The present invention relates to a roll bending apparatus capable of precisely forming a curve in an elongated component that has a varying contour or varying cross-sectional rigidity.
For example, in roll bending for forming a curve in an elongated formed component (an elongated component or elongated member) such as an aircraft frame, the optimal position (optimal angle) of a bending roll is uniquely determined based on various conditions, such as the width of the elongated component, the type of the material of the elongated component, and the contour of the elongated component. Therefore, a roll bending apparatus to be used in the roll bending is prepared by taking account of the conditions of the elongated component to be manufactured.
There are various types of elongated components, such as not only one having an overall uniform cross section in the longitudinal direction, but also one having a cross-sectional shape that varies at different portions thereof (i.e., one having a flexible cross-sectional shape). Hereinafter, for the sake of convenience of the description, such an elongated component having a flexible cross-sectional shape is referred to as “flexible cross-sectional elongated component”, and also, an elongated component having an overall uniform cross section in the longitudinal direction is referred to as “uniform cross-sectional elongated component”. Conventionally, for example, press forming using a mold has been known as a method of forming a flexible cross-sectional elongated component. In recent years, a roll forming apparatus capable of forming a flexible cross-sectional elongated component without using a mold has been proposed.
For example, Patent Literature 1 discloses a roll forming apparatus configured to follow a plate member (a blank) that has been pre-formed to have an intended contour and capable of controlling, for example, the driving speed of a bending roll. Patent Literature 2 discloses a roll forming apparatus capable of shifting the roll position in a direction orthogonal to the feeding direction, and continuously changing the inclination angle of the roll axis relative to the feeding direction.
Among uniform cross-sectional elongated components, there is such an elongated component that the degree of a curve formed therein partly varies. Such an elongated component is hereinafter referred to as “flexible curve elongated component” for the sake of convenience of the description. There are known apparatuses for forming such an elongated component, for example, a stretch forming apparatus using a mold or a roll bending apparatus. For example, Patent Literature 3 discloses a known roll bending apparatus including a sweep station that moves a bottom roller relative to a top roller along an arc-shaped path to a new position downstream of the top roller, and thereby a plurality of sweeps (i.e., a non-uniform curve in the longitudinal direction) are given to a continuous beam (an elongated component).
PTL 1: Japanese Laid-Open Patent Application Publication No. 2004-130383
PTL 2: Japanese Patent No. 5122863
PTL 3: WO2006/138179
Generally speaking, in the case of forming an elongated component whose curve in the longitudinal direction (i.e., contour) varies, or forming an elongated component whose bending rigidity varies due to its shape, material, etc., by using a roll bending apparatus, it is necessary to greatly change the path line of the elongated component. It is also known that a general roll bending apparatus includes a slide mechanism formed by a ball screw or the like as a mechanism for adjusting the roll position. Such a conventional slide mechanism is intended for performing fine roll setting adjustments when bending an elongated component having a constant cross section.
Therefore, when forming a flexible curve elongated component, it is conceivable to make, for example, position adjustments by sequentially moving the roll position in a sliding manner by the aforementioned general slide mechanism so as to conform to the change in the path line.
However, for example, in the case of an elongated member having a wide cross section such as an aircraft member, if a roll is disposed on only one side of the member, bending the member in a manner to keep its proper cross section cannot be performed. Therefore, it is required to dispose rolls on both sides of the elongated member (i.e., pinch type) when performing the bending. In this case, it is substantially difficult, by merely sliding these rolls, to adjust the position of the roll set (the pair of rolls facing each other) such that the roll set is positioned orthogonally to the tangent line to the path line. Unless the roll set is orthogonal to the path line, it is difficult to properly form an elongated component. Therefore, in accordance with the change in the path line, the entire roll set (including the base of the rolls) needs to be replaced. Such replacement of the roll set is necessary even when the cross-sectional shape of the elongated component varies just slightly (e.g., by about 0.5 mm).
It is also known that a roll forming apparatus for forming a flexible cross-sectional elongated component includes a tilt mechanism for tilting the rolls when forming a cross section that varies in the longitudinal direction. Also for bending a flexible curve elongated member, it is conceivable to perform position adjustments of the rolls by the tilt mechanism. However, even if such a configuration is adopted, it is still difficult to adjust the roll position so as to sufficiently conform to the change in the path line.
