This disclosure relates generally to well service systems and, more particularly, to a racking system for tripping rods and tubulars.
During the production life cycle of an oil well, a rod string or tubular string may need to be pulled out of hole or run into hole for various reasons. For example, to initiate controlled recovery, a tubular string is run down-hole to provide a controlled pathway for fluid resources to be brought from the well to the surface. A sucker rod string may also be run down-hole to actuate a pump installed within the well. In some cases, after a tubular string and/or a rod string is initially run down-hole, the tubular string and/or rod string may need to be pulled out of hole for repair or maintenance of the well or other down-hole equipment. Thus, the tubular string and/or rod string are pulled out of hole mid-production and then run back in after the necessary maintenance is completed. At the end of a wells production life, the tubular string and/or rod string is likewise pulled out of hole.
The processes of pulling a rod string or tubular string out of a well and running a rod string or tubular string into a well are examples of a class of operations known as tripping. Tripping operations typically require several large pieces of equipment to perform various aspects of the processes. For example, as a rod string or tubular string is pulled out of hole, the string segments, which are generally threaded together at the ends to form the string, are to be unthreaded from each other as they are lifted out of hole. Typically, a tong device is used to rotate a segment or coupling from the rest of the string to unthread the segment from the string. Conventionally, such task requires an operator to interface with the tong device or even to actuate the tong device. In addition to requiring operator interfacing for unthreading string segments, typical tripping processes and the equipment involved require a significant amount of human intervention.
Furthermore, many wells utilize both tubular and rods down-hole. Thus, both rod tripping processes and tubular tripping processes will need to be performed for such wells. However, rods are and tubulars require different handling. Thus, generally, different equipment is used to handle rods and tubulars. Specifically, rods, which are thinner and more fragile than tubulars require special handling to avoid damage to the rods. However, conventional tripping equipment and methods are generally not suitable for handling rods, and are not flexible between handling rods and handling tubulars. Typical tripping equipment also lacks a degree of flexibility, customizable control, and efficiency that could improve the cost, time, and operator experience of the process.
These and other aspects, features and embodiments of the invention will become apparent to a person of ordinary skill in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode for carrying out the invention as presently perceived.
According to an aspect of the present disclosure, A well service rig system includes a well service rig, a catwalk, and a tong system. The well service rig includes a rig base unit and a mast coupled to the rig base unit and movable between a folded position and an upright position. The well service rig further includes a vertical guide supported from the mast, and a traveling block system coupled to the vertical guide configured to travel at least a portion of the vertical guide. The catwalk includes a unit comprising a first end, a second end, a first side and a second side. The catwalk further includes a carriage disposed on the unit and movable between a horizontal position, a raised position, and a telescoping position. The catwalk further includes a racking system coupled to the unit and movable between a transport position and an operational position. In the transport position, the racking system is folded into the first and/or second sides of the unit. In the operational position, the racking system extends out from the first and/or second sides of the unit. The racking system is configured to store, feed, or receive a plurality tubulars and/or a plurality of rods. The tong system includes a clamp or a slip configured to hold and support a rod or tubular string, respectively. The tong system further includes a tong assembly configured to hold and twist a first rod or tubular in relation to the rod or tubular string, threading or unthreading the first rod or tubular to or from the rod or tubular string.
According to an aspect of the present disclosure, a well service rig system includes a well service rig, a catwalk system, and a tong system. The well service rig includes a mast and a vertical guide supported from the mast. The well service rig further includes a traveling block system coupled to the vertical guide configured to travel at least a portion of the vertical guide, the traveling block system configured to pick up and raise or lower a rod or tubular. The catwalk includes a catwalk unit configured to deliver or receive the rod tubular to or from the traveling guide. The catwalk further includes a racking system coupled to the catwalk unit, the racking system configured to store the rod or tubular, feed the rod or tubular onto the catwalk unit, and/or receive the tubular or the rod from the catwalk unit. The tong system includes a clamp or a slip configured to hold and support a rod or tubular string, respectively. The tong system further includes a tong assembly configured to hold and twist the rod or tubular in relation to the rod or tubular string, threading or unthreading the rod or tubular to or from the rod or tubular string.
According to an aspect of the present disclosure, a well service rig system includes a well service rig and a catwalk. The well service rig includes a rig base unit, a mast coupled to the rig base unit. The mast is movable between a folded position and an upright position. The well service rig further includes a vertical guide supported from the mast, and a traveling block system coupled to the vertical guide configured to travel at least a portion of the vertical guide. The catwalk further includes a unit comprising a first end, a second end, a first side and a second side. The catwalk further includes a carriage disposed on the unit and movable between a horizontal position, a raised position, and a telescoping position. The catwalk further includes a racking system coupled to the unit and movable between a transport position and an operational position. In the transport position, the racking system is folded into the first and/or second sides of the unit. In the operational position, the racking system extends out from the first and/or second sides of the unit. The racking system is configured to store, feed, or receive a plurality tubulars and/or a plurality of rods.
According to an aspect of the present disclosure, a well service rig for tripping rods and tubulars includes a service rig base unit, a mast coupled to the well service rig base unit movable between a folded position and an upright position, a vertical guide mounted to the mast, and a traveling block system coupled to the vertical guide at a first end and configured to travel up and down at least a portion of a length of the vertical guide. The traveling block system couplable to a rod, a tubular, or both at a second end.
According to an aspect of the present disclosure, a vertical tracking guide includes a linear shaft suspended from a mast of a service rig. The linear shaft is coupled to a traveling block system, and the traveling block system configured to travel at least a portion of the linear shaft.
According to an aspect of the present disclosure, a service rig traveling block system includes a block guide configured to couple to and travel along a vertical guide. The traveling block system further includes a block body coupled to the block guide. The traveling block system further includes a rotating dial coupled to the block body. The traveling block system further includes a link tilt system comprising a proximal end and a distal end, the proximal end being coupled to the rotation dial, wherein the rotation dial rotates the link tilt system into a plurality of positions relative to the block body. The traveling block system also includes an elevator coupled to the distal end of the link tilt system and configured to pick up a rod or a tubular, respectively.
According to an aspect of the present disclosure, a catwalk system includes a unit having a first end, a second end, a first side, and a second side, in which the first and second sides extend from the first end to the second end, and the first side is opposite the second side. The catwalk system further includes a carriage disposed on the unit and coupled to the unit at the second end and extending towards the first end. The carriage is movable between a horizontal position and a sloped position, and between an extended position and a retracted position. The catwalk system further includes a racking system coupled to the first side of the unit, the second side of the unit, or both. The racking system comprising a plurality of racking layers configured to store and support a plurality of rods and/or tubulars.
