Implant connectors and related methods are disclosed herein, including rod-to-rod connectors having robust rod closure mechanisms and related methods.
Fixation systems can be used in orthopedic surgery or neurosurgery to maintain a desired spatial relationship between multiple bones or bone fragments. For example, various conditions of the spine, such as fractures, deformities, and degenerative disorders, can be treated by attaching a spinal fixation system to one or more vertebrae. Such systems may include a spinal fixation element, such as a rod, that is coupled to the vertebrae by one or more bone anchors, such as screws or hooks. The fixation system can also include various other implants, such as rod-to-rod connectors for attaching multiple rods to one another. Once installed, the fixation system holds the vertebrae in a desired position until healing or spinal fusion can occur, or for some other period of time.
There are many instances in which it may be desirable to connect multiple implants to each other. For example, some revision surgeries involve extending a previously-installed construct to additional vertebral levels by coupling a newly-installed spinal rod to a previously-installed rod. By way of further example, aspects of the patient's anatomy, the surgical technique used, or the desired correction may require that multiple spinal rods be connected to one another. As yet another example, coupling multiple rods to one another can improve the overall strength and stability of an implanted construct.
There can be various difficulties associated with connecting multiple implants to each other. The available space for the implanted construct can often be very limited, particularly in the cervical and/or lumbar areas of the spine. Also, manipulating and handling these relatively small implants at the surgical wound may be challenging or cumbersome for the surgeon. There is a continual need for improved implant connectors and related methods.
Various rod-to-rod connectors having robust rod closure mechanisms and related methods are disclosed herein, e.g., for enhancing the locking or clamping force applied to a rod. An exemplary connector can be useful to provide a robust rod closure mechanism for rod-to-rod connections in which the run-on rod length of a rod slot is minimal, e.g., less than or equal to 4 millimeters. The connector can include a moveable jaw that is partially disposed within a connector body and configured to pivot or translate relative to the connector body to form a fully closed or substantially closed rod slot around a first rod. The closed rod slot can be formed between a first rod-receiving recess defined in the connector body and a counterpart first rod-receiving recess defined in the moveable jaw. The locking or clamping force of the moveable jaw can be amplified by a mechanical advantage caused by the force exerted to lock a second rod in a second rod-receiving slot of the connector body.
In some embodiments, a rod-to-rod connector can include a connector body defining a first rod-receiving recess and a second rod-receiving slot and a moveable jaw defining a counterpart first rod-receiving recess and moveably coupled to the connector body. The moveable jaw can be configured to move relative to the connector body to form a closed rod slot around a first rod between the first rod-receiving recess and the counterpart first rod-receiving recess in response to a second rod being locked in the second rod-receiving slot.
In some embodiments, the first rod-receiving recess of the connector body can be a distal-facing rod-receiving recess formed in a fixed jaw portion extending laterally from a proximal end of the connector body and the counterpart first rod-receiving recess of the moveable jaw can be a proximal-facing rod-receiving recess. The moveable jaw can be configured to pivot about a first pivot axis of the connector body. The moveable jaw can be configured to pivot clockwise about the first pivot axis to form an open rod slot for receiving the first rod between the distal-facing rod-receiving recess of the fixed jaw portion of the connector body and the proximal-facing rod-receiving recess of the moveable jaw and to pivot counter-clockwise about the first pivot axis to form the closed rod slot around the first rod between the distal-facing rod-receiving recess of the fixed jaw portion of the connector body and the proximal-facing rod-receiving recess of the moveable jaw. Each of the moveable jaw and the fixed jaw portion of the connector body can have a run-on width equal to or less than 4 millimeters.
In some embodiments, the rod-to-rod connector can include a pivot block having a saddle disposed within a cavity formed in a distal end portion of the connector body. The pivot block can be moveably coupled to the connector body and to the moveable jaw, such that the pivot block can pivot about a second pivot axis of the connector body in response to respective movements of the saddle and the moveable jaw. The pivot block can be configured to pivot counter-clockwise about the second pivot axis, thereby raising the saddle into the second rod-receiving slot in response to the moveable jaw pivoting clockwise about the first pivot axis to form the open rod slot for receiving the first rod. The pivot block can be configured to pivot clockwise about the second pivot axis, thereby causing the moveable jaw to pivot counter-clockwise about the first pivot axis to form the closed rod slot around the first rod in response to the second rod exerting a distal force on the saddle of the pivot block. The first rod can be locked within the closed rod slot and the second rod can be locked within the second rod-receiving slot in response to tightening a set screw within a threaded portion of the second rod-receiving slot. The pivot block can be moveably coupled to the moveable jaw by a pin-in-slot connection.
In some embodiments, the moveable jaw can include proximally extending threaded arms forming a proximal-facing threaded recess there between, such that the proximal-facing threaded recess is aligned with a proximal-distal axis of the second rod-receiving slot of the connector body. The moveable jaw can be configured to translate within a cavity formed in the connector body along the proximal-distal axis of the second rod-receiving slot in response to tightening the set screw within the proximal-facing threaded recess of the moveable jaw. The moveable jaw can be configured to translate proximally along the proximal-distal axis of the second rod-receiving slot, and thereby form the closed rod slot around the first rod between the distal-facing rod-receiving recess of the fixed jaw portion of the connector body and the proximal-facing rod-receiving recess of the moveable jaw, in response to tightening the set screw within the proximal-facing threaded recess. The first rod can be locked within the closed rod slot and the second rod can be locked within the second rod-receiving slot in response to tightening the set screw within the proximal-facing threaded recess of the moveable jaw. The moveable jaw can be configured to translate distally along the proximal-distal axis of the second rod-receiving slot, and thereby form an open rod slot between the distal-facing rod-receiving recess of the fixed jaw portion of the connector body and the proximal-facing rod-receiving recess of the moveable jaw. The moveable jaw can be spring-biased to form an open rod slot between the distal-facing rod-receiving recess of the fixed jaw portion of the connector body and the proximal-facing rod-receiving recess of the moveable jaw. The rod-to-rod connector can further include a tongue protruding along at least one of the proximally extending threaded arms and configured to offset a torque exerted by the set screw while tightening the set screw within the proximal-facing threaded recess of the moveable jaw. The moveable jaw can be moveably coupled to the connector body by a pin-in-slot connection.
In some embodiments, the moveable jaw further defines a proximal-facing bearing surface disposed in a cavity formed in the connector body distal to the second rod-receiving slot. The proximal-facing rod bearing surface can be raised into the second rod-receiving slot in response to the moveable jaw pivoting distally to form the open rod slot for receiving the first rod. The moveable jaw can be configured to pivot proximally to form the closed rod slot in response to the second rod exerting a distal force in the second rod-receiving slot on the proximal-facing rod bearing surface of the moveable jaw. The rod-to-rod connector can further include a tooth protruding from an end portion of the moveable jaw and a tooth-receiving pocket formed in a laterally extending jaw of the connector body, such that the tooth of the moveable jaw is configured to interdigitate with the tooth-receiving pocket of the jaw of the connector body.
