support part to support a lumbar portion of a seated person from the rear. The lumbar support part is projected forward, as seen in a side sectional view. The backrest is connected to the back frame in such a way that the backrest is pivoted about a site of a height position of the lumbar support part, as seen from the side. Further, an initial angle adjustment device is provided at the back frame or the backrest and changes the posture of the backrest, as seen from the side. The initial angle adjustment device can be operated by a person seated. The phrase, “the back frame or the backrest” portion that the initial angle adjustment device may be provided at either or both of the back frame and the backrest.
In the invention disclosed herein, the initial posture (initial angle) of the backrest is changed by pivoting the backrest about the lumbar support part and therefore the position of the lumbar support part is not largely changed by the changing of the initial posture. As a result, there is no problem that a push-up feeling occurs in the body or the support function is decreased, due to the changing of the initial posture. In other words, it is possible to adjust the initial posture of the backrest in accordance with the preference of a user while properly securing the lumbar support function. Further, since the initial angle adjustment device can be operated by a person seated, it is possible to adjust the initial posture while testing the feeling on the body. Accordingly, the chair is user-friendly.
Next, a specific configuration of the backrest will be described mainly with reference to
As shown in
Further, side connection parts 157 are provided at both left and right ends of the lumbar support part 156 of the back inner shell 12 and intended to connect the lumbar support part 156 to the head parts 15c of the back struts 15b. The side connection parts 157 are projected forward from the surroundings thereof.
For example, as shown in
As clearly shown in
As shown in
Further, a groove 164 is provided between the load support part 162 and the bearing part 158 of the head part 15c of the back strut 15b. The restriction plate 161 of the back inner shell 12 is closely fitted into the groove 164 so as not to be shifted laterally. In this way, since the back inner shell 12 is held by the fitting of the groove 164 and the restriction plate 161 so as not to be shifted laterally, the side connection part 157 is not displaced inwardly even when a rearward load is applied to the lumbar support part 156 and therefore the side connection part 157 is pulled inward. Therefore, the mounting strength is high. A bottom surface of the groove 164 and an outer periphery of the restriction plate 161 are formed in a circular arc shape of curvature around an axis of the boss part 159, as seen from the side. Accordingly, the pivoting of the back inner shell 12 around an axis of the boss part 159 is allowed.
As described above, in the mounting structure of an upper end of the back strut 15b and the back inner shell 12, longitudinal retention, support of load applied to the back and lateral shifting prevention are respectively performed at a separate specific site. Specifically, the longitudinal retention is performed by the boss part 159 and the bearing part 158. In order that the boss part 159 and the bearing part 158 do not have the other functions (the support of load applied to the back and the lateral shifting prevention), the boss part 159 is loosely fitted into the bearing part 158 in a state where a slight clearance is provided between an outer periphery of the boss part 159 and an inner periphery of the bearing part 158. Further, by setting the lateral width dimension of the boss part 159 to be slightly wider than that of the bearing part 158, the rib plate 160 does not come into contact with the side surface of the bearing part 158. Further, a rear end surface of the restriction plate 161 is set so as not to come into contact with the bottom surface of the groove 164 of the back strut 15b.
A lower end portion of the back inner shell 12 is such that an intermediate portion in a lateral direction is connected to the second back frame 15 via an initial angle adjustment device 155. This point will be described below.
For example, as shown in
A pin-shaped locking pin 172 is formed integrally with the operation tool 171 and fitted into the pin hole 168 of the lower connection part 166. Accordingly, as the operation tool 171 is laterally slid, the locking pin 172 can appear and disappear in the center groove 166 of the lower connection part 166. The locking pin 172 is an example of the stopper. Claws 173 are provided at the upper rib 169 and intended to hold the operation tool 171 so as not to be detached from the back inner shell 12.
Further, the operation tool 171 is provided with a spring arrangement void 174 that is opened toward the back inner shell 12 and a stroke restriction void 175. The spring arrangement void 174 is located on the side of the locking pin 172 and the stroke restriction void 175 is located on the side of the finger grip 171. On the other hand, the back inner shell 12 is provided with a spring mount protrusion 176 that enters the spring arrangement void 174 and a stroke restriction protrusion 177 that enters the stroke restriction void 175. A compression coil spring 178 is disposed between the spring mount protrusion 176 and an inner surface 174ee of the spring arrangement void 174. Therefore, the operation tool 171 is urged so that the locking pin 172 can be easily fitted into the lower connection part 166 (locking position is held). The spring 178 is placed in the spring arrangement void 174 by being pushed through a window hole 179 provided at a front surface of the operation tool 171.