According to an aspect of the present disclosure, a catwalk system includes a unit having a first end, a second end, a first side, and a second side, in which the first and second sides extend from the first end to the second end, and the first side is opposite the second side. A carriage is disposed on the unit and coupled at the second end and extending towards the first end. The carriage is movable between a horizontal position and a sloped position and a telescoping position. The catwalk system further includes a racking system coupled to the first side of the unit, the second side of the unit, or both. The racking system comprising a plurality of base beams, each of the plurality of base beams comprising a coupling end and a distal end, and coupled to the unit at the coupling end. The plurality of base beams extend from the unit in the operational position. The plurality of base beams are configured to support a plurality of rods, a plurality of tubulars, or both. The racking system further includes a plurality of indexers coupled to the first, second, or both sides of the unit. Each of the plurality of indexers comprises a series of rotating holders configured to transport rods and tubulars between the carriage and the plurality of base beams. The racking system further includes a jack coupled to each of the plurality of base beams at a distal end opposite the unit in the operational position. The jack is configured to raise or lower the distal end of the base beam relative to the coupling end.
According to an aspect of the present disclosure, a catwalk system includes a unit having a first end, a second end, a first side, and a second side. The first and second sides extend from the first end to the second end, and the first side is opposite the second side. The catwalk system further includes a carriage disposed on the unit and coupled at the second end and extending towards the first end. The carriage is movable between a horizontal position and a sloped and telescoping position. The catwalk system further includes a racking system coupled to the first side of the unit, the second side of the unit, or both. The racking system is configured to store, feed, and/or receive a plurality of tubulars and/or rods. The racking system is movable between a transport position in which the racking system is folded along the first, second, or both sides of the unit and an operational position in which the racking system extends outwardly from the first, second, or both sides of the unit.
According to an aspect of the present disclosure, a racking system includes a rack comprising a plurality of beams configured to support a plurality of rods, a plurality of tubulars, or both, each of the plurality of beams comprising a proximal end and a distal end. The racking system further includes a plurality of indexers aligned with or proximal to the proximal ends of the plurality of base beams, wherein each of the plurality of indexers comprises a series of rotating holders configured to transport the plurality of rods, tubulars, or both to and from the rack. Additionally, the racking system further includes a jack coupled to the distal end each of the plurality of base beams, wherein the jack raises and lowers the distal end of the base beam in relation to the proximal end.
According to an aspect of the present disclosure, a method of receiving and storing a plurality of rods or tubulars includes receiving a rod or tubular onto a rotating holder of an indexer, and rotating the indexer and transporting the rod or tubular from a first side of the indexer to a second side of the indexer, the second side opposite the first side. The method further includes discharging the rod or tubular onto a rack disposed adjacent the second side of the indexer, the rack comprising a plurality of base beams, wherein each of the plurality of base beams comprised a proximal end. The method further includes receiving the rod or tubular onto the rack.
According to an aspect of the present disclosure, a method of delivering a plurality of rods or tubulars includes delivering a rod or tubular onto a holder of an indexer from a rack, and rotating the indexer and transporting the rod or tubular from a second side of the indexer to a first side of the indexer, the second side opposite the first side. The method further includes discharging the rod or tubular from the indexer onto a receiving device on the first side of the indexer.
According to an aspect of the present disclosure, a tong system for handling rods includes a base and a rod clamp disposed on the base. The rod clamp comprising a first clamp block and a second clamp block opposite the first clamp block. The first clamp block comprises a first clamp piston and a first clamp die disposed at a distal end of the first clamp piston. Likewise, the second clamp block comprises a second clamp piston and a second clamp die disposed at a distal end of the second clamp piston. The first and second clamp dies face each other. The tong system for handling rods further includes a rod positioner assembly coupled above the rod clamp via at least one hydraulic cylinder, the rod positioner configured to position and hold a rod via an opening formed therein. The tong system for handling rods further includes a tong assembly. The tong assembly is disposed on the base via a riser and a horizontal track, the tong assembly comprising a rod handling tong and a lower centralizer guide positioned above the rod handling tong. The tong system for handling rods also includes a centralizer arm extending from the base to a height above the lower centralizer guide. The centralizer arm further comprises a guide member.
According to an aspect of the present disclosure, a tong system for handling tubulars includes a base and a tubing slip disposed above the base. The tubing slip is configured to receive a tubular therethrough. The tong system for handling tubulars further includes a tong assembly disposed on the base via a riser and a horizontal track. The tong assembly includes a tubular handling tong configured to engage and thread or unthread the tubular to or from a tubular string. The tong assembly further includes a tubular backup and a lower centralizer guide positioned above the tubular handling tong. The tong system also includes a centralizer arm extending from the base to a height above the lower centralizer guide, the centralizer arm comprising a guide member.
According to an aspect of the present disclosure, a method of pulling a rod out of a well hole includes lifting a rod string through a disengaged rod positioner with a traveling block system until a junction between a first rod of the rod string and a second rod of the rod string is above the rod positioner. The method also includes engaging the rod positioner onto the second rod, wherein the rod positioner holds the second rod in a stationary position, and suspending the rod string in the rod positioner. The method further includes engaging a tong assembly onto the first rod, wherein the tong assembly twists the first rod and unthreads the first rod from the second rod. Then the method includes disengaging the tong assembly from the first rod, and lowering and placing the first rod onto a carriage, wherein the carriage is raised at an angle. The method further includes releasing the first rod from the traveling block system and lowering the carriage into a horizontal position. The method also includes tilting the carriage and discharging the rod from the carriage onto a rod racking system.
According to an aspect of the present disclosure, a method of pulling a tubular out of a well hole includes lifting a tubular string through a disengaged tubing slip with a traveling block system until a junction between a first tubular of the tubular string and a second tubular of the tubular string is above the tubing slip. The method further includes engaging the tubing slip onto the second tubular of the tubular string, wherein the tubing slip holds the second tubular in a stationary position, and suspending the tubular string from the tubing slip. The method also includes engaging a tong assembly onto the first tubular, wherein the tong assembly twists the first tubular and unthreads the first tubular from the second tubular. The method also includes disengaging the tong assembly from the first tubular, and lowering and placing the first tubular onto a carriage, wherein the carriage is raised at an angle. The method further includes lowering the carriage into a horizontal position, tilting the carriage, and discharging the tubular from the carriage onto a tubular racking system.
According to an aspect of the present disclosure, a method of running a rod into a well hole includes delivering a first rod from a rod racking system onto a carriage via an indexer, and raising the carriage from a horizontal position into a sloped and extended or telescoped position. The method also includes engaging a traveling block system with the first rod via a rod elevator of a traveling block system, lifting the first rod from the carriage, and suspending the first rod from the traveling block system above a tong system. The tong system comprises a tong assembly, an upper centralizer, a lower centralizer, a rod positioner, and a rod clamp, the upper centralizer aligning the first rod with the lower centralizer. The method also includes suspending a rod string by the rod positioner, and engaging a rod flat backup onto one or more rod flats of the rod string. The method further includes lowering the first rod through the lower centralizer of the tong assembly onto the rod string, and engaging the tong assembly onto the first rod and threading the first rod onto the rod string.
According to an aspect of the present disclosure, a method of running a tubular into a well hole includes delivering a first tubular from a tubular racking system onto a carriage via an indexer. The method also includes raising the carriage from a horizontal position into a sloped and telescoped position. The method also includes engaging the first tubular to a tubular elevator of a traveling block system, lifting the first tubular from the carriage, and suspending the first tubular from the traveling block system above a tong system. The tong system comprises a tong assembly, an upper centralizer, a lower centralizer, and a tubing slip, the upper centralizer aligning the first tubular with the lower centralizer. The method further includes suspending a tubular string from an engaged tubing slip. The method also includes lowering the first tubular through the lower centralizer and onto the tubular string, engaging the tong assembly onto the first tubular, and threading the first tubular onto the tubular string.
