Rodless cylinder

Information

  • Patent Grant
  • 6427578
  • Patent Number
    6,427,578
  • Date Filed
    Tuesday, October 17, 2000
    23 years ago
  • Date Issued
    Tuesday, August 6, 2002
    21 years ago
Abstract
A rodless cylinder comprises a cylinder tube having, at its inside, a piston which is movable back and forth in a longitudinal direction; fluid bypass passages defined at the inside of the cylinder tube to extend in the longitudinal direction; and a pair of head covers installed to ends of the cylinder tube. The head cover has a side surface provided with at least one fluid pressure inlet/outlet port, in and an end surface provided with at least two fluid pressure inlet/outlet port. Further, the head cover is provided with at least four or more fluid pressure inlet/outlet ports.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention especially relates to a rodless cylinder in which head covers installed to ends of a cylinder tube are mutually exchangeable and commonly usable.




2. Description of the Related Art




In recent years, the rodless cylinder is adopted in various cases as an apparatus for transporting a workpiece in a factory or the like. The rodless cylinder makes it possible to shorten the entire length with respect to the displacement length as compared with a cylinder which has a rod. Therefore, the rodless cylinder occupies a small area, and it is conveniently handled, making it possible to perform, for example, highly accurate positioning operation.




As shown in

FIG. 8

, the rodless cylinder


1


concerning the conventional technique includes a cylinder tube


2


, a slide table


3


, and a pair of head covers


4


,


5


. The rodless cylinder


1


has two lines of passages


8


,


9


for allowing the compressed fluid to flow therethrough. The respective head covers


4


,


5


are provided with fluid pressure inlet/outlet ports


6




a


to


6




f,




7




a


to


7




f


which serve as introducing ports for the compressed fluid.




A passage


8


for allowing the compressed fluid to flow communicates with the fluid pressure inlet/outlet ports


6




a


to


6




f.


Another passage


9


communicates with the fluid pressure inlet/outlet ports


7




a


to


7




f.


Further, the passages


8


,


9


are conducted to the inside of the space in which an unillustrated piston, which is arranged at the inside of the cylinder tube


2


, makes reciprocating movement. Any one of the fluid pressure inlet/outlet ports


6




a


to


6




f


and any one of the fluid pressure inlet/outlet ports


7




a


to


7




f


are provided on first principal surfaces of the respective head covers


4


,


5


.




In the case of the rodless cylinder


1


, a pair of the fluid pressure inlet/outlet ports


6




a,




7




a


are selected as ports for introducing/discharging the compressed fluid. Further, the other fluid pressure inlet/outlet ports


6




b


to


6




f,




7




b


to


7




f,


which are not used, are closed by plug members.




The slide table


3


is moved linearly in the direction of the arrow A shown in

FIG. 8

in accordance with the action of the supply of the compressed fluid supplied via the fluid pressure inlet/outlet port


6




a.


When the compressed fluid is supplied via the fluid pressure inlet/outlet port


7




a,


the slide table


3


is moved linearly in the direction of the arrow B shown in FIG.


8


.




However, in the case of the rodless cylinder


1


concerning the conventional technique, as described above, each one of any one of the fluid pressure inlet/outlet ports


6




a


to


6




f


communicating with the passage


8


and any one of the fluid pressure inlet/outlet ports


7




a


to


7




f


communicating with the passage


9


is provided on each of the first principal surfaces of the respective head covers


4


,


5


. Therefore, the compressed fluid passages, which are formed at the inside of the head cover


4


and the head cover


5


respectively, are asymmetric with respect to the short side direction of the cylinder tube


2


. For this reason, the head cover


4


and the head cover


5


are not mutually exchangeable, and they cannot be commonly used.




Therefore, for example, when the head covers are formed by using an injection molding machine, it is necessary to use two types of molds. Further, it is necessary to use jigs corresponding to the respective molds. Therefore, a problem is pointed out that the operation for adjusting the jig is complicated, and the production cost is expensive for the rodless cylinder as a whole.




Further, it is necessary that the two lines of the passages


8


,


9


, which are disposed at the inside of the cylinder tube


2


, are defined in a separate manner respectively. An inconvenience arises such that the size of the rodless cylinder


1


in the height direction is large, and it is impossible to respond to the demand for realization of a small size. Further, the size of the rodless cylinder


1


is increased, and the installation space is enlarged.