In some embodiments, the first rod-receiving recess can be an outward-facing rod-receiving recess formed in a fixed jaw portion extending vertically along a lateral face of the connector body and the counter first rod-receiving recess of the moveable jaw can be an inward-facing rod-receiving recess that opposes the outward-facing rod-receiving recess of the fixed jaw portion. The moveable jaw can form a hook at one end that defines the inward-facing rod-receiving recess and a proximal-facing ramped bearing surface protruding at an opposite end. The moveable jaw can be slidably disposed within a tunnel formed in a distal end portion of the connector body between the hook and the ramped bearing surface. The inward-facing rod-receiving recess of the hook and the outward-facing rod-receiving recess of the fixed jaw portion of the connector body can be configured to form an open rod slot for receiving the first rod in response to the moveable jaw sliding in a first axial direction through the tunnel of the connector body. The proximal-facing ramped bearing surface can be configured to enter the second rod-receiving slot of the connector body in response to the moveable jaw sliding in the first axial direction through the tunnel of the connector body. The moveable jaw can be configured to slide in a second axial direction through the tunnel of the connector body and thereby form the closed rod slot around the first rod between the inward-facing rod-receiving recess of the hook and the outward-facing rod-receiving recess of the fixed jaw portion of the connector body. The moveable jaw can be configured to slide in a second axial direction through the tunnel of the connector body in response to the second rod exerting a distal force on the proximal-facing ramped bearing surface and thereby urging the ramped bearing surface out of the second rod-receiving slot. The first rod can be locked within the closed rod slot and the second rod can be locked within the second rod-receiving slot in response to tightening a set screw within the second rod-receiving slot. The moveable jaw can have a cantilevered spring element formed in a distal end of the moveable jaw. The cantilevered spring element can be configured to deflect towards the distal end of the moveable jaw to facilitate insertion of the moveable jaw into the tunnel of the connector body. Each of the moveable jaw and the fixed jaw portion of the connector body can have a run-on width equal to or less than 4 millimeters.
In some embodiments, the moveable jaw can include a swage-receiving slot formed in a distal-facing wall of the moveable jaw and the connector body can include a swaging arm having a swage formed at a free end of the swaging arm. The swaging arm can extend from a bottom wall of the connector body adjacent to the tunnel and can be configured to bend towards the tunnel such that the swage is loosely coupled to the swage-receiving slot. In some embodiments, the moveable jaw can includes one or more swage-receiving slots formed in one or more respective sidewalls of the moveable jaw and the connector body can include one or more swages protruding into the tunnel such that the one or more swages are loosely coupled to the one or more swage-receiving slots of the moveable jaw.
In some embodiments, a method of connecting a first spinal rod and a second spinal rod can include inserting the first spinal rod in a first rod-receiving slot defined between a first rod-receiving recess formed in a connector body of a connector and a counterpart first rod-receiving recess formed in a moveable jaw of the connector and moving the jaw in response to a second rod being locked in a second rod-receiving slot formed in the connector body and thereby closing the first rod-receiving slot around the first rod between the first rod-receiving recess and the counterpart rod-receiving recess such that the connector completely surrounds an outer circumference of the first rod.
In some embodiments, the method can include pivoting the movable jaw clockwise about a first pivot axis to form the first rod-receiving slot for receiving the first rod and pivoting the movable jaw counter-clockwise about the first pivot axis to close the first rod-receiving slot in response to inserting the second rod into the second rod-receiving slot of the connector body. Pivoting the movable jaw counter-clockwise about the first pivot axis to close the first rod-receiving slot in response to inserting the second rod into the second rod-receiving slot of the connector body can include pivoting a pivot block clockwise about a second pivot axis in response to the second rod applying a distal force against a saddle formed on the pivot block and raised into the second rod-receiving slot and pivoting the movable jaw counter-clockwise about the first pivot axis in response to the pivot block pivoting clockwise about the second pivot axis, and thereby closing the first rod-receiving slot about the first rod between the first rod-receiving recess and the counterpart rod-receiving recess. The pivot block can be loosely coupled to the moveable jaw. The method can further include pivoting the pivot block counter-clockwise about the second pivot axis in response to the movable jaw pivoting clockwise about the first pivot axis to form the first rod-receiving slot and thereby raising the saddle of the pivot block into the second rod-receiving slot. The method can further include raising a back end of the movable jaw into the second rod-receiving slot in response to pivoting the movable jaw clockwise about the first pivot axis to form the first rod-receiving slot for receiving the first rod. Pivoting the movable jaw counter-clockwise about the first pivot axis to close the first rod-receiving slot in response to inserting the second rod into the second rod-receiving slot of the connector body can include pivoting the movable jaw counter-clockwise about the first pivot axis to close the first rod-receiving slot in response to the second rod applying a distal force onto the raised back end of the moveable jaw during insertion of the second rod into the second rod-receiving slot.
In some embodiments, the method can include vertically translating the jaw in a proximal direction to form the first rod-receiving slot for receiving the first rod. Moving the jaw in response to the second rod being locked in a second rod-receiving slot formed in the connector body can include vertically translating the jaw in a proximal direction to close the first rod-receiving slot in response to tightening a set screw within a proximal-facing threaded recess of the moveable jaw, such that the proximal-facing threaded recess of the moveable jaw is aligned with the second rod-receiving slot of the connector body.
In some embodiments, the method can include sliding the moveable jaw in a first axial direction away from the connector body to form the first rod-receiving slot between the first rod-receiving recess of the connector body and the counterpart first rod-receiving recess of the moveable jaw, wherein the first axial direction is perpendicular to a proximal-distal axis of the second rod-receiving slot. Moving the jaw in response to the second rod being locked in the second rod-receiving slot can include sliding the moveable jaw in a second axial direction toward the connector body in response to the second rod applying a distal force against a proximal-facing ramped bearing surface that protrudes from a back end of the moveable jaw into the second rod-receiving slot.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments, and together with the general description given above and the detailed description given below, serve to explain the features of the various embodiments.
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments of a rod-to-rod connector are disclosed herein having a rod closure mechanism that enhances the locking or clamping force applied to the rods. The connector may be useful to provide a robust rod closure mechanism for rod-to-rod connections in which the distance between rods is minimized. The connector may be useful to provide a robust rod closure mechanism for rod-to-rod connections in which the run-on rod length of at least one rod slot of the connector is less than or equal to 8 millimeters and preferably less than or equal to 4 millimeters. The connector may include a moveable jaw that is partially disposed within a connector body and configured to pivot or translate relative to the connector body to form a fully closed or substantially closed rod slot around a first rod. The closed rod slot may be formed between a first rod-receiving recess defined in the connector body and a counterpart first rod-receiving recess defined in the moveable jaw. The locking or clamping force of the moveable jaw may be amplified by a mechanical advantage caused by the force exerted to lock a second rod in a second rod-receiving slot of the connector body.
In some embodiments, the mechanical advantage may be provided by a bell crank mechanism in which the moveable jaw is coupled to a pivot block having a saddle disposed within a cavity of the connector body distal to the second rod-receiving slot. To form an open rod slot for receiving a first rod, the moveable jaw is pivoted clockwise about a first pivot axis, thereby causing the pivot block to pivot counter-clockwise about a second pivot axis and raise the saddle into the second rod-receiving slot. Once the first rod is inserted into the open rod slot, a second rod may be inserted into the second rod-receiving slot. The insertion of the second rod may exert a distal force on the saddle of the pivot bock that causes the pivot block to pivot clockwise, and thereby pivot the jaw counter-clockwise to form the closed rod slot around the first rod. By locking the second rod in the second rod-receiving slot with a set screw, the distal force exerted on the saddle may continue to provide a mechanical advantage in the locking force of the moveable jaw.
In some embodiments, the moveable jaw may be configured to translate vertically relative to the connector body without pivoting to form the closed rod slot. The moveable jaw may include a pair of proximally-extending arms that define a proximal-facing threaded recess in alignment with a proximal-distal axis of the second rod-receiving slot. To form the closed rod slot, a set screw may be inserted and tightened within the threaded recess of the moveable jaw. As the screw is tightened, the second rod is pressed against the second rod-receiving slot. Further tightening of the screw may pull the jaw upward into a distal cavity of the connector body until the closed rod slot is formed around the first rod.