For a more complete understanding of the claimed invention and the advantages thereof, reference is now made to the following description, in conjunction with the accompanying figures briefly described as follows. In the drawings, reference numerals designate like or corresponding, but not necessarily identical, elements. The drawings illustrate only example embodiments of methods, systems, and devices for carrying out a class of operations known as tripping and are therefore not to be considered limiting of its scope, such method, systems, and device may admit to other equally effective embodiments that fall within the scope of the present disclosure. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Additionally, certain dimensions or positionings may be exaggerated to help visually convey such principles. The methods shown in the drawings illustrate certain steps for carrying out the techniques of this disclosure. However, the methods may include more or less steps than explicitly illustrated in the example embodiments. Two or more of the illustrated steps may be combined into one step or performed in an alternate order. Moreover, one or more steps in the illustrated methods may be replaced by one or more equivalent steps known in the art to be interchangeable with the illustrated step(s). In one or more embodiments, one or more of the features shown in each of the figures may be omitted, added, repeated, and/or substituted. Accordingly, embodiments of the present disclosure should not be limited to the specific arrangements of components shown in these figures.
a illustrates a top view of the well service rig system in a 135° orientation, in accordance with certain example embodiments;
b illustrates a top view of the well service rig system in a 90° orientation, in accordance with certain example embodiments, in accordance with certain example embodiments;
a illustrates a side view of the well service rig in a raised position with the work floor in a base position, in accordance with certain example embodiments;
b illustrates a rear view of the well service rig in the raised position with the work floor in the base position, in accordance with certain example embodiments;
a illustrates a side view of the well service rig in a raised position with the work floor at raised height, in accordance with certain example embodiments;
b illustrates a rear view of the well service rig in the raised position with the work floor at a raised height, in accordance with certain example embodiments;
a illustrates a rod servicing traveling block system, in accordance with certain example embodiments;
b illustrates a detailed view of detail 8b of
a illustrates a tubular servicing traveling block system, in accordance with certain example embodiments;
b illustrates a detailed view of detail 9b of
a illustrates a top view of a rod coupling clamp in an open position, in accordance with certain example embodiments;
b illustrates a top view of the rod coupling clamp in a closed position, in accordance with certain example embodiments;
a illustrates a top view of a rod flat clamp in an open position, in accordance with certain example embodiments of the present disclosure;
b illustrates a top view of the rod flat clamp in a closed position, in accordance with certain example embodiments;
a illustrates a top view of a rod positioner in an open position, in accordance with certain example embodiments of the present disclosure;
b illustrates a top view of the rod positioner in a closed position, in accordance with example embodiments;
In the following detailed description of the example embodiments, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure herein. However, it will be apparent to one of ordinary skill the art that the example embodiments herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description. As used herein, a length, a width, and a height can each generally be described as lateral directions.
Designations such as “first”, “second”, and “third” are merely used to call out distinct features rather than a total number of items. Descriptions such as “top”, “bottom”, “distal”, and “proximal” are meant to describe different portions of an element or component and are not meant to imply an absolute orientation. Furthermore, descriptions such as “above”, “below”, “to the side of”, and “adjacent to” are meant to describe a special relationship between two items and are not meant to imply absolute orientation. For example, a third item can be disposed between the two items to which the above language refers.
Example embodiments of the claimed invention are directed to a well service rig system for tripping rods and tubulars. As used herein, “rods” and “tubulars” are not meant to limit the scope to a specific type of item referred to in the industry as a “rod” or a “tubular”, but rather include a host of items that could be considered a rod or a tubular by the broadest sense of the word. For example a rod could include a sucker rod, but it may also include other items that could be classified as a rod by the broadest definition of the term “rod”.
Example embodiments of the claimed intervention make reference to example processes such a pulling rods out of hole, running rods into hole, pulling tubulars out of hole, and running tubulars into hole. However, the techniques presented herein are also applied to other tripping processes used in the industry that may or may not involve rods or tubulars. Furthermore, the techniques presented herein also apply to processes not commonly known as tripping but which employ certain similar principles which can be effectively carried out by certain aspects of the present disclosure.
Turning to the figures,
Among other components, the catwalk 104 includes a carriage 118 which can be raised from a horizontal position to a sloped and telescoped position.
Among other components, the racking system 106 includes a plurality of stackable beams 122. In a POH operation, the beams 122 support and store the rods or tubulars when the rods or tubulars are delivered from the carriage 118. In a RIH operation, the beams 122 deliver the rods or tubulars onto the carriage 118. In certain example embodiments, the beams 122 are layered and thus can support and store a plurality of layers of rods and tubulars. In certain example embodiments, and as illustrated in
Among other components, the tong system 108 includes a tong assembly 124 and at least one string gripping device 126. In the embodiment illustrated in
In certain example embodiments, the configuration or arrangement of the well service rig system 100 is adaptable to fit the needs of the field and/or well.
Each of the well service rig 102, the catwalk 104, the racking system 106, and the tong system 108 will now be described in detail.
a illustrates a side view of the well service rig 102 in a raised position with the work floor 116 in a base position, in accordance with example embodiments of the present disclosure.
