DiGiovanna et. al.; Avtive signaling by Neu in transgenic mice, 1998, Oncogene 17: 1877-1844.* |
Kappel et. al.; Regulating gene expression in Transgenic animals, 1992, Current Opinion in Biotechnology 3: 548-553.* |
Mullins et. al.; Transgenesis in Nonmurine Spesies, 1993, Hypertension 22: 630-633.* |
Houdebine; Production of pharmaceutical proteins from transgenic animals, 1994, Journal of Biotechnology 34: 269-287.* |
Niemann; Transgenic farm animals get off the ground, 1998, Transgenic Research 7: 73-75.* |
Kasprzyk et. al.; Therapy of an Animal Model of Human Gastric Cancer Using . . . Monoclonal Antibodies, 1992, Cancer Research 52: 2771-2776.* |
Hancock et. al.; A Monoclonal Antibody against the c-erB-2 Protein Enhances the Cytotoxicity of . . . Tumor Cell Lines, 1991, Cancer Research 51: 4575-4580.* |
Hudziak et. al.; Monoclonal Antibody Has Antiproliferative Effects In Vitro and Sensitizes Human Breast Tumor Cells to Tumor Necrosis Factor, 1989, Molecular and Cellular Biology: 1165-1172.* |
Arteaga, C.L. et al., “p185c-erbB-2 Signaling Enhances Cisplatin-induced Cytoxicity in Human Breast Carcinoma Cells: Association between an Oncogenic Receptor Tyrosine Kinase and Drug-induced DNA Repair,” Cancer Research, vol. 54, pp. 3758-3765 (1994). |
Bacus, S.S. et al., “Tumor-inhibitory Monoclonal Antibodies to the HER-2/Neu Receptor Induce Differentiation of Human Breast Cancer Cells,” Cancer Research, vol. 52, pp. 2580-2589 (1992). |
Fendly, B.M. et al., “Characterization of Murine Monoclonal Antibodies Reactive to Either the Human Epidermal Growth Factor Receptor or Her2/neu Gene Product,” Cancer Research, vol. 50, pp. 1550-1558 (1990). |
Hancock, M.C. et al., “A Monoclonal Antibody against the c-erB-2 Protein Enhances the Cytotoxicity of cis-Diamminedichloroplatinum against Human Breast and Ovarian Tumor Cell Lines,” Cancer Research, vol. 51, pp. 4575-4580 (1991). |
Hudziak, R.M. et al., “Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells,” Proc. Natl. Acad. Sci. USA, vol. 84, pp. 7159-7163. |
Kasprzyk, P.G. et al., “Therapy of an Animal Model of Human Gastric Cancer Using a Combination of Anti-erbB-2 Monoclonal Antibodies,” Cancer Research, vol. 52, pp. 2771-2776 (1992). |
Kern, J.A. et al., “p185neu Expression in Human Lung Adenocarcinomas Predicts Shortened Survival,” Cancer Reasearch, vol. 50, pp. 5184-5191 (1990). |
King, C.R. et al., “Amplification of a Novel v-erbB-Related Gene in a Human Mammary Carcinoma,” Science, vol. 229, pp. 974-976 (1985). |
Kotts et al., In Vitro, vol. 26, No. 3, p. 59A (1990). |
Lewis, G.D. et al., “Growth Regulation of Human Breast and Ovarian Tumor Cells by Heregulin: Evidence for the Requirement of ErbB2 as a Critical Component in Mediating Heregulin Responsiveness,” Cancer Research, vol. 56, pp. 1457-1465 (1996). |
Maier, L.A. et al., “Requirements for the Internalization of a Murine Monoclonal Antibody Directed against the HER-2/neu Gene Product c-erbB-2,” Cancer Research, vol. 51, pp. 5361-5369 (1991). |
Park, Joo-Bae et al., “Amplification, Overexpression, and Rearrangement of the erbB-2 Protooncogene in Primary Human Stomach Carcinomas,” Cancer Research, vol. 49, pp. 6605-6609 (1989). |
Sarup, J.C. et al., “Characterization of an Anti-p185HER2 Monoclonal Antibody that Stimulates Receptor Function and Inhibits Tumor Cell Growth,” Growth Regulation, vol. 1, pp. 72-82 (1991). |
Semba, K. et al., “A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma,” Proc. Natl. Acad. Sci. USA, vol. 82, pp. 6497-6501 (1985). |
Shawver, L.K. et al., “Ligand-like Effects Induced by Anti-c-erbB-2 Antibodies Do Not Correlate with and Are Not Required for Growth Inhibition of Human Carcinoma Cells,” Cancer Research, vol. 54, pp. 1367-1373 (1994). |