SUMMARY OF THE INVENTION




A general object of the present invention is to provide rodless cylinder which makes it possible to miniaturize the rodless cylinder and reduce the installation space.




A principal object of the present invention is to provide a rodless cylinder which makes it possible to mold head covers of the rodless cylinder with a single mold.




Another object of the present invention is to provide a rodless cylinder which makes it possible to reduce the production cost of the rodless cylinder as a whole and which makes it possible to achieve a small size and a reduced installation space.




The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present invention is shown by way of illustrative example.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a perspective view illustrating a rodless cylinder according to an embodiment of the present invention;





FIG. 2

shows a perspective view illustrating a cylinder tube of the embodiment of the present invention;





FIG. 3

shows a side view illustrating the cylinder tube of the embodiment of the present invention;





FIG. 4

shows a sectional view taken along a line IV—IV illustrating the rodless cylinder shown in

FIG. 1

;





FIG. 5

shows a sectional view taken along a line V—V illustrating the rodless cylinder shown in

FIG. 1

;





FIG. 6

shows a magnified sectional view illustrating portions disposed in the vicinity of a slit of the rodless cylinder according to the embodiment of the present invention;





FIG. 7

shows, with partial omission, a perspective view illustrating compressed fluid passages and fluid pressure inlet/outlet ports formed in the rodless cylinder according to the embodiment of the present invention; and





FIG. 8

shows, with partial omission, a perspective view illustrating compressed fluid passages and fluid pressure inlet/outlet ports formed in a conventional rodless cylinder.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




As shown in

FIG. 1

, a rodless cylinder


10


according to an embodiment of the present invention basically comprises a cylinder tube


12


, a slide table


14


which is arranged on an upper surface portion of the cylinder tube


12


and which is capable of making sliding contact in a longitudinal direction of the cylinder tube


12


, and a pair of head covers


16




a,




16




b


which are installed to both ends of the cylinder tube


12


.




The cylinder tube


12


is molded, for example, by means of extrusion processing with a metal material such as aluminum and aluminum alloy. As shown in

FIGS. 2 and 3

, the cylinder tube


12


has upper surface portions which are gently inclined to the both ends over the upper surface, with its lower surface portion which is formed to have a rectangular gutter-shaped configuration.




Sensor-attaching long grooves


18




a,




18




b


for installing a magnetic sensor (not shown) to detect the position of a piston


50


described later on, and intermediate fixing fixture-attaching long grooves


19




a,




19




b


for attaching an intermediate fixing fixture (not shown) are defined on both side surfaces of the cylinder tube


12


so that they extend in the longitudinal direction of the cylinder tube


12


(see FIGS.


2


and


3


).




As shown in

FIGS. 2 and 3

, a bore


20


, which extends in the longitudinal direction of the cylinder tube


12


, is formed at the inside of the cylinder tube


12


. The bore


20


has a substantially rhombic cross section, with respective angular portions which are formed to have gentle circular arc-shaped configurations.




A slit


22


, which extends in the longitudinal direction of the cylinder tube


12


, is provided at an upper surface portion of the cylinder tube


12


. The bore


20


communicates with the outside via the slit


22


(see FIG.


3


). Fluid bypass passages


24




a,




24




b


for concentrated pipe arrangement, which extend along the bore


20


, are defined at portions in the vicinity of the lower side on both sides of the bore


20


at the inside of the cylinder tube


12


(see FIG.


3


). The fluid bypass passages


24




a,




24




b


are formed such that the height dimension is identical for each of them from the bottom surface of the cylinder tube


12


.




On the other hand, as shown in

FIGS. 2 and 3

, belt-installing grooves


26




a,




26




b


for installing an upper belt


62


described later on are defined along the slit


22


on both sides of the slit


22


at the upper surface portion of the cylinder tube


12


. Tapered surfaces


28




a,




28




b,


which have predetermined angles to be expanded toward the bore


20


, are provided at boundary portions between the bore


20


and the slit


22


(see FIG.


3


).




Screw holes


30




a


to


30




f


for installing the pair of head covers


16




a,




16




b


are provided at three positions at the both ends of the cylinder tube


12


(see FIGS.


2


and


3


).