The mast 110 includes a top end 502 which is the highest portion of the mast 110. In certain example embodiments, the mast 110 has an adjustable (i.e., telescoping) height. In such an embodiment, the mast 110 includes a base portion 508 and an extendable portion 506. The base portion 508 and the extendable portion 506 are coupled by a brace 504 or mechanical lock, which keeps the extended portion stable and aligned with the base portion 508. Accordingly, the mast 110 can be configured into an extended position and a retracted position. In the extended position, the extendable portion 506 extends from the base portion 508 and adds to the height of the base portion 508. In the retracted position, the extendable portion 506 is retracted within the base portion 508. The mast 110 is in the retracted position when the well service rig 102 is in the transport position, as shown in
In certain example embodiments, the vertical guide 112 is coupled to and supported by the mast 110. The vertical guide 112 includes a top end 510 and a bottom end 512. In certain example embodiments, the top end 510 of the vertical guide 112 is coupled to the top end 502 of the mast 110. In certain example embodiments, the top end 510 of the vertical guide 112 is coupled to the top end 502 of the mast 110 via a hinge 516. In certain other example embodiments, the vertical guide 112 is coupled to the mast 110 via another coupling mechanism 512 which provides a certain amount of angular motion between the vertical guide 112 and the mast 110. In certain example embodiments, the vertical guide 112 is further coupled to the mast 110 at the bottom end 512 of the vertical guide 112. In certain such embodiments, the bottom end 512 of the vertical guide 112 is coupled to the mast 110 via an extension bar 514. The extension bar 514 is rotatively coupled to the mast at one end and rotatively coupled to the vertical guide 112 at another end, and holds the bottom end 512 of the vertical guide 112 in place relative to the mast. Thus, the extension bar 514 provides both stability as well a range of motion for the vertical guide 112 with respect to the mast 110. In certain other embodiments, the extension bar 514 is coupled to the vertical guide 112 at a point between the top end 510 and the bottom end 512. In certain embodiments, the extension bar is removed or replaced with a different component which likewise provides stability as well as a range of motion for the vertical guide 112. In certain example embodiments, the vertical guide 112 is adjustable with respect to the mast 110, with the coupling of the top end 510 of the vertical guide 112 and the top end 502 of the mast 110 being the axis of rotation, and the length of the extension bar 514 defining a maximum offset between the vertical guide 112 and the mast 110. In certain example embodiments, the vertical guide 112 is parallel to the vertical and parallel with a rod or tubular string in a well. In certain example embodiments, the vertical guide 112 is a shaft. The vertical guide can also be tubular, square, another generally linear configuration. In certain example embodiments, the vertical guide 112 is also telescoping and has an adjustable length. In certain example embodiments, the vertical guide 112 is folded into the mast 110 when the well service rig is in the transport position, as shown in
The traveling block system 114 is coupled to the vertical guide 112. In certain example embodiments, the traveling block system 114 is coupled to the vertical guide 112 via a releasable coupling mechanism such as a quick release mechanism, such that the traveling block system 114 can be easily coupled to and decoupled from the vertical guide 112. The traveling block system 114 is configured to travel up and down the vertical guide 112. In certain example embodiments, the traveling block system 114 travels at least a portion of the length of the vertical guide 112. The traveling block system 114 can travel more or less of a portion of the vertical guide 112 depending on the motion needed for the operation as well as the configuration of the vertical guide 112. The traveling block system 114 is configured to pick up, raise, and/or lower one or more rods or tubulars. For example, in a POH operation, the traveling block system 114 is configured to pick up and raise the first rod or tubular of a rod or tubular string from the well, and then lower the first rod or tubular onto the carriage 118 of the catwalk 104. In a RIH operation, the traveling block system 114 is configured to pick up and raise a rod or tubular from the carriage 118 and lower the rod or tubular onto a rod or tubular string, and then lower the rod or tubular string further down-hole. Thus, the traveling block system 114 is to be aligned with the rod or tubular string over the course of travel. The vertical guide 112 provides such an aligned path of travel for the traveling block system 114. The traveling block system 114 is discussed in further detail below with respect to
In certain example embodiments, the work floor 116 of the well service rig 102 can be adjusted from a base height to a variable second height.
a illustrates one example embodiment of the traveling block system 114 in a rod servicing configuration, in accordance with example embodiments of the present disclosure. Specifically,
In certain example embodiments, the links 808 and the link tilt actuator 810 are coupled to the rotation disk 806 opposite the block body 804 via a link holder 814. The rotation disk 806, the links 808, the link tilt actuator 810, and the link holder 814 are jointly known as a link tilt system. In certain example embodiments, and as shown in
Each link 808 is coupled to one of the link tilt actuators 810. The link tilt actuators 810 are coupled to the link holder 814 at one end and coupled to the shaft 820 of the respective link 808 at the opposite end. In certain example embodiments, the link tilt actuators 810 are configured to control tilting of the links 808 by lifting or pushing the links 808. In certain example embodiments, the link tilt actuators 810 each include an extender 830. The extenders 830 allow the link tilt actuators 810 to extend in length and push the links 808. Thus, in such example embodiments, when the extenders 830 are in a neutral position, the links 808 are in a neutral position as well, hanging from the link holder 814. The links 808 are tilted or pushed when the extenders 830 are in an extended position. For example, in a RIH operation, the traveling block system 800 is configured to pick up a rod from the carriage 118. When the rod is in the carriage 118, the rod is at an angle to the traveling block system 800 and disposed at a distance away from the traveling block system. Thus, in order to align the rod elevator 812 with the rod and reach the rod, the link tilt actuators 810 push the links 808 toward the rod to place the rod elevator 812 at an appropriate angle and distance to reach and grip the rod. In another example, such as in an POH operation, the traveling block system 800 is configured to pick up a rod of a rod string positioned directly below the traveling block system (i.e., in the wellhole). The rod elevator 812 can grip the rod while in the neutral position.
The elevator connectors 818 are coupled to the rod elevator 812. Specifically, the rod elevator 812 is coupled to and in between the elevator connectors 818 of the two links 808. In certain example embodiments, the rod elevator 812 is rotatively coupled in between the elevator connectors 818 such that the rod elevator 812 can tilt with respect to the links 808. In certain example embodiments, the rod elevator 812 includes a tiling cylinder 822, which actuates the tilting of the rod elevator 812. In certain example embodiments, the rod elevator 812 is configured to couple to an end of a rod, allowing the traveling block system 800 to lift the rod. In certain example embodiments, the rod elevator 812 includes a clamp 826 having a middle orifice 828. In such embodiments, the rod elevator 812 opens to dispose the clamp 826 around the end of a rod and closes to retain the rod within the middle orifice 828. The clamp 826 then opens to release the rod. In certain example embodiments, the rod elevator 812 includes an open/close cylinder, which actuates opening and closing of the clamp 826.
The traveling block system 800 in conjunction with the rod elevator 812 is able to pick up a rod from a rod string and deliver the rod onto a sloped carriage 118 in a POH operation. Specifically, in a POH operation, the links 808 and the rod elevator 812 are in the neutral position when lifting a first rod of a rod string up and out of the well hole. After the tong system 108 unthreads the first rod from the rod string, the bottom end of the first rod is pushed at an angle onto the carriage 118, in which the first rod is now at an angle. Accordingly, the rod elevator, which is still gripping the first rod, tilts with respect to the links 808 to accommodate the angle of the first rod. As the traveling block system 800 lowers the first rod further onto the carriage 118, the angle of the first rod to the vertical increases. Thus, the tilting angle of the rod elevator 812 increases accordingly. As the first rod is almost completely disposed on the carriage 118, the links 808 are push or tilted towards the carriage 118 by the link tilt actuators 810 such that the rod elevator 812 can reach the carriage, and is thereby able to place the first rod in its entirely onto the carriage 118. Conversely, in a RIH operation, the links 808 and rod elevator 812 are tilted in order to pick up a rod from the carriage and gradually return to the neutral position as the rod is raised and brought to a vertical position for coupling to a rod string.
a illustrates one example embodiment of the traveling block system 114 in a tubular servicing configuration, in accordance with example embodiments of the present disclosure. Specifically,
In certain example embodiments, the carriage 118 further includes a skate 1018. The skate 1018 is configured to travel at least a portion of the length of the carriage 118. The skate 1018 helps to guide a rod or tubular onto the carriage 118 or off of the carriage 118. A detailed view of the skate is illustrated in
The rod rack 1410 includes a plurality of rod supports 1414 configured to collectively support a plurality of rods thereacross. For example, the illustrated rod rack 1410 includes three rod supports 1414. In certain other example embodiments, the rod rack 1410 includes more or less than three rod supports 1414. In certain example embodiments, each rod support 1414 includes a base beam 1416. In certain example embodiments, each rod support 1414 includes a base beam 1416 and one or more separator beams 1418 stacked above the base beam 1416 via one or more spacing pins or other spacing devices. In certain example embodiments, the base beams 1416 are configured to support and store a first layer of rods across the length of the base beams 1416. In certain example embodiments, each rod support 1414 includes a first separator beam 1418, the first separator beams 1418 collectively making up a first layer of separator beams 1418. The first layer of separator beams 1418 is configured to support and store a second layer of rods above the first layer of rods stored on the base beams 1416. In certain example embodiments, the rod support includes a second layer of separator beams 1418 coupled to the first layer of separator beams 1418 via spacing pins, and configured to support and store a third layer of rods. In certain example embodiments, the rod rack 1410 includes two rod supports 1414 configured to collectively support a plurality of rods thereacross.