When forming a flexible curve elongated component, it is also conceivable to use a sweep mechanism to form a flexible curve in a manner similar to the roll bending apparatus disclosed by Patent Literature 3. However, even if such a configuration is adopted, it is still difficult to form a shape in which the curvature varies continuously.
Generally speaking, in roll bending, even if substantially the same curve is to be formed in elongated components that have the same cross-sectional shape, the amount by which the rolls are slid (i.e., the amount of roll position adjustment made by sliding the rolls) may be significantly different between the elongated components depending on the material of each elongated component. The reason for this is that the amount of spring-back of each material varies due to their differences in terms of, for example, Young's modulus or 0.2% proof stress. Therefore, the amount of tilt of the rolls, or the amount of slide of the rolls, needs to be changed for each material.
The present invention has been made to solve the above-described problems. An object of the present invention is to provide a roll bending apparatus for bending an elongated component having a varying contour or varying cross-sectional rigidity, the apparatus being configured such that rolls are disposed on both sides of the elongated component (i.e., pinch type), the apparatus being capable of properly forming a curve in the elongated component without requiring, for example, replacement of the rolls.
In order to solve the above-described problems, a roll bending apparatus according to the present invention includes: a roll pair formed by a pair of rolls disposed facing each other, the roll pair being configured to sandwich an elongated material between the rolls to perform forming on the elongated material; a slide mechanism configured to slide the roll pair in a first normal direction that is a direction normal to a conveying direction of the elongated material on a plane including the conveying direction; and a tilt mechanism configured to rotate the roll pair about a tilt axis that extends in a second normal direction that is a direction orthogonal to the conveying direction and the normal direction. The slide mechanism is configured to further slide the roll pair to change a position of the roll pair relative to the tilt axis.
According to the above configuration, since the roll bending apparatus includes the slide mechanism and the tilt mechanism, not only is the roll pair simply slid, but also the position of the roll pair can be changed relative to the tilt axis. This makes it possible to adjust the position of the roll pair such that the roll pair is positioned orthogonally to the tangent line to a path line. This consequently makes it possible to perform roll bending with a different path line. Therefore, even if the single elongated component has a varying contour or varying cross-sectional rigidity within itself, a curve can be formed therein precisely. As a result, the elongated component having a varying contour or varying cross-sectional rigidity can be manufactured without using, for example, stretch forming or press forming.
In addition, in the case of forming a predefined cross-sectional shape by roll forming and/or roll bending, a curve can be formed by roll bending continuously following the roll forming of forming the cross-sectional shape. Therefore, the elongated component can be manufactured by using substantially continuous equipment (jig and/or rolls). This makes it possible to realize significant cost reduction.
In the roll bending apparatus configured as above, the slide mechanism may be configured to include: a first slide part configured to slide at least the tilt mechanism and the roll pair collectively in the first normal direction; and a second slide part configured to slide the roll pair in the first normal direction to change the position of the roll pair relative to the tilt axis.
In the roll bending apparatus configured as above, the slide mechanism may be configured to further include a third slide part configured to slide at least one of the rolls forming the roll pair in the first normal direction to change a gap between the rolls.
The roll bending apparatus configured as above may include a roll drive unit configured to drive each of the rolls to rotate, and the roll drive unit may be configured to be attachable to and detachable from the rolls.
The roll bending apparatus configured as above may include a plurality of forming roll parts each including the roll pair, the plurality of forming roll parts being arranged in the conveying direction of the elongated material. At least one of the forming roll parts may be configured to include the slide mechanism and the tilt mechanism.
In the roll bending apparatus configured as above, the forming roll parts may include: a cross-sectional-shape-forming roll bending part configured to roll-form an elongated plate member that is the elongated material into an elongated component having a predefined cross-sectional shape; and a curve-forming forming roll part configured to form a curve in the elongated component that is the elongated material. The curve-forming forming roll part may be provided with the slide mechanism and the tilt mechanism.