As shown in

FIGS. 4 and 5

, a piston


50


, which has a cross-sectional configuration corresponding to the bore


20


, is accommodated at the inside of the bore


20


of the cylinder tube


12


so that the piston


50


is movable back and forth along the bore


20


. The piston


50


has, at both ends in the longitudinal direction, projections


52




a,




52




b


which are formed with circumscribing grooves


54




a,




54




b.


Seal members


56




a,




56




b


made of rubber are fitted to the circumscribing grooves


54




a,




54




b


(see FIG.


4


). Forward end surfaces of the projections


52




a,




52




b


function as pressure-receiving surfaces


60




a,




60




b


for the compressed fluid introduced into the inside of the bore


20


as described later on.




As shown in

FIG. 5

, the outer circumferential configuration of each of the seal members


56




a,




56




b


is formed to have a substantially rhombic configuration corresponding to the cross-sectional configuration of the bore


20


, in which each of angular portions is formed to have a gentle circular arc-shaped configuration.




As shown in

FIGS. 4

to


6


, an upper belt


62


and a lower belt


64


are installed to the slit


22


of the cylinder tube


12


so that the slit


22


is closed in the upper and lower directions.




As shown in

FIG. 6

, the upper belt


62


is provided with legs


66




a,




66




b.


The upper belt


62


is installed to the cylinder tube


12


by fitting the legs


66




a,




66




b


to the belt-installing grooves


26




a,




26




b


of the cylinder tube


12


. The upper belt


62


is made of a rubber material or a resin material. Alternatively, the upper belt


62


may be constructed in a separate manner with a flat plate-shaped plate member made of stainless steel and legs composed of a magnetic material so that the flat plate-shaped plate member is attracted by the legs.




As shown in

FIG. 6

, the lower belt


64


has, at its both end upper surface portions, tapered surfaces


68




a,




68




b


which are formed corresponding to the tapered surfaces


28




a,




28




b


of the cylinder tube


12


. Engaging tabs


70




a,




70




b


extend from the tapered surfaces


68




a,




68




b


upwardly in the vertical direction while being separated from each other by a predetermined spacing distance. A substantially recess-shaped groove


74


is defined between the engaging tabs


70




a,




70




b.


The groove


74


serves as a passage in which belt separators


84




a,




84




b


are moved as described later on. As for the material of the lower belt


64


, it is preferable that the lower belt


64


is composed of a flexible synthetic resin member.




The tapered surfaces


68




a,




68




b


of the lower belt


64


are engaged with the tapered surfaces


28




a,




28




b


which are provided on the cylinder tube


12


. Further, the engaging tabs


70




a,




70




b


are engaged with inner surfaces


72




a,




72




b


which define the slit


22


(see FIG.


6


). Accordingly, the lower belt


64


is installed to the cylinder tube


12


. The lower surface portion


65


of the lower belt


64


is formed to have a circular arc-shaped configuration corresponding to the gentle circular arc-shaped configuration of the upper end portion (upper angular portion) of each of the seal members


56




a,




56




b.


As shown in

FIG. 4

, both end portions of the upper belt


62


and the lower belt


64


are secured to the head covers


16




a,




16




b


(however, only the left end is illustrated in FIG.


4


).




As shown in

FIGS. 1 and 5

, the slide table


14


includes a placing surface


80


for placing a workpiece, and a relatively thick plate member


76


with its lower surface portion


78


which is curved toward the placing surface


80


. Both end portions of the plate member


76


in the short side direction are formed to be substantially flushed with the ends of the cylinder tube


12


. As shown in

FIG. 4

, a piston yoke


82


, which is coupled to the piston


50


accommodated at the inside of the bore


20


, is secured to the lower surface portion


78


of the slide table


14


. Belt separators


84




a,




84




b,


which are directed in the longitudinal direction of the bore


20


, are attached to both ends of the piston yoke


82


. The belt separators


84




a,




84




b


are allowed to intervene between the upper belt


62


and the lower belt


64


which are installed to the slit


22


of the cylinder tube


12


, in order that the upper belt


62


and the lower belt


64


are separated from each other in the vertical direction with respect to the cylinder tube


12


.




Therefore, as described later on, the piston


50


is moved at the inside of the bore


20


in accordance with the action of the compressed fluid introduced into the inside of the bore


20


. Accordingly, the slide table


14


is also moved on the upper surface portion of the cylinder tube


12


while being interlocked with the piston


50


. During this process, the belt separators


84




a,




84




b


pass through the space between the upper belt


62


and the lower belt


64


to separate the upper belt


62


and the lower belt


64


in the vertical direction with respect to the cylinder tube


12


as described above.




