This invention relates to improvements in rotary cutting tools and more particularly to improvements in flexible die plates for rotary cutting tools.
Rotary cutting tools are useful for manufacture of carton blanks and other workpieces from sheets or webs of material. In particular, rotary die cutting tools are used in high speed cutting of a moving sheet or web of paper, paperboard, plastics or composite materials. As one example, rotary die cutting machines are used for the high speed mass production of paperboard carton blanks that are subsequently folded into the shape of cartons or boxes such as cereal and cracker boxes, etc. Rotary cutting tools include solid rotary dies, where the cutting surface is made part of the cylinders, and flexible rotary dies, where a die plate is wrapped around a cylinder.
It is important that the die plates of flexible dies be properly affixed to the cylinder and aligned, both with respect to the cylinder and with respect to each other. This is especially important given the speed of rotation of the die cylinders associated with high volume production. Known techniques for affixing and aligning the die plates include forming the die plate out of a magnetic material and inserting magnets into the die cylinders so that they are magnetically attracted to one another. However, such a design greatly increases the costs of the die cylinders for several reasons, including the cost of the magnets, the cost of machining holes into the cylinders to receive the magnets, and the difficulty in assembly.
In addition, known flexible die plates are formed by a chemical etching process where an acid or base is applied to metal to dissolve away unwanted material. In practice, a chemical is applied to a flat sheet of metal to produce the desired cutting elements on a flexible die plate. The flat flexible die plate is then bent around a cylinder and attached by one of several methods such as use of strong magnet or welding. There are numerous limitations in the chemical etching process, both in terms of limitations in the properties of the die pates made by the process and difficulties in the process for assembling the die plates to the cylinders. For example, tool steels (steels with large amounts of non-ferrite alloys) are more difficult to chemically etch. Chemical etching works better with carbon steels, but carbon steels are relatively brittle and not ideal for forming, bending and other operations. Also, some geometries such as undercuts are difficult to make. Further, known chemically etched die plates are relatively thin in part to make them easier to assemble to cylinders. However, thicker die plates are more desirable as they can be longer lasting and more resistant to position change.
With regards to the process, use of magnets requires extensive machining of cylinders, thereby making such cylinders quite expensive. Further, both magnets and welding die plates to the cylinder require extensive changeover time when switching die plates, undesirably increasing downtime for printing. Known chemically etched flexible die plates are awkward to assemble with the cylinder. The thin flexible die plates are shipped to the customer as flat plates that are spring-like and resist bending around the cylinder. It would be desirable to provide an enhanced flexible die plate that is long lasting and robust, which is easy to install with reduced downtime.
In accordance with a first aspect, a method of making a rotary cutting tool for cutting a web of material comprises the steps of roll forming a first flexible die plate into a cylindrical shape, mounting the cylindrically shaped die plate onto a cylindrically shaped fixture, and machining cutting elements onto the roll formed die plate. The roll formed die plate may then be removed from the fixture and attached to a cylinder. The first die plate can cooperate with a second die plate attached to a second cylinder to cut the thin web of material. Optionally the die plate may be roll formed a second time with a radius generally equal to a radius of the cylinder to which the die plate is to be attached.
From the foregoing disclosure and the following more detailed description of various preferred embodiments it will be apparent to those skilled in the art that the present invention provides a significant advance in the technology of rotary cutting tools. Particularly significant in this regard is the potential the invention affords for providing a high quality, low cost method of making a flexible die plate for a rotary cutting tool. Additional features and advantages of various preferred embodiments will be better understood in view of the detailed description provided below.
c are a series of schematic views of a flexible die plate of the rotary cutting tool of
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention. The specific design features of the rotary cutting tool as disclosed here, including, for example, the specific dimensions of the cutting elements of the flexible die plates, will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to improve visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity of illustration. All references to direction and position, unless otherwise indicated, refer to the orientation illustrated in the drawings.
DETAILED DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS
It will be apparent to those skilled in the art, that is, to those who have knowledge or experience in this area of technology, that many uses and design variations are possible for the rotary cutting tool disclosed here. The following detailed discussion of various alternative and preferred features and embodiments will illustrate the general principles of the invention with reference to a rotary cutting tool suitable for use in industrial applications where flat paperboard-like materials are to be cut. Other embodiments suitable for other applications will be apparent to those skilled in the art given the benefit of this disclosure.