In some embodiments, the mechanical advantage may be provided by the moveable jaw itself as a lever. The moveable jaw may include a proximal-facing bearing surface disposed in a cavity formed in the connector body distal to the second rod-receiving slot. To form an open rod slot for receiving a first rod, the moveable jaw may be pivoted clockwise about a first pivot axis, thereby causing the proximal-facing bearing surface to rise into the second rod-receiving slot. Once the first rod is inserted into the open rod slot, a second rod may be inserted into the second rod-receiving slot. The insertion of the second rod may exert a distal force on the proximal-facing bearing surface of the moveable jaw, causing the jaw to pivot counter-clockwise and thereby form the closed rod slot around the first rod. By locking the second rod in the second rod-receiving slot with a set screw, the distal force exerted on the proximal-facing bearing surface of the moveable jaw may continue to provide a mechanical advantage in the locking force of the moveable jaw. The locking or clamping force of the closed rod slot may be further enhanced by configuring opposing ends of the moveable jaw and the fixed jaw portion of the connector body to interdigitate.
In some embodiments, the connector may be configured such that the moveable jaw is slidably disposed within a tunnel formed in a distal end portion of the connector body. The moveable jaw may include a hook defining an inward-facing rod-receiving recess at a front end and a proximal-facing ramped bearing surface protruding at a rear end. To form an open rod slot for receiving the first rod, the jaw may be configured to slide in a first axial direction away from the fixed jaw portion of the connector body. Such axial movement also causes the proximal-facing ramped bearing surface of the jaw to enter the second rod-receiving slot 118. Once the first rod is inserted into the open rod slot, the second rod may be inserted into the second rod-receiving slot. The insertion of the second rod may exert a distal force on the proximal-facing ramped bearing surface, and thereby urge the moveable jaw to slide in a counter-axial direction through the tunnel of the connector body. As the jaw slides in the counter-axial direction, a closed rod slot is formed around the first rod between the inward-facing rod-receiving recess of the hook and the outward-facing rod-receiving recess of the fixed jaw portion of the connector body. By locking the second rod in the second rod-receiving slot with a set screw, a lateral force exerted by the second rod on the ramped bearing surface of the moveable jaw may continue to provide a mechanical advantage in the locking force of the moveable jaw.
In any of the connectors described herein, the first rod slot can be “fully closed”, i.e., such that the rod slot completely surrounds an outer circumference of the rod and/or such that opposed jaws of the connector contact each other when a rod is disposed there between. The first rod slot can alternatively be substantially closed, i.e., such that the rod slot surrounds at least about 80% of the circumference of the rod. In any of the connectors described herein, opposing jaws or other components of the first rod slot can be configured to interdigitate with one another when closed around a rod. In any of the connectors described herein, the movable jaw can be biased towards the open position or towards the closed position, e.g., via a spring or other bias element. References herein to “clockwise” and “counterclockwise” directions are taken from the perspective shown in the drawings. It will be appreciated that these directions would be reversed when taken from the opposite perspective.
A first rod-receiving recess 116 may formed in a distal-facing surface of the fixed jaw portion 114. The distal-facing, first rod-receiving recess 116 may be a V-shaped, U-shaped, or otherwise contoured groove that forms an upper portion of a lateral-facing (e.g., C-shaped) rod slot for receiving and securing a first rod. The lower portion of the lateral-facing rod slot may be formed by the moveable jaw 130. The lateral-facing rod slot formed there between may be configured to open in response to the moveable jaw 130 pivoting clockwise and to close in response to the jaw pivoting counter-clockwise.
A second rod-receiving slot 118 may be formed in the base portion of the connector body 112. The second rod-receiving slot 118 may be proximal-facing such that the slot opens towards the proximal end of the base portion 112 for receiving and securing a second rod. The second rod-receiving slot 118 may be oriented perpendicular to the laterally extending fixed jaw portion 114 and in parallel to an axis of the first rod-receiving recess 116. The second rod-receiving slot 118 may include a threaded portion 120 configured to threadably receive a set screw for locking the second rod in place.
The moveable jaw 130 may have an elongated body with a front end 132 and a back end 134. The back end of the moveable jaw 134 may be disposed within a distal cavity 122 formed in the base portion of the connector body 112. The front end of the moveable jaw 132 may extend outside the base portion 112 and define a counterpart first rod-receiving recess 136. The counterpart first rod-receiving recess 136 may be formed in a proximal-facing surface at the front end of the moveable jaw 132. The proximal-facing, counterpart first rod-receiving recess 136 may be a V-shaped, U-shaped, or otherwise contoured groove that forms the lower portion of the lateral-facing rod slot for receiving and securing the first rod.
The moveable jaw 130 may be moveably coupled to a distal-front end of the base portion 112 by a first pin 140. The first pin 140, which serves as a pivot axis of the jaw 130, may extend between bores 124 formed in the sidewalls of the base portion 112 and through a bore 138 formed between the front and back ends of the jaw 132 and 134. When the moveable jaw 130 pivots clockwise about the first pin 140, an open rod slot may be formed for receiving a first rod between the distal-facing rod-receiving recess 116 and the proximal-facing rod-receiving recess 136. Conversely, when the moveable jaw pivots counter-clockwise about the first pin 140, a closed rod slot may be formed around the first rod between the distal-facing rod-receiving recess of the fixed jaw portion 116 and the proximal-facing rod-receiving recess of the moveable jaw 136.
To increase the clamping force of the moveable jaw 130 to secure the first rod in place, the back end of the moveable jaw 134 may be loosely coupled to a pivot block 150 disposed within the distal cavity of the connector body 122, forming a bell crank-type mechanism. The pivot block 150 may be moveably coupled to the connector body by a second pin 142, which serves as a pivot axis of the pivot block. The second pin 142 may extend between bores 126 formed in the sidewalls of the base portion 112 and through bores 152 formed in a proximal-back end of the pivot block 150. The pivot block may be capable of pivoting clockwise and counter-clockwise about the second pin 142 within the distal cavity 122.
A saddle 154 may be formed on, or otherwise attached to, a proximal end of the pivot block 150. The saddle 154 may be laterally offset from the pivot axis of the pivot block 150, such that the saddle may be raised from the distal cavity 122 into the second rod-receiving slot 118 in response to a counter-clockwise pivot of the block. The distal end of the pivot block 150 may be loosely coupled to the back end of the moveable jaw 134 by a third pin 144. The third pin 144 may be configured to intersect an obliquely angled slot 156 formed in the pivot block 150 and a horizontal slot 139 of the moveable jaw 130, such that a pivot of the block or jaw causes a counter pivot of the jaw or pivot block, respectively. The third pin 144 is further configured to pass through a vertical slot 128 formed in the sidewall of the base portion of the connector body 112 to guide the pivot and counter-pivot movements of the jaw 130 and pivot block 150.
As shown in
As shown in
A first rod-receiving recess 416 may be formed in a distal-facing surface of the fixed jaw portion 414. The distal-facing, first rod-receiving recess 416 may be a V-shaped, U-shaped, or otherwise contoured groove configured to form an upper portion of a lateral-facing (e.g., C-shaped) rod slot for receiving and securing a first rod. The lower portion of the lateral-facing rod slot may be formed in a proximal-facing surface of the moveable jaw 430. The lateral-facing rod slot formed there between may be configured to open in response to the moveable jaw 430 vertically translating in a distal direction away from the connector body 410 and to close in response to the moveable jaw 430 vertically translating in a proximal direction towards the connector body 410.