Restriction of the retreating position when the operation tool 171 is pulled outward by hand is performed by bringing an inner surface of the stroke restriction void 175 into contact with the stroke restriction protrusion 180. Further, restriction of the advancing position when the operation tool 171 is pressed by the spring may be performed by bringing an inner surface of the spring arrangement void 174 into contact with the stroke restriction protrusion 180 or by bringing an end of the operation tool 171 into contact with a side surface of the lower connection part 166.
As shown in
The lock body 181 is made of resin, separately from the second back frame 15 and fitted and mounted to the base part 15a of the second back frame 15 from the below. For this purpose, for example, as shown in
As shown in
Depending on the user, an initial posture adjustment function of the backrest 4 may not be required. Accordingly, for example, as shown in
For example, as is apparent from
Next, another example of an initial angle adjustment device shown in
As shown in
A small-diameter portion 197 is formed at a leading end of the operation tool 171. The small-diameter portion 197 is rotatably fitted into a bearing hole 198 that is provided at the other bearing rib 190. While a pair of stopper pieces 199 is provided at a leading end of the small-diameter portion 197 of the operation tool 171 and projected in a direction perpendicular to an axis, a stepped part 200 is formed at an outer surface of the other bearing rib 190. The stopper piece 199 is inseparably fitted into the stepped part 200. The bearing hole 198 of the other bearing rib 190 is formed as an elongated hole that is long in a longitudinal direction. Accordingly, the stopper piece 179 is formed transversely and fitted into the bearing hole 198. When the stopper piece 199 is fitted into the bearing hole 198 and then the operation tool 171 is rotated, the operation tool 171 is inseparably held.
Insertion of the operation tool 171 is performed after the peripheral surface cam 191 is set between the left and right bearing ribs 190. As shown in
As shown in
For example, as clearly shown in
A leading end portion of the operation tool 171 that is located between the left and right bearing ribs 190 is configured as a rectangular column portion 171b. The peripheral surface cam 191 is fitted into the rectangular column portion 171b so as not to rotate relative to each other (i.e., to rotate together with the operation tool 171). The peripheral surface cam 191 includes one center cam part 204 and a pair of left and right side cam parts 205 that are located at both left and right sides of the center cam part 204.
Outer peripheral surfaces of the center cam part 204 and the side cam parts 205 are configured as a cam surface, a front inner surface of the lower connection part 192 is configured as a front restricting surface 192a with which the center cam part 204 comes into contact, a rear inner surface of the lower connection part 192 is configured as a rear restricting surface 192b with which the side cam parts 205 come into contact. First to third cam surfaces 204a to 63c are formed at an outer periphery of the center cam part 204 and the heights of the first to third cam surfaces from an axis are different. Further, first to third cam surfaces 205a to 205c are formed at an outer periphery of the side cam parts 205 and the heights of the first to third cam surfaces from an axis are different. The lower connection part 192 is opened downward, as described above. However, a longitudinal spacing between the front restricting surface 192a and the rear restricting surface 192b is set to be larger toward the lower.
Both cam parts 204, 205 are configured as follows. The first cam surface 205a of the side cam part 205 comes into contact with the rear restricting surface 192b when the first cam surface 204a of the center cam part 204 is in contact with the front restricting surface 192a. The second cam surface 205b of the side cam part 205 comes into contact with the rear restricting surface 192b when the second cam surface 204b of the center cam part 204 is in contact with the front restricting surface 192a. The third cam surface 205c of the side cam part 205 comes into contact with the rear restricting surface 192b when the third cam surface 204c of the center cam part 204 is in contact with the front restricting surface 192a.
In the present example, the initial angle of the backrest 4 can be adjusted in three steps by rotationally operating the operation tool 171 and the backrest 4 is held so as not to be rattled in a longitudinal direction. Although resistance to the rotation of the peripheral surface cam 191 occurs, it is possible to rotate the peripheral surface cam 191 by elastically deforming the lower connection part 192. In order to allow the lower connection part 192 to be pivoted, elongated holes 201 are provided at left and right side plates of the lower connection part 192. The operation tool 171 is loosely fitted into the elongated hole 201.
