The present invention relates to a punching machine and more particularly, to such a punching machine, which is installed in the machine base of a roller shape forming machine in a metal working system and controlled to punch holes on a metal sheet material being delivered through the roller shape forming machine during operation of the roller shape forming machine.
In a metal working system, as shown in
The present invention has been accomplished under the circumstances in view. According to one aspect of the present invention, the punching machine is installed in the machine base of a roller shape forming machine in a metal working system and controlled to punch holes on a metal sheet material being delivered through the roller shape forming machine during operation of the roller shape forming machine. The punching action, i.e., the cycling of the closing and opening actions of the punch mold of the punching machine is set to match with the delivering speed of the metal sheet material in the roller shape forming machine so that the punching operation of the punching machine is continued during processing operation of the roller shape forming machine. According to another aspect of the present invention, the punch mold of the punching machine comprises an upper mold holder, which holds a number of upper punching dies, and a lower mold holder, which holds a number of bottom punching dies corresponding to the upper punching dies. The number of the upper punching dies and the bottom punching dies can be adjusted subject to the number of holes to be punched on the metal sheet material being delivered through the roller shape forming machine.
Referring to
The punching machine comprises:
Two locating frames 1 arranged in parallel on the top side of the machine base 2 of the roller shape forming machine, each locating frame 1 comprising a bottom mounting block 11 fixedly fastened to the machine base 2 of the roller shape forming machine with fasteners 12, a vertical wall 13 upwardly extending from the bottom mounting block 11 to a predetermined height, two upper supports 14 and two lower supports 15 arranged on the vertical wall 13 at different elevations (see
an upper mold holder 5 holding a plurality of upper punching dies 53, the upper mold holder 5 having two horizontal coupling holes 51 and two vertical axle holes 54;
a lower mold holder 6 holding a plurality of bottom punching dies 63, the lower mold holder 6 having two horizontal coupling holes 61 and two vertical axle holes 64;
four first bearing blocks 3 respectively pivotally mounted on the first shafts 141 at the upper supports 14, each first bearing block 3 having an eccentric rod 32 respectively pivotally coupled to the horizontal coupling holes 51 of the upper mold holder 5;
four first transmission gears 31 respectively fixedly mounted around the periphery of the first bearing blocks 3;
four second bearing blocks 4 respectively pivotally mounted on the second shafts 151 at the lower supports 15, each second bearing block 4 having an eccentric rod 42 respectively pivotally coupled to the horizontal coupling holes 61 of the lower mold holder 6;
four second transmission gears 41 respectively fixedly mounted around the periphery of the second bearing blocks 4 and respectively meshed with the first transmission gears 31;
two guide axles 7 respectively inserted through the vertical axle holes 54 of the upper mold holder 5 and the vertical axle holes 64 of the lower mold holder 6;
a plurality of fastening members 55 and 56 respectively fastened to the guide axles 7 at top and bottom sides of the vertical axle holes 54 to affix the guide axles 7 to the upper mold holder 5;
two axle bearings 65 respectively mounted in the vertical axle holes 64 of the lower mold holder 6 to support the guide axles 7 in the vertical axle holes 64 of the lower mold holder 6;
two first driven gears 81 respectively meshed between the first transmission gears 31 at the first bearing blocks 3 at the vertical walls 13 of the locating frames 1, each first driven gear 81 having a gear shaft 811 respectively pivotally mounted on the vertical walls 13 of the locating frames 1 (see
two second driven gears 82 respectively meshed between the second transmission gears 41 at the second bearing blocks 4 at the vertical walls 13 of the locating frames 1, each second driven gear 82 having a gear shaft 821 respectively pivotally mounted on the vertical walls 13 of the locating frames 1 (see
a drive gear set 83, the drive gear set 83 comprising a gear shaft 831 pivotally supported between the vertical walls 13 of the locating frames 1, two drive gears 832 respectively fixedly mounted on the gear shaft 831 and respectively meshed with the second transmission gears 41 at the second bearing blocks 4 at the vertical wall 13 of one locating frame 1; and
a motor 80, the motor 80 having an output shaft 833 coupled to the gear shaft 831 of the drive gear set 83.
When started the motor 80 to rotate the drive gears 832 of the drive gear set 83, the second transmission gears 41 are driven to rotate the second driven gears 82 and the first transmission gears 31 and then the first driven gears 81, thereby causing rotation of the first bearing blocks 3 and the second bearing blocks 4, and therefore the upper mold holder 5 and the lower mold holder 6 are respectively forced by the eccentric rods 32 of the first bearing blocks 3 and the eccentric rods 42 of the second bearing blocks 4 to move alternatively forwards and backwards relative to each other to punch the feeding metal sheet material 10 with the respective upper punching dies 53 and bottom punching dies 63.
Further, the punching machine is mounted on the front side of the top wall of the machine base 2 of the roller shape forming machine (not shown). When the metal sheet material 10 is being carried toward the rear side of the roller shape forming machine at a constant speed, the upper mold holder 5 and the lower mold holder 6 are continuously and alternatively moved relative to each other to punch the moving metal sheet material 10, and the roller shape forming machine is kept in operation.
Further, the cycling speed of the mold opening and closing actions of the mold holders 5 and 6 is set to match the feeding speed of the metal sheet material 10 in the roller shape forming machine, i.e., it is not necessary to shut down the roller shape forming machine when punching the feeding metal sheet material 10. Therefore, the invention saves much processing time of the metal working machine and greatly increases the manufacturing speed.
According to the present preferred embodiment, the revolving speed of the motor 80 is accurately controlled through an accurate calculation to match the metal sheet material feeding speed in the roller shape forming machine. However, other suitable transmission mechanisms may be selectively sued to substitute for the motor 80.
Further, according to this preferred embodiment, the upper mold holder 5 holds three upper punching dies 53, and the lower mold holder 6 holds three bottom punching dies 63 corresponding to the upper punching dies 53. Upon each punching cycle, three holes 101,102,103 are punched on the metal sheet material 10 (see
As indicated above, the invention provides a punching machine for use with a roller shape forming machine in a metal working system, which has the following advantages:
1. The cycling of the closing and opening actions between the upper mold holder 5 and the lower mold holder 6 is set to match the metal sheet material 10 feeding speed in the roller shape forming machine so that the metal sheet material 10 is punched when the metal sheet material 10 is being delivered through the roller shape forming machine during the operation of the roller shape forming machine.
2. The upper mold holder 5 hold a plurality of upper punching dies 53 and the lower mold holder 6 hold an equal number of bottom punching dies 63 for punching a number of holes at predetermined locations upon each punching action. By means of adjusting the number of the punching dies 53 and 63, the number of holes to be punched on the metal sheet material is relatively adjusted.
Number | Name | Date | Kind |
---|---|---|---|
2406808 | Conner | Sep 1946 | A |
3264920 | Hallden | Aug 1966 | A |
3296910 | Haskin, Jr. et al. | Jan 1967 | A |
3861260 | Kesten et al. | Jan 1975 | A |
4420998 | Tokuno et al. | Dec 1983 | A |
4471641 | Mitchell | Sep 1984 | A |
4485713 | Dotta | Dec 1984 | A |