In certain example embodiments, the rod supports 1414 include additional layers of separator beams 1418 configured to support and store additional layers of rods. In certain example embodiments, such as in a POH operation, in which rods are taken out of hole and delivered to the rod rack 1410, additional layers of separator beams 1418 are added when the previous layer is filled to capacity with rods. Conversely, in a RIH operation, in which rods are delivered from the rod rack 1410 to be brought down-hole, a layer of separator beams 1418 is removed when all the rods supported by that layer have been delivered, so that the layer of rods below said layer of separator beams 1418 can be accessed. In certain example embodiments, each rod support 1414 further includes a proximal end 1422 and a distal end 1424, with the proximal end 1422 adjacent to the base 1010 of the catwalk 104 and the distal end 1424 opposite the proximal end 1422. The length of the rod supports 1414, the base beams 1416, and the separator beams 1418 are defined as the distance between the proximal end 1422 and the distal end 1424. In certain example embodiments, each rod support 1414 further comprises an end jack 1420 coupled to the distal end 1422. The end jacks 1420 are respectively coupled to the base beams 1416 and are configured to raise and/or lower the base beams 1416 by the distal end 1424 while the proximal ends 1422 remain at the same height, thereby placing the rod support 1414 at either an upward sloping angle with respect to the proximal end 1422, a downward sloping angle with respect to the proximal end 1422, or at the same height as the proximal end 1422.
In certain example embodiments, each of the separator beams 1418 is coupled to a ramp 1426 at the proximal end 1422. In certain example embodiments, the ramp 1426 is adjustable via a raising a lowering mechanism on the separator beams 1418. In certain example embodiments, all the of ramps 1426 are adjusted together as one. Specifically, in such embodiments, the ramp 1426 can be configured to slope upward from the respective separator beam 1418 towards the unit 1010 or to slope downward from the respective separator beam 1418 towards the unit 1010. In certain example embodiments, the ramps 1426 facilitate delivery of rods from the rod rack 1410 onto the carriage 118 when the ramps 1426 slope down from the beams towards the carriage. Conversely, the ramps 1426 facilitate delivery of rods from the carriage 118 onto the rod rack 1410 when the ramps 1426 slope down from the carriage towards to the beams. Thus, the angle of the ramps 1426 can be adjusted depending on the desired operation (e.g., POH, RIH).
In certain example embodiments, the racking system 106 includes at least one tubular rack 1412. Similar to the rod rack 1410, the tubular rack 1412 includes a plurality of tubular supports 1428 configured to collectively support a plurality of tubulars thereacross. For example, the illustrated tubular rack 1412 includes two tubular supports 1430. In certain other example embodiments, the tubular rack 1412 includes more than two tubular supports 1430. In certain example embodiments, each tubular support 1430 includes a base beam 1416. In certain example embodiments, each tubular support 1430 includes a base beam 1416 and one or more separator beams 1418 stacked above the base beam 1416 via one or more spacing pins or other spacing devices. In certain example embodiments, the base beams 1416 of the tubular supports 1430 are configured to support and store a first layer of tubulars across the length of the base beams 1416. In certain example embodiments, each tubular support 1430 includes a first separator beam 1418, the first separator beams 1418 collectively making up a first layer of separator beams 1418. The first layer of separator beams 1418 of the tubular support 1430 is configured to support and store a second layer of tubulars above the first layer tubulars stored on the base beams 1416. In certain example embodiments, the rod support includes a second layer of separator beams 1418 coupled to the first layer of separator beams 1418 via spacing pins, and configured to support and store a third layer of rods. In certain example embodiments, the tubular rack 1412 includes two tubular supports configured to collectively support a plurality of tubulars there across.
In certain example embodiments, the tubular support 1430 include additional layers of separator beams 1418 configured to support and store additional layers of tubulars. In certain example embodiments, such as in a POH operation, in which tubulars are taken out of hole and delivered to the tubular rack 1412, additional layers of separator beams 1418 are added when the previous layer is filled to capacity with tubular. Conversely, in a RIH operation, in which tubulars are delivered from the tubular rack 1412 to be brought down-hole, a layer of separator beams 1418 are removed when all the tubulars supported by that layer have been delivered, so that the layer of tubulars below said layer of separator beams 1418 can be accessed.
In certain example embodiments, each tubular support 1430 further includes a proximal end 1422 and a distal end 1424, with the proximal end 1422 adjacent to the base 1010 of the catwalk 104 and the distal end 1424 opposite the proximal end 1422. The lengths of the tubular support 1430, the base beams 1416, and the separator beams 1418 are defined as the distance between the proximal end 1422 and the distal end 1424. In certain example embodiments, each tubular support 1430 further comprises an end jack 1420 coupled to the distal end 1422. The end jacks 1420 are respectively coupled to the base beams 1416 and are configured to raise and/or lower the base beams 1416 by the distal end 1424 while the proximal ends 1422 remain at the same height, thereby placing the tubular support 1430 at either an upward sloping angle with respect to the proximal end 1422, a downward sloping angle with respect to the proximal end 1422, or at the same height as the proximal end 1422.
In certain example embodiments, each of the separator beams 1418 is coupled to a ramp 1426 at the proximal end 1422. In certain example embodiments, the ramp 1426 is adjustable. Specifically, in such embodiments, the ramp 1426 can be configured to slope upward from the respective separator beam 1418 or base beam 1416 towards the unit 1010 or to slope downward from the respective separator beam 1418 or base beam 1416 towards the unit 1010. In certain example embodiments, the ramps 1426 facilitate delivery of tubulars from the tubular rack 1412 onto the carriage 118 when the ramps 1426 slope down from the beams towards the carriage. Conversely, the ramps 1426 facilitate delivery of rods from the carriage 118 onto the tubular rack 1412 when the ramps 1426 slope down from the carriage towards to the beams. Thus, the angle of the ramps 1426 can be adjusted depending on the desired operation (e.g., POH, RIH). In certain example embodiments, the racking system 106 further includes one or more rotating indexers interfacing between the racking system 106 and the catwalk 104. The indexers provide a means of transporting rods and/or tubular between the racking system 106 and the catwalk 104. The indexers are described in further detail below and with reference to
In certain example embodiments, the racking system 106 includes two tubular racks 1412, one disposed on each side of the catwalk 104. In certain other example embodiments, the racking system 106 includes one tubular rack 1412 and one rock rack 1210, as illustrated in
In a RIH operation, as illustrated in
In a POH operation, as illustrated in
In certain example embodiments, the rod clamp 1704 is disposed on the base 1702. The rod clamp 1704 is configured to clamp onto and suspend a rod string at certain times during a POH or RIH operation. The rod positioner assembly 1706 is disposed above the rod clamp 1704 via a set of hydraulic raising cylinders 1708. The rod positioner assembly 1706 is configured to grip and support the rod string at certain times during the POH or RIH operations. In certain example embodiments, the rod positioner assembly 1706 is configured to hold the rod string in place to resist torque applied to the rod string. In certain example embodiments, the rod positioner assembly 1706 is configured to be raised or lowered with respect to the rod clamp 1704 via the hydraulic raising cylinders 1708. The rod positioner assembly 1706 includes a rod opening 2102 formed therethrough for receiving and engaging a rod. The opening 2102 is closable in order to clamp onto and position the rod. The base 1702 of the tong system is couplable to the top of a wellhead, a blowout preventer (BOP) on the wellhead, or wellhead accessories.