For example, as shown in
The initial angle adjustment device can be variously embodied. The operation tool is not limited to a slide type or a rotary type but may be a pivot type. The initial angle adjustment device can be configured in such a way that the backrest is pivoted by providing an operation tool including a push button at a lower end of the backrest and moving the operation tool in a longitudinal direction while maintaining a state where the push button is pushed down and thus the locking is released. In a case where a cam is used in the initial angle adjustment device, various cams such as an end surface cam can be employed. The initial angle of the backrest may be steplessly adjusted by providing a screwed handle in the initial angle adjustment device. A lock mechanism other than a pin or cam may be employed.
The present invention and each invention disclosed in the present application can be embodied in the chair. Accordingly, the present invention has an industrial applicability.
Number | Date | Country | Kind |
---|---|---|---|
2011-157063 | Jul 2011 | JP | national |
2011-157065 | Jul 2011 | JP | national |
2011-157067 | Jul 2011 | JP | national |
2011-250621 | Nov 2011 | JP | national |
This application is a continuation of PCT application No. PCT/JP2012/068095, which was filed on Jul. 17, 2012 based on Japanese Patent Application Nos. 2011-157063 filed on Jul. 15, 2011, 2011-157065 filed on Jul. 15, 2011, 2011-157067 filed on Jul. 15, 2011, and 2011-250621 filed on Nov. 16, 2011, the contents of which are incorporated herein by reference. Also, all the references cited herein are incorporated as a whole.
Number | Name | Date | Kind |
---|---|---|---|
5207479 | Wickman et al. | May 1993 | A |
5328237 | Yamaguchi et al. | Jul 1994 | A |
5725276 | Ginat | Mar 1998 | A |
5979984 | DeKraker et al. | Nov 1999 | A |
8714645 | Cvek | May 2014 | B2 |
8899680 | Meier et al. | Dec 2014 | B2 |
20020171278 | Stulik et al. | Nov 2002 | A1 |
20040140702 | Daeschle et al. | Jul 2004 | A1 |
20040174057 | Elzenbeck | Sep 2004 | A1 |
20070228801 | Matern | Oct 2007 | A1 |
20080001453 | Rutman | Jan 2008 | A1 |
20090302655 | Gorgi | Dec 2009 | A1 |
20130234485 | Gorgi et al. | Sep 2013 | A1 |
20140239688 | Cvek | Aug 2014 | A1 |
20140300164 | Oda | Oct 2014 | A1 |
20150123441 | Duke | May 2015 | A1 |
20150216302 | Voigt et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2 252 723 | Aug 1992 | GB |
46-8447 | Mar 1971 | JP |
47-49543 | Dec 1972 | JP |
7-77567 | Mar 1993 | JP |
6-261818 | Sep 1994 | JP |
H07-313282 | Dec 1995 | JP |
2519167 | Jul 1996 | JP |
10-179312 | Jul 1998 | JP |
11-169254 | Jun 1999 | JP |
A-2002-119364 | Apr 2002 | JP |
2002-142897 | May 2002 | JP |
A-2003-024175 | Jan 2003 | JP |
2008-080090 | Apr 2008 | JP |
4185754 | Nov 2008 | JP |
4220191 | Feb 2009 | JP |
2009-112728 | May 2009 | JP |
A-2009-201763 | Sep 2009 | JP |
2010-516433 | May 2010 | JP |
2011-024750 | Feb 2011 | JP |
A-2011-092392 | May 2011 | JP |
A-2011-136013 | Jul 2011 | JP |
Entry |
---|
A Japanese Office Action (with English-language translation) dated Feb. 25, 2015 that issued in Japanese patent application No. 2011-157065. |
Notification of Reasons for Refusal issued Sep. 24, 2015 in corresponding Japanese Patent Application No. 2011-250621 (4 pages) with an English Translation (8 pages). |
A Japanese Office Action (with English-language translation) dated Sep. 2, 2015 that issued in Japanese patent application No. 2011-250616. |
Number | Date | Country | |
---|---|---|---|
20140125104 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/068095 | Jul 2012 | US |
Child | 14155748 | US |