The above and other objects, features, and advantages of the present invention will more fully be apparent from the following detailed description of a preferred embodiment with accompanying drawings.
With the above-described configuration, the present invention produces an advantageous effect of being able to provide a roll bending apparatus for bending an elongated component having a varying contour or varying cross-sectional rigidity, the apparatus being configured such that rolls are disposed on both sides of the elongated component (i.e., pinch type), the apparatus being capable of properly forming a curve in the elongated component without requiring, for example, replacement of the rolls.
Hereinafter, a typical embodiment of the present invention is described with reference to the drawings. In the drawings, the same or corresponding elements are denoted by the same reference signs, and repeating the same descriptions is avoided below.
First, one typical example of an elongated formed component (elongated component) manufactured according to the present disclosure is specifically described with reference to
In the present embodiment, among various structural members used in manufacturing of an aircraft fuselage, a frame used in the cross-sectional direction (lateral direction) of the aircraft fuselage as shown in
The cross-sectional shape of the elongated component 40 shown in
Each of the cross-sectional shapes shown in
Each of the cross-sectional shapes shown in
It should be noted that the cross-sectional shape of the elongated component 40 manufactured according to the present disclosure is not limited to the shapes shown in
The elongated component 40 shown in
In a case where the elongated component 40 has a flexible cross-sectional shape, the elongated component 40 may have a varying cross-sectional rigidity depending on its cross-sectional shape. Moreover, in the case of forming the same curve in elongated components 40 having the same shape by using the same roll bending apparatus, if the materials of the elongated components 40 are different from each other, then the cross-sectional rigidities of the elongated components 40 are different from each other even though the same curve is formed in the elongated components 40 having the same shape. The difference between the materials is, for example, a difference in terms of a metal material serving as a main component, such as a difference between an aluminum-based material and a ferrous material. Furthermore, even among a plurality of alloy materials each categorized as an aluminum-based material, their cross-sectional rigidities may be different from each other depending on, for example, the types of the alloys. The elongated component 40 manufactured according to the present disclosure may be an elongated component having such a varying cross-sectional rigidity.
It should be noted that in a case where the elongated component 40 is an aircraft component, the elongated component 40 is not limited to a frame. Specific examples of the elongated component 40 include a stringer, stiffener, spar, floor beam, rib, frame, and a doubler. Although these are aircraft structural members, the elongated component 40 is not limited to such a structural member, but may be a different aircraft component. Additionally, the elongated component 40 manufactured according to the present disclosure is not limited to an aircraft component, but may be suitably used as a curved component in other fields, such as in the field of automobiles or building materials.
In the description of the roll bending apparatus below, as one typical example, a curve is formed in (i.e., a curve is imparted to) a component that has been pre-formed to have a predefined cross-sectional shape, and thereby the elongated component 40 is manufactured. However, the present disclosure is not thus limited. Alternatively, a plate member that has not been pre-formed to have a cross-sectional shape may undergo a process in which the plate member is formed to have a predefined cross-sectional shape, the process being continuously followed by another process in which a curve is formed in the plate member. In the present disclosure, if the “elongated component 40” as shown in
The definition of the “elongated material” includes an elongated material that has been formed to have a cross-sectional shape but has no curve formed therein yet, and also includes, for example, a plate member that has no cross-sectional shape and no curve formed therein yet. In addition, if the elongated component 40 is defined as a component on which any known machining has been performed in addition to the cross-sectional shape forming and the curve forming, then the definition of the “elongated material” includes not only a plate member on which no machining has been performed yet (or a raw material), but also a member on which the machining except the curve forming has been performed. The cross-sectional shape forming or the other machining may be performed by a known method. In particular, the cross-sectional shape forming as well as the curve forming in the present disclosure can be performed by known roll forming.
Next, one typical example of the roll bending apparatus according to the present disclosure is specifically described with reference to
The roll bending apparatus according to the present disclosure may include: a slide mechanism configured to slide a roll pair in a normal direction to a conveying direction of an elongated material on a plane including the conveying direction; and a tilt mechanism configured to rotate the roll pair about a tilt axis that extends in a direction orthogonal to each of the conveying direction and the normal direction. The slide mechanism may be further configured to slide the roll pair to change the position of the roll pair relative to the tilt axis.
