Described below is a roll casting method,
Such casting methods and the associated apparatus are generally known. Purely by way of example the reader is referred to JP 58 097 467 A.
When metals are cast to close to their final dimensions with a horizontal or vertical single-roll or two-roll casting machine or a strip casting system with casting thickness of below 15 mm, during the shaping of the metal strand which follows on from the casting, the influencing of profile and flatness of the end product is only still possible to a restricted extent. For this reason it is of advantage to already give the cast metal strand a suitable thickness profile or thickness contour during the casting process and in doing so avoid inter alia a tapering thickness if possible.
For influencing the cast profile with two-roll strip casting machines, use is made inter alia of the known fact that the cast strip thickness significantly depends on the flow of heat over the casting roll surface and the contact time. The two factors together determine how thick the strip shell can be at the location concerned. By variation of these variables over the casting roll width the thickness profile of the cast metal strand can thus be influenced to a significant extent.
The contour of the casting roll and the setting (position and/or downward pressure) of the casting roll itself have a further influence on the thickness profile of the strip. The contour of the casting roll in the casting gap is influenced by the thermal expansion and thus in turn by the local flow of heat.
The flow of heat over the casting roll surface is determined on one hand by the thermal transfer coefficient from the molten metal to the casting roll and to an even greater extent by the thermal transfer coefficient from the solidified strand shell to the casting roll. Furthermore the temperature difference between casting roll and strand shell or melt bath is decisive for the flow of heat.
The temperature of the casting roll is usually set in the related art by internal cooling—if necessary supplemented by external cooling. The contact time is determined by the rotational speed of the casting roll, the casting roll geometry and the mold level. When the melt bath surface is calm the contact time is constant in a first approximation over the width of the cast strand. Thus only the heat flow remains as a possible adjustment variable to influence the strand shell thickness and the roll geometry over the strand width.
It is already known that the heat flow over the strand width can be varied by influencing the thermal transition coefficient between the liquid metal or the strand shell and the casting roll. For example a gas with a high thermal conductivity can be dispensed segment-by-segment. Gas mixtures such as argon or nitrogen can also be used, of which components react chemically with the strip shell. In such cases the dispensing facility for the corresponding gas must be disposed in the vicinity of the triple point of molten metal, roll and gas space, in order to be able to bring the gas between the strand shell which forms and the casting roll. In this area of the roll casting system however space is very limited as a result of the arrangement of intermediate pans, molten metal distributors and sensors. This makes the construction and integration expensive, in many cases even impossible.
It is also known that the temperature of the cast roll can be influenced in a segmented manner by an additional liquid coolant applied externally to the cast roll. If water is to be used here it must be ensured however that no water or steam comes into contact with the molten metal. This is in particular because—depending on the metal used—this can result in quality problems or even serious disruptions (for example formation of hydrogen with the associated danger of explosion with non-ferrous metals). Suction and recovery devices taking up large volumes of space are therefore required in such cases.
The roll casting method provides operationally-safe cooling of the first casting roll in a simple and efficient manner.
The roll casting method uses at least one sensor to detect an actual property of the first casting roll or an actual property of the metal strand can be detected, the actual property is fed to a control device of the cooling device and the controlling device, as a function of the actual property fed to it and a corresponding target property, automatically determines an activation state of the first cooling device and activates the first cooling device accordingly. Through this embodiment a closed control loop is able to be realized in a simple manner.
Often the mold region is delimited on a second side by a second casting roll rotating around a second horizontal axis of rotation. The second axis of rotation runs in this case in parallel to the first axis of rotation. The first and the second casting roll form a casting gap between them. The metal strand is conveyed downwards out of the mold region. In this case, related to the first axis of rotation and viewed in the direction of rotation of the first casting roll, an angle from the casting gap of the mold region to an application location at which the liquid coolant is applied to the surface of the first casting roll may be between 60° and 180°, especially between 90° and 180°.
In an embodiment, there is provision for the first coolant applying devices to be disposed below the first casting roll in an area which, viewed in the horizontal direction, extends over the diameter of the first casting roll and, viewed in a vertical direction, lies below the lowest point of the first casting roll.
In another embodiment, the metal strand is thermally screened from the coolant and/or the first coolant applying devices by a screening device disposed between the metal strand and the coolant applying devices.