Referring now to the drawings,
Each die plate has cutting blades or elements 26, 27, preferably formed as unitary extensions of the corresponding die plate. Cutting elements are understood here to include broadly any machined changes to the die plate, including raises, recesses and markings. The cylinders 14, 16 are in registry with one another so that they rotate together. When a thin web of material (for example, paperboard used to make cereal boxes) is fed between the rotating die plates 18, 20, the cutting elements or blades 26, 27 cooperate to cut the thin web of material into carton blanks.
In accordance with a highly advantageous feature, the flexible die plates disclosed herein may advantageously be roll formed prior to machining cutting elements and prior to installation on the corresponding cylinder. A curve may be introduced to the flexible die plate so that the die plate forms a generally cylindrical shape, and a radius of the die plate so produced generally corresponds to the radius of a cylinder which the die plate is designed to wrap around.
In accordance with a highly advantageous method of manufacture, the die plates may be roll formed to a cylindrical shape which corresponds to the cylindrical shape of a fixture. That is, the die plate has about the same radius as the fixture, and fits snugly on the fixture. Next, the curved die plate may be mounted on the fixture and machined. In addition to roll forming the flexible die plates, preferably the die plates are heat treated, particularly at the cutting elements. Rockwell hardness of the cutting elements of at least 55, and most preferably about 58-60 may be achieved by heat treating. Moreover, roll-forming the flexible die plate introduces stress. Application of heat to the cutting elements relieves the stress prior to hardening, thereby advantageously increasing the useful life of the die plates.
If the fixture and the cylinder happen to have about the same diameter, the die plate may be removed from the fixture and installed on the cylinder. If not, the machined, generally cylindrical flexible die plate may be roll formed a second time into a generally cylindrical shape formed to fit around the cylinder used for making carton blanks. The radius of the flexible die plate so formed is approximately the same radius as that of the cylinder 18, and most preferably a radius slightly larger than the radius of the cylinder 18 to allow for snug assembly. Thus, the order of manufacture can comprise first roll forming the unmachined die plate to fit on a fixture cylinder, machining cutting elements onto the die plate, heat treating the cutting elements, optionally roll forming the die plate a second time to create a die plate having a radius about the same as a cylinder it will be attached to, and then assembling the position adjustment devices, magnets and die plates to the cylinder. After attaching each die plates to its corresponding cylinder, fine position adjustment can then occur. In final assembly, the die plates and cylinders can cut paperboard because they are positioned in close proximity to one another as shown in
The pocket in the yoke is preferably oversized, in the sense that the adjustable slide 30 in inserted into the pocket and leaves a gap 55 for adjustment along the Y-axis, and a gap along the X-axis. The top surfaces of the yoke, slide, first eccentric and second eccentric, respectively, are preferably flush with the outer cylindrical surface of the cylinder. That is, these surfaces may be machined down to share a common radius with the die cylinder 14. An eccentric adjustment screw 38 extends through first opening 39 on the side wall to urge the outer eccentric 40 to rotate with respect to the adjustable slide. A wedge adjustment screw 32 extends through second opening 34 and engages a wedge 70 to urge the adjustable slide along the Y-axis. First opening 39 and second opening 34 may alternatively be formed as a single opening. An adjustable clamp 80 fills up the gap along the x-axis, urging the slide 30 against one wall of the pocket in the yoke.
Yoke 90 has an opening 66 sized to receive pin 24 securing the die plate 18 to the yoke. In a similar manner bolt 73 extends through opening 69 to secure the yoke to the cylinder. In this manner the flexible die plate is secured to the cylinder. Other attachment mechanisms may also be used.
It will be apparent to those skilled in the art, that is, to those who have knowledge or experience in this area of technology, that many uses and design variations are possible for the flexible die plates disclosed here. The following detailed discussion of various alternative and preferred features and embodiments will illustrate the general principles of the invention with reference to a rotary cutting tool suitable for use in industrial applications where flat paper-like materials are to be cut. Other embodiments suitable for other applications will be apparent to those skilled in the art given the benefit of this disclosure.
This application is a 35 U.S.C. §371 national phase application of PCT/US2007/060262, filed Jan. 9, 2007, which claims priority benefit of U.S. provisional patent application No. 60/757,799 filed on Jan. 10, 2006.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/060262 | 1/9/2007 | WO | 00 | 7/2/2008 |
Number | Date | Country | |
---|---|---|---|
60757799 | Jan 2006 | US |