Roll quadrant with strip centering action

Information

  • Patent Grant
  • 6457623
  • Patent Number
    6,457,623
  • Date Filed
    Friday, December 10, 1999
    25 years ago
  • Date Issued
    Tuesday, October 1, 2002
    22 years ago
  • Inventors
  • Examiners
    • Mansen; Michael R.
    • Pham; Minh-Chau
    Agents
    • Webb Ziesenheim Logsdon Orkin & Hanson, P.C.
Abstract
A roll quadrant conveyor for conveying strip material generally includes a plurality of support members for supporting a plurality of rolls around a quadrant roll of any desired wrapping angle and, further, a plurality of rolls journaled for rotation in the support members. The rolls are positioned on opposed sides of a conveyor centerline, with each roll positioned at an angle of less than 90° with the conveyor centerline. The rolls define a chevron pattern around the wrapping angle. The strip material, in motion, is centered on the conveyor by the rolls arranged in the chevron pattern. The rolls are profiled rolls.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention generally relates to deflector rolls for conveying strip material and, more particularly, to quadrant roll conveyors with strip centering action for conveying strip material.




2. Description of the Prior Art




In the relevant industry, “quadrant rolls” or “basket rolls” have been used to replace deflector rolls and, in particular, deflector rolls of large diameter. A quadrant roll or basket roll unit is normally an assembly of small diameter rolls mounted on two side frames, with the rolls positioned on the theoretical contour of a sector, or quadrant, of the deflector roll to be replaced.

FIG. 1

shows a typical deflector roll


2


and a typical quadrant or basket roll unit


4


intended to replace the deflector roll


2


.




It is known in the art to position rolls in horizontal roll conveyors in a “herringbone” or “chevron” configuration. A typical herringbone-type horizontal roll conveyor is disclosed by U.S. Pat. No. 1,863,520 to Camerota. The horizontal roll conveyor disclosed by the Camerota patent includes two sets of oppositely facing rolls, with each set of rolls inclined at an angle relative to a centerline of the horizontal (flat) roll conveyor. The Camerota patent further discloses that the herringbone-type configuration provides a centering action to objects carried by the horizontal roll conveyor. In the case of the Camerota patent, the objects to be transported are cylindrical-shaped objects such as metal pipe. The rolls in the horizontal roll conveyor disclosed by the Camerota patent are driven.





FIG. 2

of the present application illustrates the principle behind the self-centering action provided by a horizontal roll conveyor with herringbone-arranged rolls.

FIG. 2

is a plan view schematically showing a typical herringbone-type horizontal roll conveyor designated by reference numeral


10


. A plurality of cylindrical rolls


12


is positioned to the left and right side of centerline A—A of the horizontal roll conveyors


10


. Each of the rolls


12


is positioned at an angle β relative to the centerline A—A of the horizontal roll conveyors


10


. A strip


14


, such as a metal strip, is positioned on the rolls


12


. In

FIG. 2

, the strip


14


is shown centered to the centerline A—A of the horizontal roll conveyors


10


.




Generally, if the strip


14


is centered on the horizontal roll conveyors


10


, the weight of the left side of the strip


14


, designated by reference numeral


16


, is equal to the weight of the right side of the strip, designated by reference numeral


18


. Consequently, the weight of the strip


14


resting on the left and right side rolls


12


is the same. When the strip


14


is in running condition and centered, the rolls


12


generate on the strip


14


identical horizontal and opposite forces F


2


and H


2


. Forces F


2


and H


2


are proportional to the weight of the strip


14


resting on the rolls


12


and the frictional coefficient between the strip


14


and the rolls


12


, as is well known in the art. When the strip


14


is not centered with the centerline A—A of the horizontal roll conveyors


10


, the rolls


12


generate opposite but unequal forces F


2


, H


2


, which result in a concurrent centering action urging the strip


14


to a centered position on the horizontal roll conveyors


10


. V


1


in

FIG. 2

represents the direction of travel of the strip


14


. In

FIG. 2

, reference character F represents the force acting on the left side


16


of the strip


14


, with reference characters F


1


, F


2


representing the vector components of force F. Likewise, reference character H represents the force acting on the right side


18


of the strip


14


, with reference characters H


1


, H


2


representing the vector components of force H, as will be appreciated by those skilled in the art.