A second rod-receiving slot 418 may be formed in the base portion of the connector body 412. The second rod-receiving slot 418 may be proximal-facing such that the slot opens towards the proximal end of the base portion 412 for receiving and securing a second rod. The second rod-receiving slot 418 may be oriented perpendicular to the laterally extending fixed jaw portion 414 and in parallel to an axis of the first rod-receiving recess 416.
The moveable jaw 430 may have an elongated body having a front end 432 and a back end 434. A counterpart first rod-receiving recess 436 may be formed in a proximal-facing surface at the front end of the jaw 432 that extends outside the base portion of the connector body 412. The proximal-facing, counterpart first rod-receiving recess 436 may be a V-shaped, U-shaped, or otherwise contoured groove configured to form a lower portion of the lateral-facing (e.g., C-shaped) rod slot configured to receive and secure a first rod. The back end 434 of the moveable jaw may include at least two proximally extending arms 438a and 438b (collectively 438) configured to vertically translate within a cavity 420 formed in the base portion of the connector body 412. The opposing faces of the arms 440a and 440b (collectively 440) may have a threaded portion formed at the proximal ends thereof, forming a proximal-facing threaded recess 442 there between. The proximal-facing threaded recess 442 may be aligned with a proximal-distal axis of the second rod-receiving slot of the connector body 418. The threaded portion of the opposing arms 440 may be configured to threadably receive a set screw that, when tightened, causes the moveable jaw 430 to vertically translate within the cavity 420 in a proximal direction. The arms 438 can include reduction or extension tabs that extend proximally therefrom, e.g., to a location outside the patient's body, to functionally extend the length of the arms and facilitate insertion of the set screw. The extension tabs can be threaded. The extension tabs can be configured to break off or otherwise separate from the connector prior to completing the surgical procedure.
The moveable jaw 430 may be moveably coupled to the connector body 410, such that the jaw may be configured to vertically translate along the proximal-distal axis of the second rod-receiving slot within the cavity 420 formed therein. As shown, the moveable jaw 430 may be moveably coupled to the connector body by a pin 444 extending from the back arm of the moveable jaw 438a through a vertical guide slot 422 formed in a sidewall of the connector body 410. The pin 444 may be press fit or otherwise fixedly coupled in a bore 446 formed in the back arm of the moveable jaw 438a. The proximally extending front arm 438b of the moveable jaw 430 may include a tongue protrusion 448 formed along a front face of the arm 438b to slideably engage a counterpart groove 424 formed base portion of the connector body 412.
As shown in
As shown in
The connector body 710 may include a base portion 712 and a fixed jaw portion 714 that extends laterally from a front face of the base portion. The base portion 712 may have a substantially cylindrical or other suitable shape to facilitate insertion of the connector 700 at the surgical site (e.g., a vertebral section of the spine). The fixed jaw portion 714 may have an elongated body with a reduced width relative to the base portion of the connector body 712 to minimize the run-on rod length of the jaw along a longitudinal axis of the rod. For example, the reduced width of the fixed jaw portion 714 may be less than or equal to 8 millimeters, and preferably less than or equal to 4 millimeters. The elongated body of the fixed jaw portion 714 may be distally bent or curved.
A first rod-receiving recess 716 may formed in a distal-facing surface of the fixed jaw portion 714. The distal-facing, first rod-receiving recess 716 may be a V-shaped, U-shaped, or otherwise contoured groove configured to form an upper portion of a lateral-facing (e.g., C-shaped) rod slot that is configured to receive and secure a first rod (not shown). The lower portion of the lateral-facing rod slot may be formed in a proximal-facing surface of the moveable jaw 730. The lateral-facing rod slot formed there between may be configured to open in response to the moveable jaw 730 pivoting clockwise and to close in response to the moveable jaw 730 pivoting counter-clockwise.
A second rod-receiving slot 718 may be formed in the base portion of the connector body 712. The second rod-receiving slot 718 may be proximal-facing such that the slot opens towards the proximal end of the base portion 712 for receiving and securing a second rod. The second rod-receiving slot 718 may be oriented perpendicular to the laterally extending fixed jaw portion 714 and in parallel to an axis of the first rod-receiving recess 716. The second rod-receiving slot 718 may include a threaded portion 720 configured to threadably receive a set screw (not shown) for locking the second rod in the slot.
The moveable jaw 730 may have an elongated body with a front end 732 and a back end 734. The back end of the moveable jaw 734 may be disposed within a distal cavity 722 formed in the base portion of the connector body 712. The front end of the moveable jaw 732 may extend outside the base portion 712 and define a counterpart first rod-receiving recess 736. The counterpart first rod-receiving recess 736 may be formed in a proximal-facing surface at the front end of the jaw 732. The proximal-facing, counterpart first rod-receiving recess 736 may be a V-shaped, U-shaped, or otherwise contoured groove configured to form a lower portion of the lateral-facing (e.g., C-shaped) rod slot configured to receive and secure a first rod.
The moveable jaw 730 may be moveably coupled to a distal-front end of the base portion 712 by a pin 740 between the first and second ends of the jaw. The pin 740, which serves as a pivot axis of the moveable jaw 730, may extend between bores 724 formed in the sidewalls of the base portion 712 and through a bore 738 formed between the front and back ends of the jaw 732 and 734. When the moveable jaw 730 pivots clockwise about the pin 740, an open rod slot may be formed for receiving the first rod between the distal-facing rod-receiving recess of the fixed jaw portion 716 and the proximal-facing rod-receiving recess of the moveable jaw 736. Conversely, when the moveable jaw 730 pivots counter-clockwise about the pin 740, a closed rod slot may be formed around the first rod between the distal-facing rod-receiving recess 716 and the proximal-facing rod-receiving recess 736.
To prevent the first rod from becoming displaced from the closed rod slot (e.g., popping out), the jaws of the connector may be configured to interdigitate with each other. As shown, a proximally-extending tooth 739 may be formed on a proximal surface of the front end of the moveable jaw 732 to interdigitate with a distal-facing, tooth-receiving pocket 726 formed in the fixed jaw portion of the connector body 714. The tooth 739 may have a substantially rectangular or other suitable shape that may be received in the pocket 726. The tooth 739 may have a width that is narrower than the width of the fixed jaw portion 714. The tooth-receiving pocket 726 may be open distally and laterally toward the front of the fixed jaw portion 714, such that the tooth 739 may be pivoted into the pocket as the moveable jaw 730 pivots counter-clockwise to form the closed rod slot. Although the tooth as shown is formed on the moveable jaw, the interdigitating arrangement may be flipped. For example, a distal-facing tooth may be formed on a distal surface of the fixed jaw portion and a proximal-facing tooth-receiving pocket may be formed in the proximal surface of the moveable jaw. The tooth and tooth-receiving pocket may optionally be incorporated into any of the other embodiments rod-to-rod connectors disclosed herein (e.g., connectors 100, 400, and 1000). While a single tooth and a single pocket are shown, in other arrangements the connector can include a plurality of interdigitating features.
