The present invention relates to methods and devices for use in spinal surgery, and in particular to rod approximator devices and methods for using the same.
Spinal fixation devices are used in orthopedic surgery to align and/or fix a desired relationship between adjacent vertebral bodies. Such devices typically include a spinal fixation element, such as a relatively rigid fixation rod, that is coupled to adjacent vertebrae by attaching the element to various anchoring devices, such as hooks, bolts, wires, or screws. The fixation rods can have a predetermined contour that has been designed according to the properties of the target implantation site, and once installed, the instrument holds the vertebrae in a desired spatial relationship, either until desired healing or spinal fusion has taken place, or for some longer period of time.
Spinal fixation devices can be anchored to specific portions of the vertebra. Since each vertebra varies in shape and size, a variety of anchoring devices have been developed to facilitate engagement of a particular portion of the bone. Pedicle screw assemblies, for example, have a shape and size that is configured to engage pedicle bone. Such screws typically include a threaded shank that is adapted to be threaded into a vertebra, and a head portion having a rod-receiving element, usually in the form of a U-shaped slot formed in the head. A set-screw, plug, or similar type of fastening mechanism, is used to lock the fixation rod into the rod-receiving head of the pedicle screw. In use, the shank portion of each screw is threaded into a vertebra, and once properly positioned, a fixation rod is seated through the rod-receiving member of each screw and the rod is locked in place by tightening a cap or other fastener mechanism to securely interconnect each screw and the fixation rod.
While current spinal fixation systems have proven effective, difficulties have been encountered in introducing rods into the rod-receiving member of various fixation devices. In particular, it can be difficult to align and seat the rod into the rod receiving portion of adjacent fixation devices due to the positioning and rigidity of the spinal deformity into which the fixation device is placed and due to the desire to correct the deformity using mechanical forces applied through the rigid spinal construct. Thus, the use of a spinal rod approximator device, also sometimes referred to as a spinal rod reduction device, is often required in order to grasp the head of the fixation device and reduce or approximate the rod into the rod-receiving head of the fixation device.
While several rod approximator devices are known in the art, some tend to be difficult and very time-consuming to use. Accordingly, there is a need for improved rod approximator devices and methods for seating a spinal rod in a rod-receiving member of one or more spinal implants.
The present invention generally provides a spinal rod approximator device for moving a spinal rod into the rod-receiving member of a spinal implant. In one embodiment, the device includes an implant-gripping member having a distal portion that extends in a direction substantially transverse to a proximal portion, and that is adapted to engage the rod-receiving member of a spinal implant. A rod-engaging member is slidably coupled to the implant-gripping member at a position proximal to the implant-gripping member, and the rod-engaging member includes a distal portion that extends transverse to a proximal portion. The device further includes a pusher member coupled to at least one of the implant-gripping member and the rod-engaging member such the pusher member is effective to move at least one the implant-gripping member and the rod-engaging member with respect to one another.
The distal portion of the rod-engaging member and the distal portion of the implant-gripping member can each have a variety of configurations. In an exemplary embodiment, the distal portion of the rod-engaging member includes opposed arms, each having a rod-receiving recess formed on a distally-facing surface thereof, and the distal portion of the implant-gripping member includes a U-shaped member having opposed legs that are adapted to be positioned under a distal end of a rod-receiving member of a spinal implant. A proximal facing surface of the U-shaped member can be substantially concave, and/or at least a portion of the U-shaped member can be substantially planar. In an exemplary embodiment, the opposed arms of the rod-engaging member are spaced apart from one another by a distance that is greater than a distance between the opposed legs of the implant-gripping member.