The tong assembly 1710 is configured to engage a rod string at the junction between a first rod of the rod string and the second rod of the rod string, or the junction between a rod and a rod string. The second rod of the rod string may also be called the remainder of the rod string. In a POH operation, the tong assembly 1710 is configured to unthread or decouple the first rod of the rod string from the second rod of the rod string. In a RIH operation, the tong assembly 1710 is configured to thread or couple the rod to a rod string. The tong assembly 1710 is disposed on a horizontal track 1718 on which the tong assembly 1710 can slide between a disengaged position (
The spring loaded supports 1722 support the rod tong 1726 such that the rod tong 1722 has a certain degree of vertical motion to accommodate the upward movement of a rod as it is unthreaded from a rod string or the downward movement of a rod as it is threaded onto a rod string. The rod tong 1726 is configured to engage onto a junction between a rod and a rod string and either coupled the rod to the rod string or decouple the rod from the rod string. In a POH operation, the rod tong 1726 unthreads the rod from the rod string or a coupler on the rod string. In a RIH operation, the rod tong 1726 threads the rod onto the rod string or a coupler on the rod string. The stabilizing block 1724 provides a stable structure for the rod positioner assembly 1706 to engage onto as it holds a rod string stable against torque applied by the rod tong 1726 as it threads or unthreads a rod to or from a rod string.
The centralizer arm 1712 is coupled to the base 1702 and extends upward. The centralizer arm 1712 includes a guide device 1714 disposed at a distal end. In certain example embodiments, The centralizer arm 1712 is configured to move into a parked position, a neutral position, and a reach position. The centralizer arm 1712 and guide device 1714 lean away from the rod positioner assembly 1706 in the parked position. The guide device 1714 is directly above the tong assembly 1710 in the neutral position, and the centralizer arm 1712 extends across the rod positioner assembly 1706 in the reach position
The centralizer arm 1712 includes a hinge 1728, allowing the centralizer arm 1712 and hinge forward towards and over the rod positioner assembly 1706 (
In certain example embodiments, the rod positioner assembly 1706 includes a first layer comprising a rod coupling clamp 2020, a second layer comprising a rod flat clamp 2022, and a third layer comprising a rod positioner 2024.
a illustrates a top view of the rod flat clamp 2022 in an open position, in accordance with example embodiments of the present disclosure.
a illustrates a top view of rod positioner 2024 in an open position, in accordance with example embodiments of the present disclosure.
In certain example embodiments, the rod coupling clamp 2020, the rod flat clamp 2022, and the rod positioner 2024 are stacked on top of one another such that their respective openings 2308, 2404, 2504 are aligned and configured to collectively receive a rod therethrough. In certain example embodiments, engagement of the rod positioner assembly 1706 onto a rod includes the collective engagement of the rod coupling clamp 2020, the rod flat clamp 2022, and the rod positioner 2024 onto the rod, which includes moving each of the rod coupling clamp 2020, the rod flat clamp 2022, and the rod positioner 2024 from their open positions to their closed positions. In certain example embodiments, in a RIH operation, the coupling clamp does not close.
In certain example embodiments, the jaw blocks 2612 are configured to extend out, engage the rod, and retract into an area within the tong base 2602. In certain example embodiments, a cam and roller within the tong base 2602 drives the jaw inserts 2614 to force out and to retract them. To the side of each jaw block 2612 are an outside screw 2606, an inside screw 2608, and a spring 2610 disposed between the outside screw 2606 and the inside screw 2608. In certain example embodiments, the outside and inside screws 2606, 2608 are disposed through a slot 2626 in the upper plate 2604, providing a path of horizontal movement for the inside screw 2608. Specifically, the outside screw 2606 is fixed to the upper plate 2604, and the inside screw 2608 is fixed to the jaw assembly 2624. The slot 2626 provides a movement track for the inside screw 2608 as the jaw die 2614 moves in and out with respect to the upper plate 2604. In certain example embodiments, the jaw dies 2614 are configured to engage an interfacing portion 2618 of the rod 2616 from opposite sides. Specifically, in certain example embodiments, the interfacing portion 2618 of the rod 2616 includes one or more flat surfaces and/or edges. In such example embodiments, the jaw inserts 2614 engage onto the flat surfaces or the edges to obtain a grip on the rod 2616 in which a working torque can be applied.
The upper plate 2604 and the jaw assembly 2624 are configured to rotate in circles about a center point between the jaw assemblies 2624 with respect to the tong base 2604. When the jaw inserts 2614 are engaged onto the rod 2616, rotation of the upper plate 2604 and jaw assembly 2624 rotates the rod 2616. Thus, the rod 2616 can be threaded onto or unthreaded from a rod string depending on the direction of rotation.
In certain example embodiments, the tubular slip 2904 is disposed on the base 2902. The tubular slip 2904 is configured to hold and suspend a tubular string at certain times during a POH or RIH operation.
The tubular tong assembly 2906 is configured to engage a tubular string at the junction between a first tubular of the tubular string and the second tubular of the tubular string, or the junction between a tubular and a tubular string. The second tubular of the tubular string may also be called the remainder of the tubular string. In a POH operation, the tubular tong assembly 2906 is configured to unthread or decouple the first tubular of the tubular string from the second tubular of the tubular string. In a RIH operation, the tubular tong assembly 2906 is configured to thread or couple the tubular to a tubular string. The tubular tong assembly 2906 is disposed on a horizontal track 2908 on which the tong tubular tong assembly 2906 can slide between a disengaged position, as illustrated, and an engaged position. In the engaged position, the tubular tong assembly 2906 is disposed above and aligned with the tubular slip 2904. In the disengaged position, the tubular tong assembly 2906 is out of alignment with the tubular slip 2904 or to the side of the tubular position 2904. In certain example embodiments, the horizontal track 2908 is disposed on a riser 2910, which is disposed on the base 2902.