Heretofore, the above-discussed “herringbone” or “chevron” principle has not been applied to quadrant roll conveyors, also known as “basket roll units”, where the weight of the strip


14


in

FIG. 2

(i.e., the pressure of the strip


14


on the rolls


12


) is replaced by strip tension, generating pressure on the rolls. In a quadrant roll with chevron rolls, as strip tension increases also pressure and centering forces increase. In a flat, horizontal roller conveyor as strip tension increases, pressure on the roll is less with less centering effect.




The present invention has as its object to provide a quadrant roll conveyor with strip centering action for conveying strip material.




SUMMARY OF THE INVENTION




The present invention is a quadrant roll conveyor for conveying strip material, such as metal, plastic or paper. The conveyor generally includes at least three substantially parallel support members on a frame for supporting a plurality of rolls around a quadrant roll of any desired wrapping angle, with the intermediate support members positioned on the center of the strip conveying system. The quadrant roll conveyor further includes a plurality of rolls, with each of the rolls journaled for rotation in the support members. The rolls are positioned on opposed sides of the conveyor centerline. The rolls are each positioned at an angle of less than 90° with the conveyor centerline to define a chevron pattern around the wrapping angle. The strip material is displaced in center position on the conveyor by the rolls or pushed to the center each time the strip is out of center.




The rolls are preferably rounded or crowned along the longitudinal centerline, but may also be tapered. The rolls may also have a first portion in the longitudinal direction that is cylindrical and a second portion in the longitudinal direction that is tapered.




Additionally, the rolls may be positioned on the opposed sides of the conveyor centerline such that each roll has an axis of rotation intersecting the axis of rotation of a corresponding roll located on the opposite side of the conveyor centerline. The axes of rotation of the oppositely facing rolls preferably intersect at a point in vertical plane passing through the conveyor centerline. Alternatively, the rolls could be mounted with staggered chevrons.











Further details and advantages of the present invention will become apparent from the following detailed description in conjunction with the drawings, wherein like reference characters identify like parts throughout.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a prior art deflector roll and a prior art quadrant roll;





FIG. 2

is a plan view schematically showing a prior art horizontal (flat) roll conveyor having a plurality of rolls arranged in a herringbone configuration;





FIG. 3

is a side view of a plurality of quadrant roll conveyors made in accordance with the present invention and applied in a horizontal looper car with six (6) strip strands;





FIG. 4

is a side view of one of the quadrant roll conveyors shown in

FIG. 3

;





FIG. 5

is a plan view schematically showing one of the quadrant roll conveyors shown in FIG.


3


and having crowned rolls in accordance with the present invention;





FIG. 6

is a side view schematically showing a prior art 90° deflector roll/steering roll (remote pivot);





FIG. 7

is a side view schematically showing a prior art 180° deflector roll/steering roll (remote pivot);





FIG. 8

is a side view schematically showing a prior art 180° deflector roll/steering roll (displacement type);





FIG. 9

is a side view schematically showing a 90° quadrant roll conveyor made in accordance with the present invention and intended to replace the steering roll of

FIG. 6

;





FIG. 10

is a side view schematically showing a 180° quadrant roll conveyor made in accordance with the present invention and intended to replace the steering roll of

FIG. 7

;





FIG. 11

is a side view schematically showing a 180° quadrant roll made in accordance with the present invention and intended to replace the steering roll of

FIG. 8

;





FIG. 12

is a front view schematically showing the quadrant roll conveyor of

FIG. 10

;





FIG. 13

is a side view of the quadrant roll conveyor of

FIG. 12

;





FIG. 14



a


is a side view schematically showing a quadrant roll conveyor made in accordance with the present invention and having prior art straight cylindrical rolls;





FIG. 14



b


is a plan view of the quadrant roll conveyor of

FIG. 14



a;







FIG. 15

is a front view of the prior art straight cylindrical rolls used in the quadrant roll conveyor of

FIG. 14



b;







FIG. 16



a


is a side view schematically showing a quadrant roll conveyor made in accordance with the present invention having crowned rolls;





FIG. 16



b


is a plan view of the quadrant roll conveyor of

FIG. 16



a;







FIG. 17

is a front view of the crowned rolls used in the quadrant roll conveyor of

FIG. 16



b;







FIG. 18



a


is a side view schematically showing a quadrant roll conveyor made in accordance with the present invention having profiled rolls;





FIG. 18



b


is a plan view of the quadrant roll conveyor of

FIG. 18



a


; and





FIG. 19

is a front view of the profiled rolls used in the quadrant roll conveyor of

FIG. 18



b.













DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Horizontal roll conveyors for conveying strip material in which the weight of the strip material is supported by a plurality of horizontal rolls are well-known in the art. Additionally, it is well-known in the art to position the horizontal rolls at an angle of less than 90° relative to a centerline of the horizontal roll conveyor resulting in a “herringbone” or “chevron” configuration. The herringbone configuration, as previously discussed, provides a centering action to the strip material positioned on the horizontal rolls. The present invention incorporates the self-centering action of the herringbone configuration in a quadrant roll conveyor, also known as a “basket roll” conveyor. The Applicant has found that the self-centering advantage of the herringbone configuration can be applied to quadrant roll conveyors by using straight cylindrical rolls or profiled rolls, such as crowned rolls, in the quadrant roll conveyors. The uncertain pressure on rolls, due to the weight of the strip and related tension on a horizontal conveyor, is now replaced by pressure due to designed strip tension.




Referring briefly to

FIGS. 14



a


and


14




b


, discussed more fully hereinafter, it will be apparent that straight cylindrical rolls


35


, when assembled with a relatively large angle ∝, will generate in a quadrant roll conveyor two TORO-cylindrical surfaces as shown in

FIG. 14



b


. To avoid this inconvenience, which could damage a strip of material (not shown) positioned on the straight cylindrical rolls


35


, the straight cylindrical rolls


35


may be crowned in accordance with the present invention to generate a perfect straight cylindrical surface as shown, for example, in

FIG. 16



b


. Additionally, to increase the centering forces acting on the strip of material, it is possible to crown only half the faces of the “herringbone” or “chevron” arranged rolls (the inside facing portions), which will generate a semicircular or quadrant roll having a straight cylindrical surface with two (2) partial TOROs on the lateral sides of the quadrant roll conveyor as shown, for example, in

FIG. 18



b


. With this background, I now refer to

FIGS. 3-5

of the drawings.





FIGS. 3-5

generally show quadrant roll conveyors


20


made in accordance with the present invention. The quadrant roll conveyors


20


shown in

FIG. 3

include a 180° quadrant roll conveyors


20


defining a semicircular quadrant arc or semicircular quadrant roll and two (2) 90° quadrant roll conveyors


20


each defining a 90° quadrant arc or quadrant roll. The terms “quadrant arc” and “quadrant roll” are used interchangeably hereafter to generally refer to the wrapping angle defined by the respective quadrant roll conveyors


20


. The present invention is not intended to be limited to quadrant roll conveyors


20


that define wrapping angles of 180° or 90° only, but is intended to include quadrant roll conveyors


20


that define any desired wrapping angle between 0° and 270°.




The quadrant roll conveyors


20


are used for the transport of strip material, such as metal strip, along a conveying path and to change its direction of travel. These units may replace known steering roll units. Examples of typical conveyor applications for the quadrant roll conveyors


20


include galvanizing lines, pickling lines and the like in continuous strip processing plants. The quadrant roll conveyors


20


usually have a plurality of rolls


22


arranged in a semicircular (180°) arc or quadrant (90°) arc configuration such that the surfaces of the rolls


22


define the wrapping angle around which a strip


24


travels. In contrast to the horizontal roll conveyors previously discussed in which the weight of the strip


24


is carried by the horizontal rolls, in the quadrant roll conveyors


20


, tension in the strip


24


is balanced by the action of the rolls


22


, as is known in the art. The rolls


22


each have a shaft


25


for rotatably mounting the respective rolls


22


to a support, as discussed hereinafter in connection with FIG.


12


.




Referring now to

FIGS. 6-11

, in typical applications in which a change in the direction of travel of strip material and its centering are required, a unitary steering roll


26


, shown schematically in

FIGS. 6-8

, has generally been provided for these purposes. The quadrant roll conveyors


20


, shown schematically in

FIGS. 9-11

and made in accordance with the present invention, are intended to replace the unitary steering rolls


26


shown in

FIGS. 6-8

, respectively. The unitary steering rolls


26


of the prior art require costly tilting mechanisms (not shown) with associated sensors and controls to maintain the strip


24


in a centered mode of travel. The quadrant roll conveyors


20


of the present invention eliminate the need for these costly prior art devices.