The pusher member can also have a variety of configurations. In one embodiment, the pusher member is fixedly, but freely-rotatably coupled to one of the implant-gripping member and the rod-engaging member, and it is threadably mated to the other one of the implant-gripping member and the rod-engaging member such that rotation of at least a portion of the pusher member is effective to move at least one of the implant-gripping member and the rod-engaging member with respect to one another. More preferably, the pusher member is a threaded rod extending through a threaded bore formed in a portion of the implant-gripping member, and wherein the threaded rod includes a distal end mated to a portion of the rod-engaging member. The threaded rod can include a handle member formed on a proximal end thereof. In another embodiment, the pusher member can be fixedly, but freely-rotatably coupled to the implant-gripping member and it can be releasably, threadably mated to the rod-engaging member. A release mechanism can be provided for releasing the threaded engagement between the pusher member and the rod-engaging member.
In yet another embodiment of the present invention, a spinal rod approximator is provided having first and second components that are slidably coupled to one another and that are adapted for relative movement along a sliding axis. The first component includes an implant-gripping portion offset from the sliding axis and adapted to engage the rod-receiving member of a spinal implant, and the second component includes a rod-engaging portion offset from the sliding axis and adapted to engage a spinal rod to move the spinal rod toward the rod-receiving member of the spinal implant being engaged by the implant-gripping portion. In an exemplary embodiment, the implant-gripping portion and the rod-engaging portion each extend in a direction substantially transverse to the sliding axis. The device can also optionally include an actuator member coupled to each of the first and second components and effective to move at least one of the components with respect to the other component. The actuator member can be, for example, an elongate rod having a threaded portion adapted to threadably couple to the first component, and having a portion rigidly mated to the second component, such that rotation of the actuator member is effective to move the second component with respect to the first component. A release mechanism can be provided for releasing the threaded engagement between the actuator member and the first component.
In other aspects, a method for approximating a spinal rod into a rod-receiving member of a spinal implant is provided using a spinal rod approximator device having an implant-gripping member and a rod-engaging member slidably coupled to one another and each having a distal portion that is offset from a sliding axis of the device. The method includes the steps of engaging a rod-receiving member of a spinal implant disposed in a patient's vertebrae with the implant-gripping member, engaging a spinal rod spaced apart from the rod-receiving member of a spinal implant with the rod-engaging member, and actuating the spinal rod approximator device to move the spinal rod engaged by the rod-engaging member into the rod-receiving member of the spinal implant engaged by the implant-gripping member.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The present invention provides a spinal rod approximator that is effective to approximate a spinal rod into the rod-receiving member of a spinal implant. In general, the device includes first and second components that are slidably coupled to one another. The first component, hereinafter referred to as the implant-gripping member, has an implant-gripping portion that is adapted to engage the rod-receiving member of a spinal implant, and a second component, hereinafter referred to as the rod-engaging member, has rod-engaging portion that is slidably coupled to the implant-gripping member. A pusher member can be coupled to one of the implant-gripping member and the rod-engaging member, and it can be threadably mated to the other one of the implant-gripping member and the rod-engaging member. In use, the pusher member is effective to impart relative motion between the implant-gripping member and the rod-engaging member to move a spinal rod into the rod-receiving member of a spinal implant.
The implant-gripping member 12, which is shown in more detail in
The shape of the proximal portion 12a of the implant-gripping member 12 can vary, but as shown it has a generally elongate shape with a substantially rectangular or square cross-section. The proximal-most end of the proximal portion 12a can include an extension portion 12c that extends substantially transverse to the sliding axis Ls in a direction that is opposite to the distal portion 12b. The extension portion 12c allows the implant-gripping member 12 to mate to the pusher member 16 at a position that is offset from the sliding axis Ls of the implant-gripping member 12. This is particularly advantageous in that the position of the pusher member 16 does not hinder visual access to the surgical site, or access to the implant or instrument. The pusher member 16 will be discussed in more detail below.
In order to mate the proximal portion 12a of the implant-gripping member 12 to the rod-engaging member 14, the proximal portion 12a can include a longitudinal slot 18 extending therethrough for slidably receiving a portion of the rod-engaging member 14. The slot 18 preferably extends from a position adjacent the proximal-most end, e.g., from a position just distal to the extension portion 12c, and it terminates at a position that is adjacent to the distal portion 12b. This allows the rod-engaging member 14 to move a distance that is sufficient to allow a spinal rod to be engaged and moved into the rod-receiving member of a spinal implant being engaged by the implant-gripping member 12. A person skilled in the art will appreciate that a variety of other techniques can be used to slidably mate the implant-gripping member 12 and the rod-engaging member 14.