It should be noted that, in the present embodiment, the conveying direction in which the elongated material is conveyed by the roll pair is simply referred to as “conveying direction”. As previously described, the direction in which the slide mechanism is slid is “a normal direction to a conveying direction of an elongated material on a plane including the conveying direction”, whereas the direction of the tilt axis about which the slide mechanism is rotated is “a direction orthogonal to each of the conveying direction and the normal direction”, i.e., “a normal direction to a plane (conveying plane) including the conveying direction and the normal direction”. Accordingly, in the present embodiment, for the sake of convenience of the description, the direction of the sliding movement is referred to as “first normal direction”, and the direction of the tilt axis is referred to as “second normal direction”.
One example of the roll bending apparatus with the above-described configuration is a roll bending apparatus 10 configured as shown in
In the configuration shown in
The roll bending parts 52 form a predefined cross-sectional shape of an elongated material that is not shown. The forming roll parts 11, as described below, form a curve in the elongated material (or component) that has been formed to have the cross-sectional shape, thereby forming the elongated material (or component) into an elongated component 40. The pulling stand 53 pulls the elongated material in the conveying direction F. The measuring roll part 54 measures the length of the elongated material. It should be noted that specific configurations of the roll bending parts 52, the pulling stand 53, the measuring roll part 54, and the bending apparatus base 55 are not particularly limited, and known configurations are suitably applicable thereto. The roll bending apparatus 10 may include other components in addition to the plurality of roll bending parts 51, the pulling stand 53, the measuring roll part 54, and the bending apparatus base 55.
As shown in
Looking at
Above the smaller-diameter portion of the first roll 12a, an intermediate-diameter portion is provided, the width of which is less than the width of the smaller-diameter portion or the larger-diameter portion. The intermediate-diameter portion faces the peripheral edge of the upper surface of the larger-diameter portion of the second roll 12b. Since the first roll 12a and the second roll 12b are arranged so as to face each other in such a state, a substantially Z-shaped gap is formed between the roll pair 12. Accordingly, in the present embodiment, an elongated material fed into the forming roll part 11 is required to be a component having a Z-shaped cross section. To be more specific, the elongated material may have such a cross-sectional shape as shown in
The roll pair 12 is driven by the roll drive unit 13 to rotate. In the present embodiment, the roll drive unit 13 is formed by a first roll driver 13a and a second roll driver 13b. The first roll driver 13a is positioned above the first roll 12a, supports the upper end of the roll shaft of the first roll 12a, and drives the first roll 12a to rotate. The second roll driver 13b is positioned above the second roll 12b, supports the upper end of the roll shaft of the second roll 12b, and drives the second roll 12b to rotate.
As indicated by dashed line in
The first roll support 14 and the second roll support 15 are positioned below the roll pair 12. The first roll support 14 is positioned below the first roll 12a, and supports the lower end of the roll shaft of the first roll 12a. The second roll support 15 is positioned below the second roll 12b, and supports the lower end of the roll shaft of the second roll 12b. As described below, the first roll support 14 also supports the lower side of the second roll support 15. In other words, the first roll support 14 supports not only the lower end of the roll shaft of the first roll 12a but also the lower part of the second roll support 15.
The first roll support 14 supports the first roll driver 13a, such that the first roll driver 13a is movable to open. Similarly, the second roll support 15 supports the second roll driver 13b, such that the second roll driver 13b is movable to open. Thus, the first roll support 14 directly supports the first roll 12a and the first roll driver 13a, and indirectly supports the second roll 12b and the second roll driver 13b via the second roll support 15.