Skrepnik, N. et al., “Effects of Anti-erbB-2 (HER-2/neu) Recombinant Oncotoxin AR209 on Human Non-Small Cell Lung Carcinoma Grown Orthotopically in Athymic Nude Mice,” Clinical Cancer Research, vol. 2, pp. 1851-1857 (1996). |
Vitetta, E.S. et al., “Monoclonal Antibodies as Agonists: An Expanded Role for Their Use in Cancer Therapy,” Cancer Research, vol. 54, pp. 5301-5309. |
Weiner, D.B. et al., “Expression of the neu Gene-encoded Protein (P185neu) in Human Non-Small Cell Carcinomas of the Lung,” Cancer Research, vol. 50, pp. 421-425 (1990). |
Yamamoto, T. et al., “Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor,” Nature, vol. 319, pp. 230-234 (1986). |
Yokota, J. et al., “Amplification of c-erbB-2 Oncogene in Human Adenocarcinomas in Vivo,” The Lancet, vol. 1, pp. 765-767 (1986). |
Yonemura, Y. et al., “Evaluation of Immunoreactivity for erbB-2 Protein as a Marker of Poor Short Term Prognosis in Gastric Cancer,” Cancer Research, vol. 51, pp. 1034-1038 (1991). |
Aasland et al., “Expression of oncogenes in thyroid tumours: Coexpression of c-erbB2/neu and c-erbB,” Br. J. Cancer, vol. 57, pp. 358-363 (1988). |
Bacus et al., “Differentiation of Cultured Human Breast Cancer Cells (AU-565 and MCF-7) Associated With Loss of Cell Surface HER-2/neu Antigen,” Molecular Carcinogenesis, vol. 3, pp. 350-362 (1990). |
Borst et al., “Oncogene Alterations in Endometrial Carcinoma,” Gynecol. Oncol., vol. 38, pp. 364-366 (1990). |
Carter et al., “Humanization of anti-p185HER2 antibody for human cancer therapy,” Proc. Natl. Acad. Sci. USA, vol. 89, pp. 4285-4289 (1992). |
Cobleigh et al., “Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed after Cehmotherapy for Metastatic Disease,” J. Clin. Oncol., vol. 17, pp. 2639-2648 (1999). |
Cohen et al., “Expression pattern of the neu (NGL) gene-encoded growth factor receptor protein (p185neu) in normal and transformed epithelial tissues of the digestive tract,” Oncogene, vol. 4, pp. 81-88 (1989). |
Drebin et al., “Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo,” Oncogene, vol. 2, pp. 273-277 (1988). |
Drebin et al., “Down-Modulation of an Oncogene Protein Product and Reversion of the Transformed Phenotype by Monoclonal Antibodies,” Cell, vol. 41, pp. 695-706 (1985). |
D'Souza et al., “Overexpression of ERBB2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene,” Proc. Natl. Acad. Sci. USA, vol. 91, pp. 7202-7206 (1994). |
Guérin et al., “Overexpression of Either c-myc or c-erbB-2/neu Proto-Oncogenes in Human Breast Carcinomas: Correlation with Poor Prognosis,” Oncogene Research, vol. 3, pp. 21-31 (1988). |
Gu et al., “Overexpression of her-2/neu in human prostate cancer and benign hyperplasia,” Cancer Letters, vol. 99, pp. 185-189 (1996). |
Harweth et al., “Monoclonal Antibodies against the Extracellulr Domain of the erbB-2 Receptor Function as Partial Ligand Agonists,” The Journal of Biological Chemistry, vol. 267, No. 21, pp. 15160-15167 (1992). |
Hudziak et al., “p185HER2 Monoclonal Antibody Has Antiproliferative Effects In Vitro and Sensitizes Human Brest Tumor Cells to Tumor Necrosis Factor,” Molecular and Cellular Biology, vol. 9, No. 3, pp. 1165-1172 (1989). |
Klapper et al., “A subclass of tumor-inhibitory monoclonal antibodies to erbB-2/HER2 blocks crosstalk with growth factor receptors,” Oncogene, vol. 14, pp. 2099-2109 (1997). |
Kraus et al., “Isolation and characterization of ERBB3, a third member of the ERBB/epidermal grwoth factor receptor family: Evidence for overexpression in a subset of human mammary tumors,” Proc. Natl. Acad. Sci. USA, vol. 86, pp. 9193-9197 (1989). |
Kumar et al., “Regulation of Phosphorylation of the c-erbB-2/HER2 Gene Product by a Monoclonal Antibody and Serum Growth Factor(s) in Human Mammary Carcinoma Cells,” Molecular and Cellular Biology, vol. 11, No. 2, pp. 979-986 (1991). |