Referring to

FIGS. 12 and 13

, a typical quadrant roll conveyors


20


(hereinafter “the conveyors


20


”) made in accordance with the present invention will now be discussed in greater detail. The rolls


22


are positioned to left and right sides


28


,


29


of a centerline A—A of the conveyors


20


. The ends of the shaft


25


of each of the rolls


22


are journaled in two of three substantially parallel support members


30


,


30


′ and


30


″. The support member


30


′ is positioned in the center of the conveyors


20


and is preferably coaxial with the centerline A—A thereof. The shafts


25


of the respective rolls


22


each define an angle β with the conveyor centerline A—A. The angle β is less than 90° and, thus, the rolls


22


are arranged in the herringbone or chevron configuration previously discussed. In the preferred embodiment, the rolls


22


are not driven. However, driven rolls


22


may be provided in the conveyors


20


.




The rolls


22


are positioned on the left and right sides


28


,


29


of the conveyor centerline A—A such that the shafts


25


of the respective rolls


22


each have an axis of rotation intersecting the axis of rotation of the corresponding shaft


25


and, hence, roll


22


located on the opposite side of the conveyor centerline A—A. The axes of rotation of each pair of oppositely facing rolls


22


intersect at a point located on the conveyor centerline A—A. More particularly, each pair of oppositely positioned rolls


22


has axes of rotation that intersect at a point located in a vertical plane passing through the conveyor centerline A—A and the central roll support member


30


′. A staggered chevron arrangement for the rolls


22


is also envisioned by the present invention. In this embodiment (not shown), the axes of rotation of the shafts


25


of the oppositely positioned rolls


22


do not intersect.




Metal strip (not shown) may be positioned on the surface of the rolls


22


and carried thereby. The conveyors


20


, with the rolls


22


(i.e., shafts


25


) forming the angle β with the conveyor centerline A—A, provides better centering action then the herringbone arrangement previously discussed in connection with horizontal roll conveyors, but over a semicircular (180°) arc or quadrant (90°) arc rather than in a horizontal plane. Additionally, the conveyors


20


is able to deflect the strip


24


in the manner previously discussed in connection with the deflector rolls


26


, shown in

FIGS. 6-8






Referring again to

FIG. 2

, it will be apparent to those skilled in the art that the centering effect of the herringbone or chevron arrangement becomes greater the smaller the angle β becomes. As shown in the resolution of forces diagram in

FIG. 2

, as the angle β decreases, the horizontal and opposite forces F


2


and H


2


will increase and enhance the centering effect. Additionally, as previously explained, the further out of center the strip


14


moves, the greater the centering force, either F


2


or H


2


, becomes and urges the strip


14


toward the conveyor centerline A—A.




Referring now to

FIGS. 9-11

, in a similar manner, the higher the tension in the strip


24


as it traverses around the conveyors


20


made in accordance with the present invention, the greater the forces F


2


, H


2


(shown in

FIG. 2

) become resulting in increasing the centering effect of the conveyors


20


.




Referring again to

FIGS. 12 and 13

, the herringbone or chevron configuration previously described has not been extended beyond its application in horizontal roll conveyors because as the straight cylindrical rolls


22


shown in

FIGS. 12 and 13

are assembled with smaller angles β, the surfaces of the straight cylindrical rolls


22


no longer define a flat semicircular or quadrant arc, i.e., a flat surface profile around the arc. In other words, the surface of the conveyors


20


no longer equates to the relatively straight profile defined by the surface of a cylindrical deflector roll, as shown in

FIGS. 6-8

. In contrast, the surface of the conveyors


20


with straight cylindrical rolls will be equivalent to a cylindrical deflector roll with a surface profile defined by two (2) TORO edges as shown in

FIG. 14



b


. In summary, the herringbone or chevron arrangement using straight cylindrical rolls does not provide a flat conveying surface for strip material over a semicircular or quadrant arc.