Outward of the first roll support 14 (when seen from the first roll 12a, at the opposite side to the second roll 12b, which faces the first roll 12a), a second slide part 22 included in the slide mechanism 20 is positioned. Also, outward of the second roll support 15 (when seen from the second roll 12b, at the opposite side to the first roll 12a, which faces the second roll 12b), a third slide part 23 included in the slide mechanism 20 is positioned. It should be noted that, in
The second slide part 22 slides the first roll support 14. The third slide part 23 slides the second roll support 15. As previously described, the first roll support 14 directly or indirectly supports the roll pair 12, the roll drive unit 13, and the second roll support 15. Accordingly, this means that the second slide part 22 slides the roll pair 12, the roll drive unit 13, and the second roll support 15 together with the first roll support 14. The second roll support 15 supports the second roll 12b and the second roll driver 13b. Accordingly, this means that the third slide part 23 slides the second roll 12b and the second roll driver 13b together with the second roll support 15.
The roll pair support 16 is positioned below the second roll support 15. Therefore, the upper part of the roll pair support 16 supports the lower part of the first roll support 14. As previously described, the first roll support 14 also supports the lower part of the second roll support 15. Accordingly, this means that the roll pair support 16 supports the roll pair 12 via the first roll support 14 and the second roll support 15. The roll pair support 16 also supports the second slide part 22 positioned outward of the first roll support 14. It should be noted that, together with the second roll support 15, the third slide part 23 positioned outward of the second roll support 15 is supported by the first roll support 14.
The tilt mechanism 30 is provided below the roll pair support 16. It should be noted that, in
As previously described, the roll pair support 16 supports the first roll support 14 and the second slide part 22; the first roll support 14 supports the first roll 12a, the first roll driver 13a, the second roll support 15, and the third slide part 23; and the second roll support 15 supports the second roll 12b and the second roll driver 13b. Accordingly, this means that the roll pair support 16 directly or indirectly supports the first roll support 14, the second roll support 15, the roll pair 12, the roll drive unit 13, the second slide part 22, and the third slide part 23. Since the tilt mechanism 30 supports the roll pair support 16 in a rotatable manner, this means that the tilt mechanism 30 also supports the first roll support 14, the second roll support 15, the roll pair 12, the roll drive unit 13, the second slide part 22, and the third slide part 23 in a rotatable manner.
The tilt mechanism 30 is mounted on the stand base 17. On the stand base 17, a first slide part 21 included in the slide mechanism 20 is also mounted. The first slide part 21 slides the tilt mechanism 30. As previously described, the tilt mechanism 30 supports the roll pair support 16, the first roll support 14, the second roll support 15, the roll pair 12, the roll drive unit 13, the second slide part 22, and the third slide part 23 in a rotatable manner. Accordingly, this means that the first slide part 21 slides the roll pair support 16, the first roll support 14, the second roll support 15, the roll pair 12, the roll drive unit 13, the second slide part 22, and the third slide part 23 together with the tilt mechanism 30.
It should be noted that specific configurations of the roll pair 12, the roll drive unit 13, the supports 14 to 16, the stand base 17, the slide mechanism 20, and the tilt mechanism 30 included in the forming roll part 11 are not particularly limited. Any known configurations are suitably applicable.
Next, the adjustment of the position of the roll pair 12 by the slide mechanism 20 and the tilt mechanism 30 of the roll bending apparatus 10 according to the present disclosure is specifically described with reference to
As shown in
Next, as indicated by a path line II, which is represented by dashed line in
Assume, for example, that a curve with the curvature of the path line II, which is represented by dashed line, is to be formed also on the second elongated material 41 made of a different raw material from that of the first elongated material 41 in a manner similar to the curve forming of the first elongated material 41. Here, the spring-back amount may be different between the first elongated material 41 and the second elongated material 41 depending on, for example, the Young's modulus, proof stress, or second moment of area of the second elongated material 41. Accordingly, in the case of forming a curve in both the first elongated material 41 and the second elongated material 41 with the path line II represented by dashed line, even though the suitable position of the roll pair 12-2 for the first elongated material 41 is the “second position” represented by dotted line, the suitable position of the roll pair 12-2 for the second elongated material 41 may be a different position, such as the “first position”.
That is, even when it is intended to obtain the same curvature for each elongated material 41, it may become necessary to slide the roll pair 12-2 to the “first position”, “second position”, or another position depending on, for example, the type of the raw material forming the elongated material 41.
