The present invention relates to a rod guide of a type suitable for guiding a sucker rod within production tubing of an oil or gas well. More particularly, the invention relates to a rod guide for guiding a rotary sucker rod which powers a progressive cavity (PC) pump in a well.
Various types of rod guides have been devised for guiding a sucker within production tubing. Many rod guides are intended for use with a reciprocating sucker rod, and other rod guides are primarily intended for use with a rotating sucker rod. Some guides have utility for either a reciprocating rod or a rotating rod, although design considerations generally dictate that a sucker rod guide be primarily intended for one application.
Compared to commonly used beam pumps which are powered by a reciprocating sucker rod, progressive cavity pumps are generally able to deal with a high concentration of sand or other particulate in the recovered fluid. In many cases, however, rod guides for PC pumps wear excessively when subjected to the upwardly moving fluid and sand within the production tubing. The cost of replacing PC rod guides for these applications thus represents a significant cost to the well operator. Other rod guides have low erodeable wear volume, i.e., the volume of the guide radially exterior of the rod coupling is minimal, and wear of that excess material reduces the purpose of the guide. Other rod guides have poor flow characteristics, meaning that the flow channels around the guide result in a high pressure loss, thereby increasing the power required to pump the fluids to the surface. Other types of rod guides allow sand or other particles to become trapped or imbedded between components of the guide, thereby substantially contributing to premature wear of the guide.
Many rod guides designed for PC pumps include a rotor sleeve secured to the rod string and a stator sleeve positioned about the rotor sleeve. The stator sleeve conventionally has an elongate slot, which is spread apart to position the stator sleeve on the rotor sleeve. The slot facilitates installation, but also allows sand and other debris from the well to get trapped between the rotor sleeve and the stator sleeve. Also, the rod guide rotor sleeve with a conventional slot may have problems when used in high temperature downhole applications, since the stator sleeve may tend to open when exposed to high temperature.
The disadvantages of the prior art are overcome by the present invention, and an improved rod guide particularly suited for a progressive cavity pump is hereinafter disclosed.
In one embodiment, a rod guide for positioning on a rotating sucker rod which powers a downhole progressive cavity pump for pumping downhole fluids to the surface includes a rotor sleeve secured to the rod, and a stator sleeve positioned about the rotor sleeve. The stator sleeve has a sleeve body with a generally circular configuration with opposing circumferential ends spreadable to position the stator sleeve about the rotor sleeve. The stator sleeve has a plurality of ribs extending outward from the sleeve body for passing fluid between the stator sleeve body and tubing and circumferentially between the two or more ribs. One circumferential end of the stator has a catch member, and an opposing circumferential end of the stator sleeve has a receiving cavity for receiving at least a portion of the catch member. The circumferential ends of the stator sleeve are connected via the catch member and the receiving cavity.
According to one embodiment of the method of the invention, the rotor sleeve is secured to the sucker rod, and the stator sleeve positioned about the rotor sleeve. The stator sleeve has a sleeve body with a generally circular configuration with opposing circumferential ends separable to position the stator sleeve about the rotor sleeve, and has a plurality of ribs extending outward from the sleeve body. The method includes providing one circumferential end of the stator sleeve with a catch member and an opposing circumferential end of the stator sleeve with a receiving cavity for receiving at least a portion of the catch member. The circumferential ends of the stator sleeve are connected about the rotor sleeve by mating the catch member and the receiving cavity.
It is a feature of the invention to provide a rod guide for powering a progressive cavity pump, wherein one circumferential end of the stator sleeve includes a catch member and an opposing circumferential end of the stator sleeve includes a receiving cavity for receiving at least a portion of the catch member. A significant advantage of the present invention is that by connecting the ends of the stator sleeve, little or no sand or other debris is allowed to pass radially through the stator sleeve and in the cavities between the rotor sleeve and the stator sleeve.
These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
Referring to
Referring again to
A significant feature of the present invention is that the catch member and the receiving cavity are provided axially along substantially the length of the stator sleeve. Thus, the catch member 52 and the cavity 54 as shown in FIG. 4 are each substantially a vertical column, and similarly the catch member 72 and the receiving cavity 76 are vertical columns. By providing the catch member and the receiving member along substantially the entire length of the stator sleeve, the forces to hold the stator sleeve together on the rotor sleeve are increased. Moreover, this engagement substantially minimizes the likelihood of sand and other debris moving radially between the stator sleeve and the rotor sleeve, which was a problem with prior art rod guides which had an open slot when the stator sleeve was positioned on the rotor sleeve. While sand or other debris may pass between the ends of the stator sleeve and the respective stop surfaces 26, 28, as shown in
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.