The upper belt


62


, which is separated in the upward direction with respect to the cylinder tube


12


, is allowed to pass through the space formed between the belt separator


84




a,




84




b


and the slide table


14


. The lower belt


64


is allowed to pass through the space formed between the belt separator


84




a,




84




b


and the piston


50


.




When the piston


50


is moved at the inside of the bore


20


, the load is applied to the slide table


14


from the workpiece which is placed on the placing surface


80


. The load is absorbed by an unillustrated guide mechanism.




Holding members


86




a,




86




b


for pressing the upper belt


62


toward the cylinder tube


12


are provided at both ends in the longitudinal direction at the inside of the slide table


14


(see FIG.


4


). That is, the holding members


86




a,




86




b


function to install the upper belt


62


and the lower belt


64


to the slit


22


again, the upper belt


62


and the lower belt


64


having been separated from the slit


22


by the aid of the belt separators


84




a,




84




b.






As shown in

FIG. 4

, scrapers


90




a,




90




b,


which make sliding contact with the upper belt


62


, are provided on bottom surfaces


88




a,




88




b


at the both ends in the longitudinal direction of the slide table


14


. The dust or the like is excluded from invasion into the space between the slide table


14


and the upper belt


62


by the aid of the scrapers


90




a,




90




b.






As shown in

FIG. 4

, the pair of head covers


16




a,




16




b


are installed to the both ends of the cylinder tube


12


by the aid of gaskets


92




a,




92




b


which are made of, for example, a rubber material in order to close the cylinder tube


12


. Accordingly, the air-tight state is maintained between the respective head covers


16




a,




16




b


and the cylinder tube


12


(only the side of the head cover


16




a


is illustrated in FIG.


4


).




Projections


98




a,




98




b,


which have substantially semispherical forward ends


96




a,




96




b,


are provided at portions of the gaskets


92




a,




92




b


facing to the bore


20


.




The projections


98




a,




98




b


are capable of making abutment against the ends (pressure-receiving surfaces


60




a,




60




b


) of the piston


50


. That is, when the piston


50


is moved back and force, and it arrives at the end of the bore


20


to collide with the head cover


16




a,




16




b,


then the projection


98




a,




98




b


functions to mitigate the shock caused by the collision.




Explanation will now be made with reference to

FIG. 7

for two lines of compressed fluid passages R, L provided for the rodless cylinder


10


according to the embodiment of the invention.




As shown in

FIG. 7

, the compressed fluid passage R includes fluid pressure inlet/outlet ports


200




a,




200




b


which are formed on respective side surfaces


100




a,




102




a


of the head cover


16




a


respectively, a fluid pressure inlet/outlet port


200




c


which is formed on the end surface


104




a


of the head cover


16




a,


a fluid pressure inlet/outlet port


200




d


which is formed on the end surface


104




b


of the head cover


16




b,


and the fluid bypass passage


24




b.






Only the single fluid pressure inlet/outlet port


200




a,




200




b


is formed on each of the side surfaces


100




a,




102




a


. Each of the fluid pressure inlet/outlet ports


200




c


,


200




d,


which is formed on each of the end surfaces


104




a,




104




b,


is located at a lower portion of the end surface


104




a,




104




b,


i.e., at a portion in the vicinity of the bottom of the head cover


16




a,




16




b.


Further, the single fluid pressure inlet/outlet ports


200




a,




200




b,


which are not overlapped with each other in the height direction, are provided on the respective side surfaces


100




a,




102




a.


Accordingly, it is possible to suppress the dimension of the head cover


16




a,




16




b


in the height direction as compared with the head cover


4


,


5


concerning the conventional technique shown in FIG.


8


. Of course, the positional relationship between the fluid pressure inlet/outlet port


200




a,




200




b


and the fluid pressure inlet/outlet port


200




c


may be upside down in the head cover


16




a.


That is, the fluid pressure inlet/outlet port


200




a,




200




b


may be located at a portion in the vicinity of the bottom of the head cover


16




a


as compared with the fluid pressure inlet/outlet port


200




c.






The fluid pressure inlet/outlet ports


200




a


to


200




c


communicate with the fluid bypass passage


24




b


in the cylinder tube


12


via a communication passage


202


at the inside of the head cover


16




a.