The connector body 1010 may include a base portion 1012 and a fixed jaw portion 1014 that extends vertically along a front-lateral face of the base portion. The base portion 1012 may have a substantially cylindrical or other suitable shape to facilitate insertion of the connector 1000 at the surgical site (e.g., a vertebral section of the spine). The fixed jaw portion 1014 may form an outward-facing, first rod-receiving recess 1016 in a front-lateral surface thereof. The outward-facing, first rod-receiving recess 1016 may be a V-shaped, U-shaped, or otherwise contoured groove configured to form part of a proximal-facing (e.g., U-shaped) rod slot that is configured to receive and secure a first rod.
A second rod-receiving slot 1018 may be formed in the base portion of the connector body 1012. The second rod-receiving slot 1018 may be proximal-facing such that the slot opens towards the proximal end of the base portion 1012 for receiving and securing a second rod. The second rod-receiving slot 1018 may include a threaded portion 1020 configured to threadably receive a set screw for locking the second rod in the slot.
The moveable jaw 1050 may be an elongated body having a front end 1052 and a back end 1054. A hook 1056 may be formed at the front end 1052 and a proximal-facing ramped bearing surface 1058 protrudes at the back end 1054. An inner surface of the hook may form an inward-facing, first rod-receiving recess 1060 configured to oppose the outward-facing, first rod-receiving recess of the fixed jaw portion 1016. The moveable jaw may be slidably disposed within a tunnel 1022 formed in a distal end of the base portion 1012 between the hook 1056 and the ramped bearing surface 1058. The moveable jaw 1050 may be configured to slide along the tunnel 1022 to form a proximal-facing open or closed rod slot between the inward-facing first rod-receiving recess of the hook 1060 and the outward-facing rod-receiving recess of the fixed jaw portion 1016.
The moveable jaw 1050 may also include a stop tab 1062 that protrudes from a proximal surface between the hook 1056 and the ramped bearing surface 1058. The stop tab 1062 may be configured to engage a counterpart pocket 1024 formed in a surface of the fixed jaw portion 1014. The stop tab 1062 may protrude from a position on the surface of the jaw 1050, such that the stop tab engages the counterpart pocket 1024 when the jaw moves into the closed rod slot configuration. The stop tab 1062 may have a “shark fin” or other suitable shape configured to counter torque and/or to otherwise strengthen the clamping force of the jaws around the first rod in the closed rod slot configuration.
To prevent the first rod from becoming displaced from the closed rod slot (e.g., popping out), the jaws of the connector may be configured to interdigitate with each other. As shown, a lateral-extending, outward-facing tooth 1026 may protrude from a proximal tip or end of the fixed jaw portion 1014. The tooth 1026 may be configured to interdigitate with a lateral-extending, inward-facing pocket 1064 formed in a proximal tip or end of the hook of the moveable jaw 1056. The tooth 1026 may have a substantially rectangular or other suitable shape that may be received in the pocket 1064. The tooth 1026 may have a width that is narrower than the width of the moveable jaw 1050. Although the tooth as shown is formed on the fixed jaw, the interdigitating arrangement may be flipped. For example, a tooth may be formed on the movable jaw and a tooth-receiving pocket may be formed in the fixed jaw. While a single tooth and a single pocket are shown, in other arrangements the connector can include a plurality of interdigitating features.
The moveable jaw 1050 may have a reduced width relative to the base portion of the connector body 1012 to minimize the run-on rod length of the jaw along a longitudinal axis of the first rod. For example, the reduced width of the moveable jaw may be less than or equal to 8 millimeters, and preferably less than or equal to 4 millimeters.
Opposing lead-in surfaces 1066a and 1066b (collectively 1066) may be formed in the proximal ends of the moveable jaw 1050 and the fixed jaw portion 1014 to facilitate insertion of the first rod. The lead-in surfaces 1066 may be ramped bearing surfaces oriented obliquely at opposite angles to form a V-shaped lead-in. Other lead-in surface configurations may also be used. As the first rod is pushed against the lead-in surfaces 1066, the moveable jaw 1050 may be urged to translate laterally in a first axial direction away from the connector body 1010, making it easier to open the rod slot between the fixed jaw portion and the moveable jaw.
Although the coupling mechanism of
Although the coupling mechanism of
Other techniques known to one of ordinary skill in the art can be used for coupling or joining the moveable jaw 1050 to the connector body 1010.
The devices disclosed herein and the various component parts thereof can be constructed from any of a variety of known materials. Exemplary materials include those which are suitable for use in surgical applications, including metals such as stainless steel, titanium, or alloys thereof, polymers such as PEEK, ceramics, carbon fiber, and so forth. The various components of the devices disclosed herein can be rigid or flexible. One or more components or portions of the device can be formed from a radiopaque material to facilitate visualization under fluoroscopy and other imaging techniques, or from a radiolucent material so as not to interfere with visualization of other structures. Exemplary radiolucent materials include carbon fiber and high-strength polymers.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use what is described. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the present disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5261909 | Sutterlin et al. | Nov 1993 | A |