In view of the above, in the roll bending apparatus 10 according to the present disclosure, a mechanism configured to tilt the roll pair 12 is combined with, and provided on, a mechanism configured to slide the roll pair 12, such as the above-described slide mechanism 20 and tilt mechanism 30. The tilting center of the roll pair 12 is often set to a position near the neutral axis of the curved elongated material 41, or a position on the inner wall side of the elongated material 41 in the width direction, or a position on the outer wall side of the elongated material 41 in the width direction although the setting of the tilting center of the roll pair 12 depends on various conditions. Accordingly, the roll bending apparatus 10 according to the present disclosure is configured such that the tilting center, i.e., the tilt axis, is variable.
For example,
Alternatively, in the positional relationship shown in
In other words, the positional adjustments as shown in
Among these slide parts 21 to 23, the means for sliding the tilt axis Xt is the first slide part 21, and the means for sliding the roll axes relative to the tilt axis Xt is the second slide part 22. The third slide part 23 is the means for sliding the pair of rolls 12a and 12b to change the distance between their roll axes, and the third slide part 23 can be utilized also for the removal of at least one of the pair of rolls 12a and 12b.
As one example, assume that the distance between the roll axes of the pair of rolls 12a and 12b is 200 mm, and the position of the tilt axis Xt is away from one of the roll axes of the rolls 12a and 12b by 70 mm. Here, it is further assumed that the position of the tilt axis Xt is to be moved such that it is away from the one roll axis by 90 mm. In this case, in the configuration of the forming roll part 11 shown in
A specific method used for calculating the neutral axis Xn (see the one-dot chain line in
In the schematic diagram shown in
Next, one example of specific operations of the slide mechanism 20 and the tilt mechanism 30 included in the roll bending apparatus 10 (forming roll part 11) according to the present disclosure is specifically described with reference to
The roll bending apparatus 10 according to the present disclosure includes the forming roll part 11 configured as shown in
As shown in
As previously described, the second slide part 22 is provided on the roll pair support 16, and substantially slides the roll pair 12 (and the roll drive unit 13) in the direction of a block arrow Ds2. As previously described, the object directly slid by the second slide part 22 is the first roll support 14. In
As previously described, the third slide part 23 is provided on the first roll support 14. In the present embodiment, the third slide part 23 slides the second roll 12b of the roll pair 12 (and the second roll driver 13b) in the direction of a block arrow Ds3. As previously described, the object directly slid by the third slide part 23 is the second roll support 15. In
As previously described, the tilt mechanism 30 is provided on the stand base 17, and includes the tilt axis part 31, which is provided upright on the upper surface of the stand base 17. Since the fitting portion 16a of the roll pair support 16 is fitted to the tilt axis part 31, the roll pair support 16 and most of the forming roll part 11 supported thereby (except the tilt mechanism 30 and the first slide part 21) are rotated by the tilt mechanism 30 about the tilt axis Xt in the direction of the block arrow Dt. In
As previously described, the first roll driver 13a and the second roll driver 13b of the roll drive unit 13 move in directions indicated by block arrows Du to open outward from the upper side. As a result, the roll drive unit 13 detaches from the roll pair 12. In the configuration shown in
It should be noted that, in
The state shown in
Here, although the sliding movement directions of the slide parts 21 to 23 vary between the forward direction and the reverse direction, each of the forward and reverse directions is set as the first normal direction, which is present on a plane including the conveying direction F (see
Among the slide parts 21 to 23, the forward sliding direction of the first slide part 21 configured to substantially slide almost the entire forming roll part 11 and the forward sliding direction of the second slide part 22 configured to substantially slide the roll pair 12 are substantially reverse to each other. This makes it possible to make the configuration of the slide mechanism 20 simple and compact. For example, if the amount of sliding movement of the first slide part 21 and the amount of sliding movement of the second slide part 22 are set to be the same amount, then the position of the tilt axis Xt can be adjusted without changing the distance between the roll axes (i.e., without changing the path line of the elongated material 41).