The fluid bypass passage


24




b


communicates with the fluid pressure inlet/outlet port


200




d


at the inside of the head cover


16




b.


A conducting passage


204


, which is branched from the communication passage


202


, is disposed in parallel to the fluid bypass passage


24




b,


and it is conducted to the inside of the bore


20


.




Therefore, an unillustrated compressed fluid supply source is connected to any one of the fluid pressure inlet/outlet ports


200




a


to


200




d,


and thus it is possible to supply the compressed fluid to the compressed fluid passage R. In this case, the fluid pressure inlet/outlet ports


200




a


to


200




d,


which are not used, are closed by plug members. The diameter of the communication passage


202


and the conducting passage


204


is formed to be smaller than the diameter of the fluid pressure inlet/outlet ports


200




a


to


200




d.






As shown in

FIG. 7

, the compressed fluid passage L includes fluid pressure inlet/outlet ports


300




a,




300




b


which are formed on respective side surfaces


100




b,




102




b


of the head cover


16




b


respectively, a fluid pressure inlet/outlet port


300




c


which is formed on the end surface


104




b


of the head cover


16




b,


a fluid pressure inlet/outlet port


300




d


which is formed on the end surface


104




a


of the head cover


16




a,


and the fluid bypass passage


24




a.






Only the single fluid pressure inlet/outlet port


300




a,




300




b


is formed on each of the side surfaces


100




b,




102




b


. Each of the fluid pressure inlet/outlet ports


300




c,




300




d,


which is formed on each of the end surfaces


104




b,




104




a,


is located at a lower portion of the end surface


104




b,




104




a,


i.e., at a portion in the vicinity of the bottom of the head cover


16




b,




16




a.


Further, the single fluid pressure inlet/outlet ports


300




a,




300




b,


which are not overlapped with each other in the height direction, are provided on the respective side surfaces


100




b,




102




b.


Accordingly, it is possible to suppress the dimension of the head cover


16




a,




16




b


in the height direction as compared with the head cover


4


,


5


concerning the conventional technique shown in FIG.


8


. Of course, the positional relationship between the fluid pressure inlet/outlet port


300




a,




300




b


and the fluid pressure inlet/outlet port


300




c


may be upside down in the head cover


16




b.


That is, the fluid pressure inlet/outlet port


300




a,




300




b


may be located at a portion in the vicinity of the bottom of the head cover


16




b


as compared with the fluid pressure inlet/outlet port


300




c.






The fluid pressure inlet/outlet ports


300




a


to


300




c


communicate with the fluid bypass passage


24




a


in the cylinder tube


12


via a communication passage


302


at the inside of the head cover


16




b.


The fluid bypass passage


24




a


communicates with the fluid pressure inlet/outlet port


300




d


at the inside of the head cover


16




a.


A conducting passage


304


, which is branched from the communication passage


302


, is disposed in parallel to the fluid bypass passage


24




a,


and it is conducted to the inside of the bore


20


.




Therefore, the unillustrated compressed fluid supply source is connected to any one of the fluid pressure inlet/outlet ports


300




a


to


300




d,


and thus it is possible to supply the compressed fluid to the compressed fluid passage L. In this case, the fluid pressure inlet/outlet ports


300




a


to


300




d,


which are not used, are closed by plug members. The diameter of the communication passage


302


and the conducting passage


304


is formed to be smaller than the diameter of the fluid pressure inlet/outlet ports


300




a


to


300




d.






As described above, the compressed fluid passages R, L, which are formed in the rodless cylinder


10


according to the embodiment of the present invention, are formed at the portions in the vicinity of the bottom of the rodless cylinder


10


. Therefore, it is possible to suppress the dimension in the height direction of the rodless cylinder


10


. It is possible to effect the stable reciprocating action with the low center of gravity. Accordingly, it is possible to realize a small size of the rodless cylinder


10


, and it is possible to reduce the installation space.




The compressed fluid passages R, L, which are disposed at the inside of the head covers


16




a,




16




b,


are formed to be symmetric. In other words, the compressed fluid passages R, L are formed to have the same structure. Accordingly, for example, when the head covers


16




a,




16




b


are formed by using an unillustrated molding machine, they can be molded with a single mold. That is, the head covers


16




a,




16




b


can be molded with only one type of the mold. Therefore, it is unnecessary to perform the operation to exchange the jig corresponding to the mold, and it is possible to eliminate complicated operations such as the operation for adjusting the jig. Accordingly, it is possible to remarkably reduce the production cost of the head covers


16




a,




16




b,


and consequently reduce the production cost of the entire rodless cylinder


10


.