The first coolant lines may be jacketed with thermal insulation. This achieves a thermal protection against the ambient temperature. This protection is all the more important the lower the boiling point of the coolant lies and the longer it takes to transport the coolant from a reservoir container to the first coolant applying devices.
Gas separators may be disposed in the first coolant lines. This makes it possible to guarantee that the coolant in the coolant lines in the area from the gas separators to the coolant applying devices—especially in the valves disposed downstream from the gas separators—is present entirely in liquid form and does not form any gas bubbles.
Controllable valves also may be disposed in the first coolant lines. The valves may be embodied as switching valves. This embodiment enables a defined coolant flow to be set in an especially simple manner.
It is possible for the first coolant applying devices to be disposed distributed over the width of the casting roll. In this case the coolant applying devices can especially be activated individually or in groups. This embodiment especially makes it possible to set a defined casting profile in a simple manner.
It is possible for a gap between the first coolant applying devices and the first casting roll and/or an orientation of the first coolant applying devices relative to the first casting roll to be set. This method of operation also enables the cooling power to be set. In particular it is possible for the gap and/or the orientation of the coolant applying devices to be set by a control device in ongoing operation of the roll casting facility.
The cooling medium can especially be liquid nitrogen, a liquid noble gas—especially argon—or an organic coolant.
The properties, features and advantages described above as well as the manner in which these are achieved will become clearer and more easy to understand in conjunction with the following description of the exemplary embodiments, which are explained in greater detail in conjunction with the drawings of which:
Reference will now be made in detail to the preferred embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
According to
In the mold region 1 molten metal 4 is cast. The molten metal 4 solidifies at the edges—especially on the outer surfaces of the casting rolls 2, 2′. The casting rolls 2, 2′ rotate from above into the mold region 1. Through this action the metal strand 4′ created by solidification of the molten metal 4 is conveyed out of the mold region 1. The metal can be determined as required. For example it can involve steel, aluminum, copper, brass, magnesium etc.
The casting rolls 2, 2′ must be cooled. The cooling is often effected by coolant lines which run within the casting rolls 2, 2′ (inner cooling). Water is mostly used as the coolant for this inner cooling. The inner cooling is of secondary importance and is therefore not shown in the figure.
As an alternative or in addition to the inner cooling of the casting rolls 2, 2′ it is possible to apply a liquid coolant 7 the casting rolls 2, 2′ from outside. In this case the roll casting facility has a cooling device 5, 5′—if necessary for each casting roll 2, 2′. The cooling devices 5, 5′ each have a number of coolant applying devices 6, 6′ (at least one in each case). The liquid coolant 7 is applied by the coolant applying devices 6, 6′ from outside to the surface of the respective casting roll 2, 2′.
The coolant applying devices 6, 6′ can be embodied as required. In particular they can be embodied as normal spray nozzles, for example as fan spray nozzles, as spherical spray nozzles or as point nozzles. The coolant 7 is supplied to the coolant applying devices 6, 6′ via corresponding coolant lines 8, 8′ from a reservoir container 7″ (see also
The coolant 7 is at an operating pressure ρ in the coolant lines 8, 8′ and/or in the reservoir container 7″. The operating pressure ρ can be equal to the air pressure. As an alternative the operating pressure ρ can be greater than the air pressure, amounting to up to 50 bar for example. As a rule it lies between 10 bar and 30 bar. The coolant 7 is selected so as to have the following properties:
Examples of suitable coolants 7 are liquid nitrogen, a liquid noble gas (for example argon) and organic coolants. Mixtures of such substances can also be used. For example nitrogen has a standard boiling point of −195.8° C. The operating temperature can for example—at an operating pressure ρ of appr. 20 bar—lie at −190° C. Argon has a standard boiling point of −185.8° C. Its operating temperature can for example—at an operating pressure ρ of appr. 20 bar—lie at −180° C. Fluorinated hydrocarbons are especially considered as organic coolants. A typical example is the coolant R134a (1,1,1,2-Tetrafluorethane). This coolant has a standard boiling point of −26° C. auf. Its operating temperature may be below −30° C., but above −100° C., even above −80° C.