Lewis et al., “Differential responses of human tumor cell lines to anti-p&Quadbond;HER2 monoclonal antibodies,” Cancer Immunol. Immunother., vol. 37, pp. 255-263 (1993). |
McCann et al., “c-erbB-2 Oncoprotein Expression in Primary Human Tumors,” Cancer, vol. 65, pp. 88-92 (1990). |
McKenzie et al., “Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185,” Oncogene, vol. 4, pp. 543-548 (1989). |
Myers et al., “Biological Effects of Monoclonal Antireceptor Antibodies Reactive with neu Oncogene Product, p185neu,” Methods in enzymology, vol. 198, pp. 277-290 (1991). |
Pietras et al., “Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells,” Oncogene, vol. 9, pp. 1829-1838 (1994). |
Ross et al., “Prognostic Significance of HER-2/neu Gene Amplification Status by Fluorescence In Situ Hybridization of Prostate Carcinoma,” Cancer, vol. 79, pp. 2162-2170 (1997). |
Ross et al., “HER-2/neu Gene Amplification Status in Prostate Cancer by Fluorescense In Situ Hybridization,” Human Pathology, vol. 28, No. 7, pp. 827-833 (1997). |
Sadasivan et al., “Overexpression of HER-2/NEU May be an Indicator of Poor Prognosis in Prostate Cancer,” The Journal of Urology, vol. 150, pp. 126-131 (1993). |
Schaefer et al., “γ-Heregulin: a novel heregulin isoform that is an autocrine growth factor for the human breast cancer cell line, MDA-MB-175,” Oncogene, vol. 15, pp. 1385-1394 (1997). |
Scott et al., “p185HER2 Signal Transduction in Breast Cancer Cells,” The Journal of Biological Chemistry, vol. 266, No. 22, pp. 14300-14305 (1991). |
Shepard et al., “Monoclonal Antibody Therapy of Human Cancer: Taking the HER2 Protooncogene to the Clinic,” Journal of clinical Immunology, vol. 11, No. 3 (1991). |
Slamon et al., “Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene,” Science, vol. 235, pp. 177-182 (1987). |
Slamon et al., “Studies of the HER-2/neu Proto-oncogene in Human Breast and Ovarian Cancer,” Science, vol. 244, pp. 707-712 (1989). |
Sliwkowski et al., “Coexpression of erbB2 and erbB3 Proteins Reconstitutes a High Affinity Receptor for Heregulin,” The Journal of Biological Chemistry, vol. 269, No. 20, pp. 14661-14665 (1994). |
Stancovski et al., “Mechanistic aspects of the opposing effects of monoclonl antibodies to the ERBB2 receptor on tumor growth,” Proc. Natl. Acad. Sci. USA, vol. 88, pp. 8691-8695 (1991). |
Tagliabue et al., “Selection of Monoclonal Antibodies Which Induce Internalization and Phsophorylation of p185HER2 and Growth Inhibition of Cells with HER2/NEU Gene Amplification,” Int. J. Cancer, vol. 47, pp. 933-937 (1991). |
Williams et al., “Expression of c-erb-2 in Human Pancreatic Adenocarcinomas,” Pathobiology, vol. 59, pp. 46-52 (1991). |
Xu et al., “Antibody-Induced Growth Inhibition is Mediated Through Immunochemically and Functionally Distinct Epitopes on the Extracellular Domain of the c-erbB-2 (HER-2/neu) Gene Product,” vol. 53, pp. 401-408 (1993). |
Zhau et al., “Amplification and Expression of the c-erb B-2/neu Proto-Oncogene in Human Bladder Cancer,” Molecular Carcinogenesis, vol. 3, pp. 254-257 (1990). |
King et al., “Amplification of a Novel v-erbB-Related Gene in a Human Mammary Carcinoma,” Science, vol. 229, pp. 974-976 (1985). |
Fukushige et al., “Localization of a Novel v-erbB-Related Gene, c-erbB-2, on Human Chromosome 17 and Its Amplification in a Gastric Cancer Cell Line,” Molecular and Cellular Biology, vol. 6, No. 3, pp. 955-958 (1986). |
Wall; Transgenic Livestock: Progress and Prospects for the Future, 1996, Theriogenology 45: 57-68.* |
Mullins et. al; Perspective Series: Molecular Medicine in Genetically Engineered Animals, 1996, J. Clin. Invesyt., vol. 97:1557-1560.* |
Cameron; Recent Advances in Transgenic Technology, 1997, Molecular Biotechnology, vol. 7: 253-265.* |
Sigmund; Viewpoint: Are Studies in Genetically Altered Mice Out of Control?, 2000, Arterioscler Thromb Vasc. Biol. 20: 1425-1429. |