Meanwhile, the third slide part 23 may be slid so as to change the distance between the roll axes of the pair of rolls 12a and 12b. Therefore, it is not essential that the direction shown in
Next, states where the roll drive unit 13, the slide mechanism 20, and the tilt mechanism 30 have operated are described with reference to
Next, the state of the forming roll part 11 shown in
Next, the state of the forming roll part 11 shown in
Next, the state of the forming roll part 11 shown in
Next, the state of the forming roll part 11 shown in
Next, the state of the forming roll part 11 shown in
As described above, in the present disclosure, the slide mechanism 20 may be configured to slide the roll pair 12 on a plane including the conveying direction of the elongated material, which is subjected to the forming, in the first normal direction normal to the conveying direction, and the tilt mechanism 30 may be configured to rotate the roll pair 12 about the tilt axis Xt extending in the second normal direction normal to the conveying plane, which includes the conveying direction and the first normal direction. By thus moving the slide axis of the slide mechanism 20 and the tilt axis Xt of the tilt mechanism 30, the adjustment can be made so that the elongated material 41 will have a desired path line (i.e., so that the elongated component 40 will have a desired contour).
In the present embodiment, as previously described, as one preferable example of the configuration of the slide mechanism 20, the slide mechanism 20 includes: the first slide part 21 configured to slide at least the tilt mechanism 30 and the roll pair 12 collectively in the first normal direction; and the second slide part 22 configured to slide the roll pair 12 in the first normal direction to change the position of the roll pair 12 relative to the tilt axis Xt. In the present embodiment, as another preferable example of the configuration of the slide mechanism 20, the slide mechanism 20 further includes the third slide part 23 configured to slide at least one of the pair of rolls 12a and 12b forming the roll pair 12 in the first normal direction to change the gap between the rolls 12a and 12b.
Next, a more specific configuration example of the roll bending apparatus 10 according to the present disclosure is specifically described with reference to
As previously described, the roll bending apparatus 10 according to the present disclosure may include the forming roll part 11, which is provided with the slide mechanism 20 and the tilt mechanism 30 as illustratively shown in, for example,
In the roll bending apparatus 10 according to the present disclosure, as shown in
It should be noted that, in the configuration shown in
Alternatively, all the roll bending parts 51 included in the roll bending apparatus 10 may be the forming roll parts 11 each including the slide mechanism 20 and the tilt mechanism 30. Specifically, for example, as shown in
For the sake of convenience of the description, the forming roll part 11 disposed on the straight path portion of the bending path 50 may be referred to as a “straight-position-type” forming roll part 11, and the forming roll part 11 disposed on the curved path portion may be referred to as an “inclined-position-type” forming roll part 11. In this case, the roll bending apparatus 10 shown in
It should be noted that, in
The roll drive unit 13 of the forming roll part 11 configured as shown in
For example, as a result of the roll drive unit 13 moving to detach from the roll pair 12, the roll pair 12 is removed from the roll drive unit 13. Therefore, replacement of the roll pair 12 or one of the pair of rolls 12a and 12b, or changing them into different types of rolls, can be readily performed. Moreover, the distance between the roll axes of the pair of rolls 12a and 12b can be expanded by the third slide part 23, and thereby, for example, replacement of the rolls 12a and 12b, or changing them into different types of rolls, can be more readily performed. Furthermore, since the distance between the roll axes of the rolls 12a and 12b is adjustable, elongated materials 41 having different thicknesses from each other can be readily fed into between the roll pair 12.
As shown in
It should be noted that, in the roll bending apparatus 10 shown in
Specifically, another roll bending apparatus 10 according to the present embodiment may include a plurality of roll bending parts 51, and the plurality of roll bending parts 51 may be configured to include: a cross-sectional-shape-forming roll bending part 51 configured to roll-form an elongated plate member that is the elongated material 41 into an elongated component having a predefined cross-sectional shape; and a curve-forming forming roll part 11 configured to further form a curve in the elongated component that is the elongated material 41 and that has been formed to have the cross-sectional shape. In this case, the curve-forming forming roll part 11 may be provided with the above-described slide mechanism 20 and tilt mechanism 30.
