The invention relates to a roll mill, in particular to a three-roll mill, for comminuting and homogenizing viscous masses, in particular for dispersing and uniformly distributing solid particles suspended in a binding agent.
Such a roll mill has at least two rolls pivoted around their longitudinal axes, wherein the rotational axis of the first roll is fixed in place, and the rotational axis of a second roll is movably mounted. At least one roll is pressed against the other by means of at least one pressing device. The roll mill has a first plane, which is defined by the rotational axis of the front roll or feeder roll and by the rotational axis of the middle roll, and a second plane, which is defined by the rotational axis of the middle roll and by the rotational axis of the back roll or transfer roll, both of which are inclined relative to each other by an angle of between about 10° and a maximum 90°.
The object of the invention is to provide a roll mill of the basic design mentioned at the outset that enables improved product quality on the one hand, while avoiding product inhomogeneities and inadequate cooling through better milling operation on the other.
According to the invention, the roll surfaces of the rolls or processing surfaces of the rolls are made out of a metal-free ceramic material, wherein the rolls preferably have a ceramic cylinder fit onto a hollow metal cylinder. This prevents the product from becoming metallically contaminated by roll abrasion in the comminuting process. This is particularly important while processing pastes for applications in electronics, and for the manufacture of insulating bodies based on fine ceramics.
In a particularly advantageous embodiment of this invention, the roll mill according to the invention is a so-called “three-roll mill” with three parallel rolls. The rotational axis of the middle roll is here fixed in place, while the rotational axis of the front roll or feeder roll and the rotational axis of the back roll or transfer roll are movable. To this end, it has a front mechanical-pneumatic pressing device for pressing the front roll against the middle roll, as well as a rear mechanical-pneumatic pressing device for pressing the back roll against the middle roll. This provides for two roll nips. In this way, the operating conditions for both roll nips can be independently adjusted by setting the nip distance, the differential velocity and the pressure in the respective nip.
The back roll or transfer roll intended for product removal can have a shorter axial process length than the middle roll, and can be axially situated relative to the middle roll in such a way that the ends of the process length of the middle roll extend bilaterally over the ends of the process length of the back roll or transfer roll. The advantage to this is that unabraded or only inadequately abraded product, i.e., excessively coarse product, does not pass from the middle roll to the back roll or transfer roll during roll mill operation. Therefore, this measure makes it possible to achieve an improved product quality, i.e., a more uniform product fineness, while avoiding undefined edge effects.
The first plane preferably runs horizontally, while the second plane runs upwardly inclined (L-shaped roll arrangement viewed from the side). The angle preferably measures 30° to 60°, with approx. 45° being especially preferred. As a result, the product present as a viscous mass with the solid particles (e.g., pigments) distributed therein is cooled for a longer period of time while passing through the roll mill than in an arrangement in which the rotational axes of the front, middle and back roll lie in a single plane.
Such an arrangement results in a greater retention time of the product on the cool surface of the rolls.
The rolls are best cooled from the inside. For example, this is important while processing organic pigments, in particular with respect to certain yellow pigments.
Both the front roll and the back roll are pressed against the middle roll by means of a mechanical-pneumatic pressing device. This makes it possible to adjust the front and back roll nip. The mechanical-pneumatic pressing device preferably has a control means for setting the nip. Since the force transducer, as explained above, enables a “force transmission” and “path reduction”, the relatively weak force of a pneumatic device can be multiplied for purposes of roll pressing, while at the same time greatly increasing the accuracy of nip adjustment prescribed by the pneumatic device.
The transfer roll is best abutted by a stripper that strips away the comminuted, homogenized mass, wherein the stripper also preferably consists of a metal-free material, in particular of a ceramic material or polymer material. This also prevents the product from becoming metallically contaminated in any way as the result of stripper abrasion while being stripped from the transfer roll.
A tarpaulin preferably covers at least the feed area of the roll mill. This prevents undesired contaminants from the factory building from getting into the product and vice versa, i.e., undesired volatile product constituents form getting into the air of the factory building. This improves “product hygiene” on the one hand, and “workplace hygiene” on the other.
The space under the tarpaulin is preferably connected with a gas vent. This makes it possible to keep volatile substances contained in the product solvent from getting into the air of a factory building.
Additional advantages, features and possible applications of the invention may be gleaned from the following description, wherein:
The front pressing device 4 and back pressing device 5 each have a force transducer 6 and a pneumatic drive 7. In the exemplary embodiment that does not conform to the invention shown on
Depending on how the levers 6A and 6B are dimensioned and oriented, the toggle mechanism 6A, 6B used as the force transducer 6 and roll suspension unit increase the pneumatic force of the pneumatic drive 7 by a factor of about 20 to 50, wherein this increased force is used for purposes of roll pressing. This enables a sufficiently strong roll pressing, even with a pneumatic drive 7. On the other hand, this force transducer 6 decreases the stroke traversed by the pneumatic drive 7 by a factor of about 1/50 to 1/20, wherein this reduced stroke is used to set the nip.
Rolls 1, 2 and 3 are driven by overdrives or gearboxes by engine M. The roll block 1, 2, 3 and engine block M are enveloped by a casing G.
All elements of the second exemplary embodiment shown on
The other reference numbers on
The essential difference between the exemplary embodiment not conforming to the invention (
The path traversed by the product as it passes through the roll mill according to the second exemplary embodiment is increased by the two additional circular arc lengths at the surfaces S2′ and S3′ of the roll 2′ and 3′ with radius R that arise between plane E1 and plane E2 as the result of angle γ, i.e., an additional path relative to the first exemplary embodiment (
A transfer funnel or product trough 8 with stacking wedges extending from the introduction region on either side is arranged over the area of the introduction nip between the front roll 1′ and the middle roll 2′. As the result of the stacking wedges provided in addition to the conventional wedge gaskets, this product trough increases tightness, thereby ensuring a lower lateral product loss.
A stripper 9 with a stripping knife is used for removing the product from the back roll 3′. The stripper 9 is equipped with an automatic knife adjustment, which is actuated from an SPS controller.
In both the first and second exemplary embodiment, the roll surfaces or roll processing surfaces S1, S2, S3 or S′, S2′, S3′ can be made out of ceramic material. The stripper 9 shown on
The ceramic rolls are rounded at the end of the roll processing length.
The pneumatic drive 7 operates at pressures of up to 4 bar, for example, which are brought to bear via the force transducers 6 on the required line pressures in the roll nips. The force transducer 6 make sit possible to increase the pressing force exerted on the rolls by the roll pressing devices 4, 5 by a factor of about 10 to about 80. Accordingly, the reduction in the stroke prescribed by the pneumatic drive 7 via the force transducer increase the nip setting accuracy by the same factor.
The rolls have a diameter of 300 mm, and the back roll 3, 3′ is about 4 mm to 5 mm shorter than the middle roll 2, 2′. As a result, the stripper 9 only strips abraded product from the back roll 3′.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited but by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102004052084.4 | Oct 2004 | DE | national |
This application is a continuation of International Application No. PCT/CH2005/000539, filed Sep. 12, 2005, which claims priority from German application 10 2004 052 084.4 filed Oct. 26, 2004, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CH05/00539 | Sep 2005 | US |
Child | 11789848 | Apr 2007 | US |