The rodless cylinder


10


according to the embodiment of the present invention is basically constructed as described above. Next, its function and effect will be explained.




At first, any one of the fluid pressure inlet/outlet ports


200




a


to


200




d


and any one of the fluid pressure inlet/outlet ports


300




a


to


300




d


are connected to the pressure fluid supply source via an unillustrated solenoid-operated valve. In this case, for example, the fluid pressure inlet/outlet port


200




a


provided for the head cover


16




a


and the fluid pressure inlet/outlet port


300




a


provided for the head cover


16




b


are connected to the solenoid-operated valve, and then the other fluid pressure inlet/outlet ports


200




b


to


200




d


of the head cover


16




a


and the other fluid pressure inlet/outlet ports


300




b


to


300




d


of the head cover


16




b


are closed by plug members


400




a


to


400




f


(see FIG.


1


).




As described above, it is enough to use any one of the fluid pressure inlet/outlet ports


200




a


to


200




d


and any one of the fluid pressure inlet/outlet ports


300




a


to


300




d


formed on the side surfaces


100




a,




102




a,


the end surface


104




a,


the side surfaces


100




b,




102




b,


and the end surface


104




b


on the other side of the rodless cylinder


10


. Therefore, the degree of freedom is improved for the pipe arrangement.




Especially, when a combination of the fluid pressure inlet/outlet ports


200




c,




300




d


provided for the head cover


16




a


or the fluid pressure inlet/outlet ports


200




d,




300




c


provided for the head cover


16




b


is selected, the pipe arrangement, which is necessary to perform the reciprocating action of the piston


50


, can be constructed by using only one end surface of the end surface


104




a


or the end surface


104




b.


Accordingly, it is possible to construct the pipe arrangement in which the installation space is concentrated.




After that, when the unillustrated solenoid-operated valve is operated to introduce the compressed fluid into the first fluid pressure inlet/outlet port


200




a,


the compressed fluid is conducted into the inside of the bore


20


via the communication passage


202


and the conducting passage


204


to press the pressure-receiving surface


60




a


of the piston


50


. The piston


50


is moved rightwardly (in the direction of the arrow X) as shown in

FIG. 4

in accordance with the pressing action of the compressed fluid.




In this arrangement, the piston


50


is connected to the slide table


14


via the piston yoke


82


. Therefore, the piston


50


is moved, and the slide table


14


is also moved on the upper surface portion of the cylinder tube


12


while being interlocked therewith. Further, the belt separator


84




b


is installed between the upper belt


62


and the lower belt


64


. Therefore, the upper belt


62


and the lower belt


64


are separated from each other in the upward and downward directions of the cylinder tube


12


from the slit


22


. The upper belt


62


and the lower belt


64


, which are separated from each other as described above, are installed to the slit


22


again by the aid of the holding member


86




a.


It will be easily understood that when the compressed fluid is introduced into the other fluid pressure inlet/outlet port


300




a


formed for the head cover


16




b,


the operation is effected in a manner opposite to the above.