According to FIG. 2—and also according to FIG. 1—the first axis of rotation 3 is oriented horizontally. The second axis of rotation 3′ is as a rule located at the same height as the first axis of rotation 3, so that the two axes of rotation 3, 3′ lie in a common horizontal plane. Located in this plane is the smallest gap between the two casting rolls 2, 2′ (casting gap 9). The metal strand 4′ is still conveyed according to
In this case a significant part of the circumference of the first casting roll 2 is available as the application area. The application area is that location in which the coolant 7 is applied to the surface of the first casting roll 2. An angle α, which is related to the first axis of rotation 3, starts from the casting gap 9, is measured in the direction of rotation of the first casting roll 2 and extends to the first application location, can lie for example between 60° and 240°. As a rule the angle α lies between 90° and 180°.
The coolant applying devices 6 for the first casting roll 2 can be disposed next to or—as shown in FIG. 2—below the casting roll 2. The area “below” the first casting roll 2 extends, viewed in the horizontal direction, over the entire diameter of the first casting roll 2. The coolant applying devices 6 for the first casting roll 2 may be spaced away from the metal strand 4′ running vertically by at least 25% of the diameter of the first casting roll 2.
In accordance with the method, the coolant applying devices 6 can be disposed in an area of the casting roll facility which is not occupied by other parts and adjusted in any other way. It is therefore possible, according to the diagram of
Thus
Furthermore
The valves 13 can be embodied as proportional valves. The valves may be embodied as switching valves, which are thus either (completely) open or (completely) closed, according to their switching state, see
In particular, in the event of the valves 13 being embodied as switching valves, the volume of coolant 7 applied on average over time to the first casting roll 2 can be set for example by—similarly to a pulse width modulation—the valves 13 being activated with a fixed clock cycle time T, but within the clock cycle time T however an opening proportion T′ being set. Thus, in the left-hand area,
To enable the liquid coolant 7 to be applied to the first casting roll 2 over its entire width a number of coolant applying devices 6 are present as a rule, which are disposed distributed over the width of the first casting roll 2. Purely by way of example six such coolant applying devices 6 are shown in
It is possible for all coolant applying devices 6 to be controlled jointly. In this case only one valve 13 is required for the coolant applying devices 6. The coolant applying devices 6 may be able to be activated individually—see the two left-hand and the two right-hand coolant applying devices 6 in
The cooling of the first casting roll 2 can especially be controlled in a closed loop. In this case the roll casting facility has a least one sensor 15. An actual property of the first casting roll 2 can be detected by the sensor 15 for example. Examples of suitable actual properties are the temperature (possibly as a function of the location viewed in the width direction) and the convexity of the first casting roll 2. As an alternative an actual property of the metal strand 4′ can be detected by the sensor 15. Examples of suitable actual properties of the metal strand 4′ are especially profile data of the metal strand 4′ viewed over the width of the metal strand 4′.
The detected actual property is fed to the control device 14. The control device 14 independently determines, as a function of the actual property fed to it and a corresponding target property, an activation state of the cooling device 5 (for example an activation pattern for the valves 13, for the orientation of the coolant applying devices 6 and/or the distances a between the coolant applying devices 6) and controls the coolant device 5 accordingly.
The second casting roll 2′ and its cooling can be designed in a similar manner.
The method has a number of advantages. In particular as a result of the large temperature difference between coolant 7 and (heated-up) casting rolls 2, 2′ and the phase transition on vaporization of the coolant 7, a high cooling power can be achieved. Because of the fact that the coolant 7 is inert, it can also be used to form an inert atmosphere within the roll casting facility. Because of the fact that the coolant 7′ vaporizes completely before the casting rolls 2, 2′ come into contact again with the hot molten metal 4, no wiper, suction or other type of removal devices are required for the coolant 7.
Although the method has been illustrated and described in greater detail by the exemplary embodiment, the method is not restricted by the disclosed examples and other variations can be derived therefrom by the person skilled in the art without departing from the scope of protection provided by the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Number | Date | Country | Kind |
---|---|---|---|
11184849.5 | Oct 2011 | EP | regional |
This application is the U.S. national stage of International European Application No. PCT/EP2012/063451, filed Jul. 10, 2012 and claims the benefit thereof. The International Application claims the benefit of European Application No. 11184849.5 filed on Oct. 12, 2011, both applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/063451 | 7/10/2012 | WO | 00 | 4/11/2014 |