5312405 | Korotko et al. | May 1994 | A |
5569246 | Ojima et al. | Oct 1996 | A |
5613968 | Lin | Mar 1997 | A |
5667506 | Sutterlin | Sep 1997 | A |
5709685 | Dombrowski et al. | Jan 1998 | A |
5716355 | Jackson et al. | Feb 1998 | A |
5725528 | Errico | Mar 1998 | A |
5769857 | Reztzov et al. | Jun 1998 | A |
5776135 | Errico et al. | Jul 1998 | A |
5876403 | Shitoto | Mar 1999 | A |
5885284 | Errico et al. | Mar 1999 | A |
5980523 | Jackson | Nov 1999 | A |
6050997 | Mullane | Apr 2000 | A |
6083226 | Fiz | Jul 2000 | A |
6096039 | Stoltenberg et al. | Aug 2000 | A |
6231575 | Krag | May 2001 | B1 |
6238396 | Lombardo | May 2001 | B1 |
6248104 | Chopin et al. | Jun 2001 | B1 |
6280443 | Gu et al. | Aug 2001 | B1 |
6309390 | Le Couedic et al. | Oct 2001 | B1 |
6328739 | Liu et al. | Dec 2001 | B1 |
6328740 | Richelsoph | Dec 2001 | B1 |
6402751 | Hoeck et al. | Jun 2002 | B1 |
6468276 | McKay | Oct 2002 | B1 |
6478798 | Howland | Nov 2002 | B1 |
6524310 | Lombardo et al. | Feb 2003 | B1 |
6551318 | Stahurski | Apr 2003 | B1 |
6554832 | Shluzas | Apr 2003 | B2 |
6592585 | Lee et al. | Jul 2003 | B2 |
6616668 | Altarec et al. | Sep 2003 | B2 |
6676661 | Martin Benlloch et al. | Jan 2004 | B1 |
6736775 | Phillips | May 2004 | B2 |
6736820 | Biedermann et al. | May 2004 | B2 |
6783526 | Lin et al. | Aug 2004 | B1 |
6786907 | Lange | Sep 2004 | B2 |
6793657 | Lee et al. | Sep 2004 | B2 |
6974460 | Carbone et al. | Dec 2005 | B2 |
7029474 | Richelsoph et al. | Apr 2006 | B2 |
7104993 | Baynham et al. | Sep 2006 | B2 |
7122036 | Vanacker | Oct 2006 | B2 |
7163538 | Altarac et al. | Jan 2007 | B2 |
7166108 | Mazda et al. | Jan 2007 | B2 |
7179261 | Sicvol et al. | Feb 2007 | B2 |
7189236 | Taylor et al. | Mar 2007 | B2 |
7485132 | McBride et al. | Feb 2009 | B1 |
7572277 | Roussouly et al. | Aug 2009 | B2 |
7575587 | Rezach et al. | Aug 2009 | B2 |
7585314 | Taylor et al. | Sep 2009 | B2 |
7628799 | Richelsoph et al. | Dec 2009 | B2 |
7666210 | Franck et al. | Feb 2010 | B2 |
7704270 | De Coninck | Apr 2010 | B2 |
7717938 | Kim et al. | May 2010 | B2 |
7717940 | Woods et al. | May 2010 | B2 |
7744632 | Usher | Jun 2010 | B2 |
7744634 | Farris | Jun 2010 | B2 |
7753940 | Veldman et al. | Jul 2010 | B2 |
7771474 | Cordaro | Aug 2010 | B2 |
7789897 | Sanders | Sep 2010 | B2 |
7794478 | Nilsson | Sep 2010 | B2 |
7803174 | Denis et al. | Sep 2010 | B2 |
7806912 | Lawton et al. | Oct 2010 | B2 |
7833248 | Markworth et al. | Nov 2010 | B2 |
7837714 | Drewry et al. | Nov 2010 | B2 |
7842071 | Hawkes | Nov 2010 | B2 |
7901434 | Drewry et al. | Mar 2011 | B2 |
7909854 | Schwab | Mar 2011 | B2 |
7922746 | Miller | Apr 2011 | B2 |
7922747 | Kirschman | Apr 2011 | B2 |
7927355 | Berrevoets et al. | Apr 2011 | B2 |
7942901 | Rezach | May 2011 | B2 |
7947066 | Tepper et al. | May 2011 | B2 |
7959653 | Thramann et al. | Jun 2011 | B2 |
7993371 | Farris | Aug 2011 | B2 |
8016862 | Felix et al. | Sep 2011 | B2 |
8025679 | Nichols et al. | Sep 2011 | B2 |
8062338 | McBride et al. | Nov 2011 | B2 |
8075594 | Purcell | Dec 2011 | B2 |
8080037 | Butler et al. | Dec 2011 | B2 |
8097022 | Marik | Jan 2012 | B2 |
8109974 | Boomer et al. | Feb 2012 | B2 |
8114133 | Logan | Feb 2012 | B2 |
8147519 | Wilcox | Apr 2012 | B2 |
8152851 | Mueller et al. | Apr 2012 | B2 |
8167908 | Ely et al. | May 2012 | B2 |
8172879 | Butler et al. | May 2012 | B2 |
8192467 | Felix et al. | Jun 2012 | B2 |
8197515 | Levy et al. | Jun 2012 | B2 |
8236028 | Kalfas et al. | Aug 2012 | B2 |
8241334 | Butler et al. | Aug 2012 | B2 |
8246657 | Samuel | Aug 2012 | B1 |
8246665 | Butler et al. | Aug 2012 | B2 |
8262700 | Cho et al. | Sep 2012 | B2 |
8262701 | Rathbun et al. | Sep 2012 | B2 |
8292924 | Neary et al. | Oct 2012 | B2 |
8298266 | Miller | Oct 2012 | B2 |
8298269 | Null et al. | Oct 2012 | B2 |
8317837 | Rezach et al. | Nov 2012 | B2 |
8337527 | Hawkins et al. | Dec 2012 | B2 |
8337532 | McLean et al. | Dec 2012 | B1 |
8366749 | Sweeney | Feb 2013 | B2 |
8366750 | Iott et al. | Feb 2013 | B2 |
8414616 | Berrevoets et al. | Apr 2013 | B2 |
8414617 | Young et al. | Apr 2013 | B2 |
8419771 | Poirier et al. | Apr 2013 | B2 |
8419773 | Biedermann et al. | Apr 2013 | B2 |
8430916 | Winslow et al. | Apr 2013 | B1 |
8460342 | Courtney et al. | Jun 2013 | B2 |
8470001 | Trautwein et al. | Jun 2013 | B2 |
8591550 | Ludwig et al. | Nov 2013 | B2 |
8617213 | Moore et al. | Dec 2013 | B2 |
8628559 | Iott et al. | Jan 2014 | B2 |
8641739 | McLean et al. | Feb 2014 | B2 |
8657856 | Gephart et al. | Feb 2014 | B2 |
8668721 | Miller | Mar 2014 | B2 |
8715323 | Ballard et al. | May 2014 | B2 |
8721689 | Butler et al. | May 2014 | B2 |
8728124 | Miller | May 2014 | B2 |
8758411 | Rayon et al. | Jun 2014 | B1 |
8771319 | Prajapati | Jul 2014 | B2 |
8808332 | Iott et al. | Aug 2014 | B2 |
8828056 | Buss et al. | Sep 2014 | B2 |
8864798 | Weiman et al. | Oct 2014 | B2 |
8864799 | Kraus | Oct 2014 | B2 |
8870923 | Richelsoph | Oct 2014 | B2 |
8882803 | Iott et al. | Nov 2014 | B2 |
8888777 | Mullaney | Nov 2014 | B2 |
8888819 | Frasier et al. | Nov 2014 | B2 |
8920471 | Barrus et al. | Dec 2014 | B2 |
8920475 | Ziemek et al. | Dec 2014 | B1 |
8945186 | Walker et al. | Feb 2015 | B2 |
8951289 | Matityahu | Feb 2015 | B2 |
8998956 | George et al. | Apr 2015 | B2 |
8998961 | Ziemek et al. | Apr 2015 | B1 |
9005249 | Rinner et al. | Apr 2015 | B2 |
9023087 | Frankel et al. | May 2015 | B2 |
9055980 | Biedermann | Jun 2015 | B2 |
9060815 | Gustine et al. | Jun 2015 | B1 |
9072547 | Harper et al. | Jul 2015 | B2 |
9084630 | Mullaney | Jul 2015 | B2 |
9095380 | Mir et al. | Aug 2015 | B2 |
9101400 | Trieu et al. | Aug 2015 | B2 |
9101405 | Dickinson et al. | Aug 2015 | B2 |