The distal portion 12b of the implant-griping member 12 can also vary, but it should be adapted to engage the rod-receiving member of a spinal implant. In an exemplary embodiment, shown in
A person skilled in the art will appreciate that a variety of other techniques can be used to engage a rod-receiving member of a spinal implant, and that the engagement mechanism can vary depending on the type of implant being engaged. By way of non-limiting example, the distal portion 12b of the implant-gripping member 12 can include one or more legs that are adapted to slide into opposed slots formed on the rod-receiving member, or it can include legs that are adapted to engage a ridge formed around the rod-receiving member. In other embodiments, the distal portion 12b of the implant-gripping member 12 can include one or more pin members that fit within corresponding detents or bores formed in the rod-receiving member of a spinal implant.
The rod-engaging member 14 of the rod approximator 10 can also have a variety of configurations, but it should be adapted to engage a spinal rod to move the rod into the rod-receiving member of a spinal implant being engaged by the implant-gripping member 12. As shown in
The distal portion 14b of the rod-engaging member 14 is adapted to engage a spinal rod to move the rod into a rod-receiving member of a spinal implant being engaged by the implant-gripping member 12. While the distal portion 14b of the rod-engaging member 14 can have virtually any configuration,
As indicated above, the rod approximator device 10 also includes a pusher member 16 that is effective to move the rod-engaging member 14 and the implant-gripping member 12 with respect to one another. While a variety of techniques can be used to effect movement of the two members 12, 14, the pusher member 16 preferably includes a handle member 16a having an elongate rod 16b extending distally therefrom, as shown in
In an exemplary embodiment, a proximal portion 16b1 of the elongate rod 16b has external threads and extends through an internally threaded bore 20 formed in the extension member 12c of the implant-gripping member 12, and the distal portion 16b2 of the rod 16b is fixedly, but freely-rotatably mated to the bearing 14d, which is attached to the rod-engaging member 14. As a result, rotation of the pusher member 16, e.g., using handle 16a, will controllably and mechanically move the rod-engaging member 14 along the sliding axis Ls with respect to the implant-gripping member 12, thereby allowing a rod to be moved into the rod-receiving member of a spinal implant being engaged by the implant-gripping member 12. While a variety of techniques can be used to mate the distal portion 16b2 of the rod 16b of the pusher member 16 to the bearing 14d of the rod-engaging member 14,
In another embodiment of the present invention, the spinal rod approximator can include a release mechanism that is effective to release the threaded engagement between the pusher member and the rod-engaging member. This allows the rod-engaging member to slid freely along the sliding axis, thereby providing the surgeon with a device that is easier to use, and more particularly it provides the surgeon with more control over the position of the rod-engaging member. By way of non-limiting example,
The device 100 is similar to device 10 in that it includes an implant-gripping member 112 having a proximal portion 112a and a distal portion 112b with a U-shaped implant-gripping portion 126 formed thereon, and a rod-engaging member 114 that is slidably mated to the implant-gripping member 112. The device 10 further includes a pusher member 116 having a distal end 116b2 that fixedly, but freely-rotatably mates to the rod-engaging member 114, and a proximal portion 116b1 that is threadably mated to an extension portion 112c of the implant-gripping member 112. One difference between devices 100 and 10 is that the rod-engaging member 114 is formed from first and second opposed rod-engaging arms 124a, 124b that extend substantially transverse to the sliding axis Ls of the device 100 and that mate together around the implant-gripping member 112 to slidably engage the rod-engaging member 114 to the implant-gripping member 112. The opposed arms 124a, 124b, which are shown in more detail in
The release mechanism 130, which is shown in more detail in
In yet another embodiment of the present invention, shown in
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.