Accordingly, for example, in the case of manufacturing an elongated component 40 such as an aircraft frame, when an elongated material 41 (e.g., an elongated plate member), which is the raw material of the elongated component 40, is fed from a roll forming apparatus and continuously subjected to multi-stage roll bending, even if the elongated component 40 to be manufactured is made of a different raw material from the previous one or has a varying contour, the elongated component 40 can be formed by the single roll bending apparatus 10 without requiring the use of a plurality of different roll forming apparatuses.
As described above, the roll bending apparatus 10 according to the present disclosure may include: the roll pair 12 formed by the pair of rolls 12a and 12b disposed facing each other, the roll pair 12 being configured to sandwich the elongated material 41 between the rolls 12a and 12b to perform forming on the elongated material 41; the slide mechanism 20 configured to slide the roll pair 12 in the first normal direction (the direction normal to the conveying direction F of the elongated material 41); and the tilt mechanism 30 configured to rotate the roll pair 12 about the tilt axis Xt, which extends in the second normal direction (the direction orthogonal to the conveying direction F of the elongated material 41 and the first normal direction). The slide mechanism 20 may be further configured to slide the roll pair 12 to change the position of the roll pair 12 relative to the tilt axis Xt.
According to the above configuration, since the roll bending apparatus 10 includes the slide mechanism 20 and the tilt mechanism 30, not only is the roll pair 12 simply slid, but also the position of the roll pair 12 can be changed relative to the tilt axis Xt. This makes it possible to adjust the position of the roll pair 12 such that the roll pair 12 is positioned orthogonally to the tangent line to the path line. This consequently makes it possible to perform roll forming with a different path line. Therefore, even if the single elongated component 40 has a varying contour or varying cross-sectional rigidity within itself, a curve can be formed therein precisely. As a result, the elongated component 40 having a varying contour or varying cross-sectional rigidity can be manufactured without using, for example, stretch forming or press forming.
In addition, in the case of forming a predefined cross-sectional shape by roll forming and/or roll bending, a curve can be formed by roll bending continuously following the roll forming of forming the cross-sectional shape. Therefore, the elongated component 40 can be manufactured by using substantially the same equipment (jig and/or rolls). This makes it possible to realize significant cost reduction.
From the foregoing description, numerous modifications and other embodiments of the present invention are obvious to a person skilled in the art. Therefore, the foregoing description should be interpreted only as an example and is provided for the purpose of teaching the best mode for carrying out the present invention to a person skilled in the art. The structural and/or functional details may be substantially altered without departing from the spirit of the present invention.
The present invention is widely and suitably applicable in the field of curve forming, in which a curve is formed in an elongated material that has a varying contour or varying cross-sectional rigidity.
10 roll bending apparatus
11 forming roll part
12 roll pair (roll set)
12
a first roll
12
b second roll
13 roll drive unit
13
a first roll driver
13
b second roll driver
14 first roll support
15 second roll support
16 roll pair support
16
a fitting portion
17 stand base
20 slide mechanism
21 first slide part
22 second slide part
23 third slide part
30 tilt mechanism
31 tilt axis part
40 elongated component
40
a constant curve portion
40
b variable curve portion
41 elongated material
50 bending path
51 roll bending part
52 roll bending part
60 operator
This is a continuation application of U.S. patent application Ser. No. 16/084,886, filed Sep. 13, 2018, which is a national stage entry of PCT/JP2017/010732 filed Mar. 16, 2017, which in turn claims priority to U.S. Patent Application No. 62/309,499, filed Mar. 17, 2016. The disclosures of each of the above are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3268985 | Smith | Aug 1966 | A |
20150027641 | Lee | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2004-130383 | Apr 2004 | JP |
2011-516275 | May 2011 | JP |
5122863 | Jan 2013 | JP |
2006138179 | Dec 2006 | WO |
2009126677 | Oct 2009 | WO |
Entry |
---|
Jun. 6, 2017 Search Report issued in International Patent Application No. PCT/JP2017/010732. |
Oct. 6, 2020 U.S. Office Action issued U.S. Appl. No. 16/084,886. |
Number | Date | Country | |
---|---|---|---|
20210370375 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62309499 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16084886 | US | |
Child | 17404636 | US |