In certain example embodiments, the tubular tong assembly 2906 further includes a centralizer guide 2918, also called a lower guide, one or more spring loaded supports 2920, a backup jaw 2922, and a tubular tong 2924. In an example embodiment, the centralizer guide 2918 is disposed above the tubular tong 2924. The centralizer guide 2918 is configured to receive a tubular therethrough and align the tubular with the tubular tong 2924 such that the tubular is in the appropriate position for coupling to a tubular string by the tubular tong 2924. In certain example embodiments, the centralizer guide 2918 includes an expandable opening configured to accommodate tubulars of various sizes, and to accommodate easy disengagement of the tubular tong assembly 2906 from a tubular or tubular string.
The spring loaded supports 2920 support the tubular tong 2924 such that the tubular tong 2924 has a certain degree of vertical motion to accommodate the upward movement of a tubular as it is unthreaded from a tubular string or the downward movement of a tubular as it is threaded onto a tubular string. The tubular tong 2924 is configured to engage onto a junction between a tubular and a tubular string and either couple the tubular to the tubular string or decouple the tubular from the tubular string. In a POH operation, the tubular tong 2924 unthreads the tubular from the tubular string or a coupler on the tubular string. In a RIH operation, the tubular tong 2924 threads the tubular onto the tubular string or a coupler on the tubular string. In certain example embodiments, the backup jaw is configured to engage onto the tubular string and hold the tubular string against torque applied by the tubular tong 2924 as it rotates the tubular.
The centralizer arm 2912 is coupled to the base 2904 and extends upward. The centralizer arm 2912 includes a guide device 2914 disposed at a distal end. The centralizer arm 2912 includes a hinge 2916, allowing the centralizer arm 2912 and hinge forward towards and over the tubular slip 2904, hinge away from tubular slip 2904, or align with the tubular slip 2904. The guide device 2914 of the centralizer arm 2912, also known as an upper centralizer is configured to interface with a distal end of a tubular that is suspended from the traveling block system 114. Specifically, in a POH operation, the centralizer arm 2912 hinges forward such that the guide device 2914 guides the distal end of a tubular that has been unthreaded from the tubular string, and hanging from the traveling block system, towards and onto the skate 120 of the carriage 118. In a RIH operation, the guide device 2914 receives the distal end of a tubular as the traveling block system 114 picks up the tubular from the carriage 118. As the guide device 2914 is in alignment with the lower centralizer 2918 in such a position, the distal end of the tubular is aligned with a tubular string being suspended by the tubular slip 2904. Thus, the tubular is in position to be threaded onto the tubular string by the tubular tong assembly 2906.
In certain example embodiments, the user interface 3010 can be used to input values or settings for certain aspects of the processes. For example, the user interface 3010 can be used to define certain parameters associated with a certain action. Specifically, for example, the user interface 3010 may be used to define a torque, a duration, speed, number of revolutions, distance of travel, and the like. In certain example embodiments, the user interface 3010 can also be used to enter parameters associated with particular well conditions, like as rod or tubular grade, rod or tubular size, total number of segments, angle, and the like. In certain example embodiments, the user interface 3010 further includes a display 3012 for displaying information, prompts, status, feedback, and the like to the user. In certain example embodiments, the user interface 3010 may accept a security key to enable operational access to the control panel 3000. The user interface 3010 can also be used to define various other aspects of the system 100.
In certain other example embodiments, various other input devices can be used in place of the input devices shown in
In certain example embodiments, the user interface 3010 is coupled to a central processing unit (CPU) including at least a processor and a memory configured to send signals to respective parts of the well service rig system 100 to carry out the desired process. In certain example embodiments, certain action sequences of various processes (e.g., rod RIH, rod POH, tubular RIH, tubular POH) are saved in the CPU and can be called upon through selections made in the control panel 3000. Such automation lessens the amount of input and interaction required from the user or operator during such processes.
The tong controls 3104 further include a positioner control 3116, a gate control 3104, a die position control 3120, a tubing back-up control 3122, and a tong spin control 3124. The positioner control 3116 is configured to move the tong 1710 on its horizontal base. The gate control 3104 is configured to open and close the retractable barrier 2622. The die position control 3120 is configured to control direction of engagement of the jaw of the tong for make-up or break-out positions. The tubing back-up control 3122 is configured to control engagement of the tubing back-up. The tong spin control 3124 is configured to control rotation of the tong for threading or unthreading a rod or tubular. The rod/tubular selection switch 3106 allows the user to input whether the intended operation is a rod operation or a tubular operation. In certain example embodiments, selection of rod or tubular will render certain control selections null if they do not pertain to the rod/tong selection.
The control panels illustrates in
The method 3200 further includes engaging a tong assembly onto the first rod, and the tong assembly twists the first rod and unthreads the first rod from the second rod (step 3208). In certain example embodiments, the tong assembly twists the first rod and unthreads the first rod from a coupling on the second rod. After the first rod is decoupled from the second rod, the method 3200 includes disengaging the tong assembly from the first rod (step 3210). Thus, the tong assembly, which is slidable along a horizontal track, retracts away from the first rod. In certain example embodiments, the method further includes lowering and placing the first rod onto a carriage, wherein the carriage is raised at an angle (step 3212). In certain example embodiment, this includes raising the carriage from a horizontal position to a sloped and extended position if not already done so. In certain example embodiments, this also includes pushing and guiding a distal end of the first rod into a skate in the carriage. The method further includes guiding the first rod into the carriage by sliding the skate down the carriage until the first rod is fully disposed on the carriage (step 3214).
The method further includes extending the link tilt system and releasing the first rod from the elevator of the traveling block system when the first rod is fully disposed on the carriage (step 3216). The method 3400 further includes lowering the carriage into the horizontal position (step 3218). The method further includes tilting the carriage and discharging the first rod from the carriage onto a rod racking system (step 3220). In certain example embodiments, discharging the first rod from the carriage onto the rod racking system includes sending the rod from the carriage onto a rotating indexer, which carries the rod and rotates it from a first side facing the carriage to a second side facing the rod racking system. The rod then hits a discharging ramp as it is rotated through the rod racking system. The ramp discharges the rod out of the indexer and sends the rod onto a plurality of beams of the rod racking system. During this process the rod clamp closes and the rod positioner is lowered. The link tilt is then lowered, allowing the elevators to connect to the rod string and transfer the string weight to the rod elevator. The rod clamp then opens. In certain example embodiments, the method 3200 repeats to separate and pull out all the segments of the rod string.
The method 3300 further includes engaging a tong assembly onto the first tubular, and the tong assembly twists the first tubular and unthreads the first tubular from the second tubular (step 3308). In certain example embodiments, the tong assembly twists the first tubular and unthreads the first tubular from a coupling on the second tubular. After the first tubular is decoupled from the second tubular, the method 3300 includes disengaging the tong assembly from the first tubular (step 3310). Thus, the tong assembly, which is slidable along a horizontal track, retracts away from the first tubular. In certain example embodiments, the method further includes lowering and placing the first tubular onto a carriage, wherein the carriage is raised at an angle (step 3312). In certain example embodiment, this includes raising the carriage from a horizontal position to a sloped position if not already done so. In certain example embodiments, this also includes pushing and guiding a distal end of the first tubular into a skate in the carriage. The method further includes guiding the first tubular into the carriage by sliding the skate down the carriage until the first tubular is fully disposed on the carriage (step 3314).