9107703 | Torres | Aug 2015 | B2 |
9113961 | Larroque-Lahitette | Aug 2015 | B2 |
9119675 | Lee et al. | Sep 2015 | B2 |
9125691 | Gunn | Sep 2015 | B2 |
9131963 | Predick | Sep 2015 | B2 |
9131964 | Blain et al. | Sep 2015 | B2 |
9149301 | Asaad et al. | Oct 2015 | B2 |
9155565 | Boomer et al. | Oct 2015 | B2 |
9155580 | Cormier et al. | Oct 2015 | B2 |
9186184 | Janowski | Nov 2015 | B2 |
9198696 | Bannigan et al. | Dec 2015 | B1 |
9204901 | Black et al. | Dec 2015 | B2 |
9220541 | Dant et al. | Dec 2015 | B1 |
9247964 | Shoshtaev | Feb 2016 | B1 |
9265548 | Jones et al. | Feb 2016 | B2 |
9271763 | Barrus et al. | Mar 2016 | B2 |
9339307 | McClintock et al. | May 2016 | B2 |
9345521 | Ziolo | May 2016 | B2 |
9421041 | Richelsoph | Aug 2016 | B2 |
9433445 | Ramsay et al. | Sep 2016 | B2 |
9451994 | Whipple et al. | Sep 2016 | B1 |
9474554 | Strnad | Oct 2016 | B2 |
9517089 | Casey et al. | Dec 2016 | B1 |
9561058 | Lange et al. | Feb 2017 | B2 |
9579126 | Zhang et al. | Feb 2017 | B2 |
9615867 | Picetti et al. | Apr 2017 | B2 |
9629663 | Ludwig et al. | Apr 2017 | B2 |
9649136 | George et al. | May 2017 | B2 |
9693808 | Fauth et al. | Jul 2017 | B2 |
9724131 | Bootwala et al. | Aug 2017 | B2 |
9770269 | Shoshtaev | Sep 2017 | B1 |
9956009 | Shoshtaev | May 2018 | B1 |
10238432 | Carruth et al. | Mar 2019 | B2 |
10321939 | Lee et al. | Jun 2019 | B2 |
10398476 | Lee et al. | Sep 2019 | B2 |
10492835 | Lee et al. | Dec 2019 | B2 |
10517647 | Lee et al. | Dec 2019 | B2 |
10561454 | Lee et al. | Feb 2020 | B2 |
20020042614 | Ueyama et al. | Apr 2002 | A1 |
20030045878 | Petit et al. | Mar 2003 | A1 |
20030045879 | Minfelde et al. | Mar 2003 | A1 |
20030153914 | Oribe et al. | Aug 2003 | A1 |
20040111088 | Picetti et al. | Jun 2004 | A1 |
20040147929 | Biedermann et al. | Jul 2004 | A1 |
20040162558 | Hegde et al. | Aug 2004 | A1 |
20050131404 | Mazda et al. | Jun 2005 | A1 |
20050171537 | Mazel et al. | Aug 2005 | A1 |
20050228326 | Kalfas et al. | Oct 2005 | A1 |
20050228377 | Chao et al. | Oct 2005 | A1 |
20050228378 | Kalfas et al. | Oct 2005 | A1 |
20050228382 | Richelsoph et al. | Oct 2005 | A1 |
20060039750 | Thomke et al. | Feb 2006 | A1 |
20060058789 | Kim | Mar 2006 | A1 |
20060064090 | Park | Mar 2006 | A1 |
20060064091 | Ludwig et al. | Mar 2006 | A1 |
20060079892 | Roychowdhury et al. | Apr 2006 | A1 |
20060177263 | Thomke et al. | Aug 2006 | A1 |
20060206114 | Ensign et al. | Sep 2006 | A1 |
20060229611 | Avery et al. | Oct 2006 | A1 |
20060241598 | Khalili | Oct 2006 | A1 |
20060282074 | Renaud et al. | Dec 2006 | A1 |
20070049932 | Richelsoph | Mar 2007 | A1 |
20070100339 | Clement et al. | May 2007 | A1 |
20070123860 | Francis et al. | May 2007 | A1 |
20070173825 | Sharifi-Mehr et al. | Jul 2007 | A1 |
20070173829 | Drewry et al. | Jul 2007 | A1 |
20070233062 | Berry | Oct 2007 | A1 |
20070233090 | Naifeh et al. | Oct 2007 | A1 |
20070250061 | Chin et al. | Oct 2007 | A1 |
20070270805 | Miller et al. | Nov 2007 | A1 |
20070270817 | Rezach | Nov 2007 | A1 |
20070270818 | Rezach | Nov 2007 | A1 |
20070276384 | Spratt | Nov 2007 | A1 |
20080021466 | Shadduck et al. | Jan 2008 | A1 |
20080045963 | Abdou | Feb 2008 | A1 |
20080058805 | Stuart | Mar 2008 | A1 |
20080082112 | Lawton et al. | Apr 2008 | A1 |
20080109039 | Michielli et al. | May 2008 | A1 |
20080177318 | Veldman et al. | Jul 2008 | A1 |
20080177323 | Null et al. | Jul 2008 | A1 |
20080234743 | Marik | Sep 2008 | A1 |
20080255617 | Cho et al. | Oct 2008 | A1 |
20080262552 | Kim | Oct 2008 | A1 |
20080262553 | Hawkins et al. | Oct 2008 | A1 |
20080269810 | Zhang et al. | Oct 2008 | A1 |
20080281361 | Vittur et al. | Nov 2008 | A1 |
20090036929 | Reglos et al. | Feb 2009 | A1 |
20090082812 | Lewis | Mar 2009 | A1 |
20090105765 | Strnad | Apr 2009 | A1 |
20090157120 | Marino et al. | Jun 2009 | A1 |
20090163956 | Biedermann et al. | Jun 2009 | A1 |
20090187217 | Weiman et al. | Jul 2009 | A1 |
20090204153 | Suzuki et al. | Aug 2009 | A1 |
20090222042 | Firkins et al. | Sep 2009 | A1 |
20090228046 | Garamszegi | Sep 2009 | A1 |
20090249851 | Isaacs | Oct 2009 | A1 |
20100004686 | Lemoine | Jan 2010 | A1 |
20100004693 | Miller et al. | Jan 2010 | A1 |
20100010545 | Park et al. | Jan 2010 | A1 |
20100087864 | Klein et al. | Apr 2010 | A1 |
20100087867 | Klein et al. | Apr 2010 | A1 |
20100094345 | Saidha et al. | Apr 2010 | A1 |
20100094346 | Matityahu | Apr 2010 | A1 |
20100094349 | Hammer et al. | Apr 2010 | A1 |
20100114165 | Ely | May 2010 | A1 |
20100114167 | Wilcox et al. | May 2010 | A1 |
20100160981 | Butler et al. | Jun 2010 | A1 |
20100204733 | Rathbun et al. | Aug 2010 | A1 |
20100241171 | Clement et al. | Sep 2010 | A1 |
20100274286 | Blain et al. | Oct 2010 | A1 |
20100280552 | Lee | Nov 2010 | A1 |
20100298884 | Faizan et al. | Nov 2010 | A1 |
20100324599 | Montello et al. | Dec 2010 | A1 |
20110034957 | Biedermann | Feb 2011 | A1 |
20110046675 | Barrus et al. | Feb 2011 | A1 |
20110066187 | Fang et al. | Mar 2011 | A1 |
20110087287 | Reeder, Jr. et al. | Apr 2011 | A1 |
20110087288 | Stevenson et al. | Apr 2011 | A1 |
20110098748 | Jangra | Apr 2011 | A1 |
20110106178 | Schwab | May 2011 | A1 |
20110112533 | Venturini et al. | May 2011 | A1 |
20110112580 | Clement et al. | May 2011 | A1 |
20110137345 | Stoll et al. | Jun 2011 | A1 |
20110152936 | Gil et al. | Jun 2011 | A1 |
20110196425 | Rezach et al. | Aug 2011 | A1 |
20110245872 | Nilsson | Oct 2011 | A1 |
20110245878 | Franks et al. | Oct 2011 | A1 |
20110307018 | Zucherman et al. | Dec 2011 | A1 |
20120029571 | Schwab et al. | Feb 2012 | A1 |
20120059421 | Aferzon | Mar 2012 | A1 |
20120071926 | Jani et al. | Mar 2012 | A1 |
20120083845 | Winslow et al. | Apr 2012 | A1 |
20120095512 | Nihalani | Apr 2012 | A1 |
20120130436 | Haskins et al. | May 2012 | A1 |