Claims
  • 1. A rodless cylinder provided with a plurality of fluid pressure inlet/outlet ports as introducing ports for a compressed fluid for allowing a piston to perform reciprocating movement, in which said fluid pressure inlet/outlet ports disposed at desired positions are capable of being selected from said plurality of fluid pressure inlet/outlet ports, said rodless cylinder comprising:a cylinder tube for allowing said piston to perform said reciprocating movement along an internal space by the aid of said compressed fluid; a fluid bypass passage defined to extend along said internal space of said cylinder tube; and a head cover installed to an end of said cylinder tube for closing said cylinder tube, wherein: said head cover has, at its inside, a conducting passage for conducting said compressed fluid to said internal space, and said fluid bypass passage is substantially parallel to said conducting passage; said head cover has a side surface provided with at least one fluid pressure inlet/outlet port, and an end surface provided with at least two fluid pressure inlet/outlet ports respectively; and a total number of said fluid pressure inlet/outlet ports provided for said head cover is at least four or more.
  • 2. The rodless cylinder according to claim 1, wherein said head cover has, at its inside, a communication passage for communicating at least one of said fluid pressure inlet/outlet ports with said fluid bypass passage.
  • 3. The rodless cylinder according to claim 2, wherein said conducting passage is communicated with said communication passage at the inside of said head cover.
  • 4. The rodless cylinder according to claim 2, wherein a diameter of said conducting passage and a diameter of said communication passage are formed to be smaller than a diameter of said fluid pressure inlet/outlet ports.
  • 5. The rodless cylinder according to claim 1, wherein:said head cover comprises a first head cover installed to a first end of said cylinder tube, and further comprising a second head cover installed to a second end of said cylinder tube; and said first head cover and said second head cover are mutually exchangeable and commonly usable.
  • 6. The rodless cylinder according to claim 5, wherein at least one of said fluid pressure inlet/outlet ports provided on said end surface of said first head cover communicates with a conducting passage formed at the inside of said second head cover.
  • 7. The rodless cylinder according to claim 6, wherein said pressure fluid inlet/outlet port is formed singly on each of said side surfaces of said first head cover.
  • 8. The rodless cylinder according to claim 5, wherein at least one of said fluid pressure inlet/outlet ports provided on said end surface of said second head cover communicates with a conducting passage formed at the inside of said first head cover.
  • 9. The rodless cylinder according to claim 8, wherein said pressure fluid inlet/outlet port is formed singly on each of said side surfaces of said second head cover.
  • 10. The rodless cylinder according to claim 5, wherein said first head cover and said second head cover are identical molded articles.
  • 11. A rodless cylinder provided with a plurality of fluid pressure inlet/outlet ports as introducing ports for a compressed fluid for allowing a piston to perform reciprocating movement, in which said fluid pressure inlet/outlet ports disposed at desired positions are capable of being selected from said plurality of fluid pressure inlet/outlet ports, said rodless cylinder comprising:a cylinder tube for allowing said piston to perform said reciprocating movement along an internal space by the aid of said compressed fluid; a fluid bypass passage defined to extend along said internal space of said cylinder tube; and a first head cover installed to a first end of said cylinder tube, and a second head cover installed to a second end of said cylinder tube, for closing said cylinder tube, wherein: said first and second head covers each comprises a side surface provided with at least one fluid pressure inlet/outlet port, and an end surface provided with at least two fluid pressure inlet/outlet ports respectively; a total number of said fluid pressure inlet/outlet ports provided for each of said first and second head covers is at least four or more; and said first and second head covers are mutually exchangeable and commonly usable.
  • 12. The rodless cylinder according to claim 11, wherein each of said head covers has, at its inside, a conducting passage for conducting said compressed fluid to said internal space, and a communication passage for communicating at least one of said fluid pressure inlet/outlet ports with said fluid bypass passage.
  • 13. The rodless cylinder according to claim 12, wherein said conducting passage of each of said head covers is communicated with said communication passage at the inside of each of said head covers.
  • 14. The rodless cylinder according to claim 12, wherein said fluid bypass passage is substantially parallel to said conducting passage of each of said head covers.
  • 15. The rodless cylinder according to claim 12, wherein a diameter of said conducting passage and a diameter of said communication passage, in each of said head covers, are formed to be smaller than a diameter of said fluid pressure inlet/outlet ports.
  • 16. The rodless cylinder according to claim 11, wherein at least one of said fluid pressure inlet/outlet ports provided on said end surface of said first head cover communicates with a conducting passage formed at the inside of said second head cover.
  • 17. The rodless cylinder according to claim 16, wherein said pressure fluid inlet/outlet port is formed singly on each of said side surfaces of said first head cover.
  • 18. The rodless cylinder according to claim 11, wherein at least one of said fluid pressure inlet/outlet ports provided on said end surface of said second head cover communicates with a conducting passage formed at the inside of said first head cover.
  • 19. The rodless cylinder according to claim 18, wherein said pressure fluid inlet/outlet port is formed singly on each of said side surfaces of said second head cover.
  • 20. The rodless cylinder according to claim 11, wherein said first head cover and said second head cover are identical molded articles.
Priority Claims (1)
Number Date Country Kind
11-295812 Oct 1999 JP
US Referenced Citations (1)
Number Name Date Kind
6148714 Abe et al. Nov 2000 A