The method further includes raising the link tilt system and releasing the first tubular from the elevator of the traveling block system when the first tubular is fully disposed on the carriage (step 3316). The method 3300 further includes lowering the carriage into the horizontal position (step 3318). The method further includes tilting the carriage and discharging the first tubular from the carriage onto a tubular racking system (step 3320). In certain example embodiments, discharging the first tubular from the carriage onto the tubular racking system includes sending the tubular from the carriage onto a rotating indexer, which carries the tubular and rotates it from a first side facing the carriage to a second side facing the tubular racking system. The tubular then hits a discharging ramp as it is rotated through the tubular racking system. The ramp discharges the tubular out of the indexer and sends the tubular onto a plurality of beams of the tubular racking system. During this process, the link tilt is lowered. This allows the elevators to connect to the tubular string, transferring the string weight to the tubular elevator. The tubing slip then opens. In certain example embodiments, the method 3300 repeats to separate and pull out all the segments of the tubular string.
The method 3400 also includes engaging the rod positioner onto a rod string and suspending the rod string down-hole by the rod positioner (step 3410), allowing the the rod string to be released by the rod clamp. In certain example embodiments, engaging the rod positioner onto the rod string further includes raising to a determined position and engaging a rod flat backup onto one or more rod flats of the rod string.
The method 3400 further includes lowering the first rod through the lower centralizer of the tong assembly onto the rod string (step 3412), and engaging the tong assembly onto the first rod and threading the first rod onto the rod string, controlling the connection through precise measurement of CD (Circumferential Differential) (step 3414). After the first rod is coupled to the rod string, the rod positioner is disengaged from the rod string so that the rod string with the first rod can be lowered further into the well hole by the traveling block system. In certain example embodiments, this includes disengaging the rod flat backup from the one or more rod flats and disengaging the tong assembly from the first rod and the rod string and moving the positioner to a lower position, and lowering the rod string further into the well hole by the traveling block system. In certain example embodiments, in order to repeat the method 3400 to add another rod to the rod string, the rod clamp is again engaged onto the rod string via the first rod, and the elevator of the traveling block system is disengaged from the first rod so that the link tilt system can raise the elevator of the traveling block system and can pick up another rod from the catwalk. In certain example embodiments, the method 3400 is repeated until the rod string is fully assembled with the desired number of rods.
In certain example embodiments, engaging, disengaging, lowering and raising the rod positioner assembly, disengaging the rod positioner assembly, engaging and rotating the tong assembly, disengaging the tong assembly, engaging the rod clamp, disengaging the rod clamp, engaging the rod elevator, releasing the first rod from the rod elevator, or any combination thereof is performed in response to a command signal received from a remote or local controller. In certain other example embodiments, engaging, disengaging, lowering and raising the rod positioner assembly, disengaging the rod positioner assembly, engaging and rotating the tong assembly, disengaging the tong assembly, engaging the rod clamp, disengaging the rod clamp, engaging the rod elevator, releasing the first rod from the rod elevator, or any combination thereof is performed in response to a command from a controller in accordance with a preprogrammed set of instructions written on a non-transitory medium.
The method 3500 also includes engaging the tubing slip onto a tubular string and suspending the tubular string down-hole by the tubing slip (step 3510). In certain example embodiments, the tubular string is at least partially supported by a tubing slip.
The method 3500 further includes lowering the first tubular through the lower centralizer of the tong assembly onto the tubular string (step 3512), and engaging the tong assembly onto the first tubular and threading the first tubular onto the tubular string (step 3514). In certain example embodiments, the method 3500 also includes controlling the connection by monitoring and controlling the torque of the tong. In certain example embodiments, the first tubular is threaded onto a coupling of the tubular string. After the first tubular is coupled to the tubular string, the weight is transferred to the elevator of the traveling block systems and the tubing slip is disengaged from the tubular string so that the tubular string with the first tubular can be lowered further into the well hole by the traveling block system. In certain example embodiments, in order to repeat the method 3500 to add another tubular to the tubular string, the tubing slip is again engaged onto the tubular string via the first tubular, and the traveling block system is disengaged from the first tubular so that the traveling block system can pick up another tubular from the catwalk. In certain example embodiments, the method 3500 is repeated until the tubular string is fully assembled with the desired number of tubulars.
In certain example embodiments engaging the tubing slip, disengaging the tubing slip, engaging the tong assembly, disengaging the tong assembly, moving the tong assembly, engaging the back-up jaw, engaging and rotating the upper tong jaw, disengaging the back-up jaw, disengaging the upper tong jaw, engaging the tubular elevator, disengaging the tubular elevator, or any combination thereof is performed in response to a command signal received from a remote or local controller. In certain other example embodiments, engaging the tubing slip, disengaging the tubing slip, engaging the tong assembly, disengaging the tong assembly, moving the tong assembly, engaging the back-up jaw, engaging and rotating the upper tong jaw, disengaging the back-up jaw, disengaging the upper tong jaw, engaging the tubular elevator, disengaging the tubular elevator, or any combination thereof is performed in response to a command from a controller in accordance with a preprogrammed set of instructions written on a non-transitory medium.
Although specific embodiments of the invention have been described above in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects of the invention were described above by way of example only and are not intended as required or essential elements of the invention unless explicitly stated otherwise. Various modifications of, and equivalent steps corresponding to, the disclosed aspects of the example embodiments, in addition to those described above, can be made by a person of ordinary skill in the art, having the benefit of this disclosure, without departing from the spirit and scope of the invention defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/728,156, titled “Automated Workover Rig System,” filed on Nov. 19, 2012, the entirety of which is incorporated by reference herein. The present application is related also to U.S. patent application Ser. No. 14/083,978, entitled “Mechanized and Automated Well Service Rig System,” filed with the U.S. Patent and Trademark Office on Nov. 19, 2013, and whose entire contents are hereby incorporated herein by reference. The present application is related also to U.S. patent application Ser. No. 14/083,996, entitled “Mechanized and Automated Well Service Rig,” filed with the U.S. Patent and Trademark Office on Nov. 19, 2013, and whose entire contents are hereby incorporated herein by reference. The present application is related also to U.S. patent application Ser. No. 14/084,017, entitled “Mechanized and Automated Catwalk System,” filed with the U.S. Patent and Trademark Office on Nov. 19, 2013, and whose entire contents are hereby incorporated herein by reference. The present application is related also to U.S. patent application Ser. No. 14/084,040, entitled “Tong System for Tripping Rods and Tubulars,” filed with the U.S. Patent and Trademark Office on Nov. 19, 2013, and whose entire contents are hereby incorporated herein by reference. The present application is related also to U.S. patent application Ser. No. 14/084,089, entitled “Methods of Mechanized and Automated Tripping of Rods and Tubulars,” filed with the U.S. Patent and Trademark Office on Nov. 19, 2013, and whose entire contents are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61728156 | Nov 2012 | US |