20120158064 | Kroll | Jun 2012 | A1 |
20120203278 | Gil et al. | Aug 2012 | A1 |
20120221053 | Copf | Aug 2012 | A1 |
20120226316 | Dant et al. | Sep 2012 | A1 |
20120232593 | Predick | Sep 2012 | A1 |
20120259369 | Hammer | Oct 2012 | A1 |
20120290013 | Simonson | Nov 2012 | A1 |
20120296335 | Mullaney | Nov 2012 | A1 |
20120303062 | Amstutz et al. | Nov 2012 | A1 |
20130018422 | Rinner et al. | Jan 2013 | A1 |
20130030468 | Le Couedic et al. | Jan 2013 | A1 |
20130079826 | Simonson | Mar 2013 | A1 |
20130085534 | Hainard et al. | Apr 2013 | A1 |
20130096617 | Ballard et al. | Apr 2013 | A1 |
20130123854 | Kondrashov et al. | May 2013 | A1 |
20130211457 | Dickinson et al. | Aug 2013 | A1 |
20130253588 | Traynelis et al. | Sep 2013 | A1 |
20130268004 | Rathbun | Oct 2013 | A1 |
20130274807 | Prajapati | Oct 2013 | A1 |
20130274808 | Larroque-Lahitette et al. | Oct 2013 | A1 |
20140018858 | Laeng et al. | Jan 2014 | A1 |
20140066990 | Akbarnia et al. | Mar 2014 | A1 |
20140088650 | Taddia et al. | Mar 2014 | A1 |
20140114359 | Hawkes | Apr 2014 | A1 |
20140135839 | Frankel et al. | May 2014 | A1 |
20140148856 | Ibarra et al. | May 2014 | A1 |
20140222076 | Jackson | Aug 2014 | A1 |
20140249581 | Stachniak | Sep 2014 | A1 |
20140277146 | Li et al. | Sep 2014 | A1 |
20140277160 | Ziolo | Sep 2014 | A1 |
20140277163 | Kretzer et al. | Sep 2014 | A1 |
20140303674 | Sasing | Oct 2014 | A1 |
20140316468 | Keiser et al. | Oct 2014 | A1 |
20140336706 | Garamszegi | Nov 2014 | A1 |
20140343613 | Eliasen et al. | Nov 2014 | A1 |
20150032160 | Carbone et al. | Jan 2015 | A1 |
20150057707 | Barrus et al. | Feb 2015 | A1 |
20150057708 | Ballard et al. | Feb 2015 | A1 |
20150073479 | Rinner | Mar 2015 | A1 |
20150094769 | Abbasi | Apr 2015 | A1 |
20150119941 | Daniels et al. | Apr 2015 | A1 |
20150190178 | McCarthy et al. | Jul 2015 | A1 |
20150196328 | Hirschl et al. | Jul 2015 | A1 |
20150223844 | Leff et al. | Aug 2015 | A1 |
20150230830 | Frankel et al. | Aug 2015 | A1 |
20150282842 | Beyar et al. | Oct 2015 | A1 |
20150313645 | Hansell | Nov 2015 | A1 |
20150359568 | Rezach | Dec 2015 | A1 |
20160135846 | Mirda | May 2016 | A1 |
20160143665 | Biedermann et al. | May 2016 | A1 |
20160166289 | Alsup et al. | Jun 2016 | A1 |
20160287294 | Kubo et al. | Oct 2016 | A1 |
20170020578 | Mosnier et al. | Jan 2017 | A1 |
20170079690 | Oberlander et al. | Mar 2017 | A1 |
20170086885 | Duncan et al. | Mar 2017 | A1 |
20170086895 | Barra et al. | Mar 2017 | A1 |
20170095271 | Faulhaber | Apr 2017 | A1 |
20170105764 | Williams | Apr 2017 | A1 |
20170112540 | Montello et al. | Apr 2017 | A1 |
20170119439 | Ozdil et al. | May 2017 | A1 |
20170128105 | Patrinicola et al. | May 2017 | A1 |
20170128107 | Alsup et al. | May 2017 | A1 |
20170209182 | Picetti et al. | Jul 2017 | A1 |
20170245900 | Rezach | Aug 2017 | A1 |
20170281247 | Murray et al. | Oct 2017 | A1 |
20170311985 | Bobbitt et al. | Nov 2017 | A1 |
20170333087 | Lee et al. | Nov 2017 | A1 |
20170333088 | Lee et al. | Nov 2017 | A1 |
20170348026 | Stein et al. | Dec 2017 | A1 |
20180042647 | Cowan et al. | Feb 2018 | A1 |
20180098798 | Italiaie et al. | Apr 2018 | A1 |
20180116695 | Armstrong et al. | May 2018 | A1 |
20180161073 | Lee et al. | Jun 2018 | A1 |
20180168694 | Lee et al. | Jun 2018 | A1 |
20180195150 | Meyer et al. | Jul 2018 | A1 |
20180206890 | Rezach | Jul 2018 | A1 |
20180228516 | Armstrong et al. | Aug 2018 | A1 |
20180228518 | Carruth et al. | Aug 2018 | A1 |
20180243009 | Bobbitt et al. | Aug 2018 | A1 |
20180280062 | Lee et al. | Oct 2018 | A1 |
20180280063 | Lee et al. | Oct 2018 | A1 |
20180317972 | Abbasi | Nov 2018 | A1 |
20190175226 | Carruth et al. | Jun 2019 | A1 |
20190183541 | Lee et al. | Jun 2019 | A1 |
20190269440 | Patrinicola et al. | Sep 2019 | A1 |
20190336178 | Finn et al. | Nov 2019 | A1 |
20190365432 | Lee et al. | Dec 2019 | A1 |
20200060729 | Lee et al. | Feb 2020 | A1 |
20200069341 | Abbasi | Mar 2020 | A1 |
20200085473 | Lee et al. | Mar 2020 | A1 |
20200170695 | Lee et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
201194833 | Feb 2009 | CN |
1857064 | Nov 2007 | EP |
2 319 436 | May 2011 | EP |
2730242 | May 2014 | EP |
20100054713 | May 2010 | KR |
2005044119 | May 2005 | WO |
2007124242 | Nov 2007 | WO |
2009110865 | Dec 2009 | WO |
2011004222 | Jan 2011 | WO |
2011006155 | Jan 2011 | WO |
2015017250 | Feb 2015 | WO |
Entry |
---|
[No Author Listed] VuePoint II Technique Guide, 2015, NuVasive®, Inc.; 64 pages. |
Akbarnia, B., et al., “Pediatric Isola® Prebent Rod Placement,” (Technique Manual), DePuy Acromed, Oct. 2010; 2 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/031883, dated Aug. 2, 2017. (15 pgs). |
Invitation to Pay Additional Fees for Application No. PCT/US2018/017034, dated May 18, 2018 (18 pages). |
International Search Report and Written Opinion for Application No. PCT/US2018/024731, dated Jul. 2, 2018 (17 pages). |
U.S. Appl. No. 16/280,918, filed Feb. 20, 2019, Tandem Rod Connectors and Related Methods. |
U.S. Appl. No. 16/443,849, filed Jun. 17, 2019, Implant Connectors and Related Methods. |
International Search Report and Written Opinion for Application No. PCT/US2018/062786, dated Feb. 4, 2019 (15 pages). |
U.S. Appl. No. 16/688,578, filed Nov. 19, 2019, Implant Connectors and Related Methods. |
U.S. Appl. No. 16/782,030, filed Feb. 4, 2020, Articulating Implant Connectors and Related Methods. |
International Search Report and Written Opinion for Application No. PCT/US2018/017034, dated Aug. 1, 2018 (20 pages). |
U.S. Appl. No. 16/666,887, filed Oct. 29, 2019, Offset Rods, Offset Rod Connectors, and Related Methods. |
U.S. Appl. No. 16/951,585, filed Nov. 18, 2020, Tandem Rod Connectors and Related Methods. |
Number | Date | Country | |
---|---|---|---|
20190167313 A1 | Jun 2019 | US |