FIG. 15

shows typical straight cylindrical rolls


35


that are generally used in horizontal roll conveyors. The present invention overcomes also the inherent disadvantages of the straight cylindrical rolls


35


when used in the conveyors


20


by substituting the straight cylindrical rolls


35


with profiled rolls


35


′,


35


″ shown in

FIGS. 16-18

in the herringbone or chevron configuration of the conveyor


20


.





FIGS. 16 and 17

show profiled rolls


35


′ in accordance with the present invention that are crowned in the longitudinal direction. The crowned rolls


35


′ generate a straight cylindrical profile when applied in the herringbone arrangement in the conveyors


20


. The degree of crowning C for the rolls


35


′ is a function of the angle β. An appropriate and acceptable value of the maximum value of the crown C for each of the rolls


35


′ can be obtained using the following approximate formula:







C
=

R


(

1
-

cos


(

arcsin


(



L

2

R



sin







)


)



)



,










wherein is the complementary angle to the angle β that is defined between the conveyor centerline A—A and the respective roll


35


′ centerline or axis of rotation; wherein L is a distance between the conveyor centerline A—A and one of the support members


30


,


30


″; and wherein R is a radius of the quadrant roll conveyors


20


as shown in

FIGS. 9-11

.





FIGS. 18 and 19

show profiled rolls


35


″ with crowning only on a central part of the profiled rolls


35


″. With this type of crown, it is possible to have a flat or straight cylindrical profile in the center of a conveyor


101


and TORO profiles on edges


102


. As shown in

FIG. 19

, a first portion of the roll


35


″ is cylindrical and a second portion of the roll


35


″ is tapered or crowned. This design will increase the strip centering effect and generate more pressure and centering forces when a strip (not shown) is “walking” out of center on the conveyors


101


.




The conveyors


20


, preferably having rolls


35


′ or rolls


35


″, is used to convey strip material as discussed hereinafter. Referring to

FIGS. 10

,


12


and


13


, the strip


24


is positioned onto the rolls


22


such that the strip


24


contacts the surfaces of the rolls


22


. Preferably, the rolls


22


are not driven. The strip


24


is generally located between the outer support members


30


,


30


″ and is under tension to place the strip


24


firmly in contact with the surfaces of the rolls


22


. The tension in the strip


24


preferably provides motive forces to the strip


24


causing the strip


24


to move in a conveying direction, indicated by arrows in FIG.


10


. The tension in the strip


24


and the frictional interaction between the strip


24


and the surfaces of the rolls


22


cause the rolls


22


to rotate. The tensioned strip


24


moves along the surfaces of the rotating rolls


22


and in the conveying direction around the semicircular or quadrant arc defined by the conveyors


20


. In

FIGS. 10

,


12


and


13


, the quadrant arc is a 180° arc. Due to the herringbone or chevron orientation of the rolls


22


, the strip


24


is centered to the centerline A—A of the conveyors


20


as the strip


22


traverses around the semicircular arc defined by the rolls


22


. As stated previously, the quadrant arc or quadrant roll is not limited to a wrapping angle of between 90° and 180° and can be any desired wrapping angle.




With the quadrant roll conveyors


20


according to the present invention, it is possible to replace existing prior art steering/centering rolls that are activated with an electro-hydraulic unit. No electro-hydraulic unit is necessary and the related installation and maintenance costs are significantly reduced by the present invention. The quadrant roll conveyors


20


made according to the present invention provides strip centering action to strip material around an “arc” or “roll” of any desired wrapping angle. Additionally, it is not intended to limit the present invention to the transport of metal strip, but relates to the transport of strip material generally.




Although this invention has been described with reference to preferred embodiments, obvious modifications and alterations of the invention may be made without departing from the spirit and scope of the invention. The scope of the present invention is defined by the appended claims and equivalents thereto.



Claims
  • 1. A quadrant roll conveyor for conveying strip material around a quadrant roll of any desired wrapping angle, comprising:support means; and a plurality of rolls journaled for rotation in the support means, with the rolls arranged in a plurality of roll pairs, with the respective rolls in the roll pairs positioned on opposite sides of a conveyor centerline, and with the rolls in the roll pairs having separate, straight shafts positioned at an angle of less than 90° with the conveyor centerline such that the rolls, in combination, define a chevron pattern around the wrapping angle, wherein the strip material is continuously centered on the conveyor around the wrapping angle by the action of the rolls when the conveyor transports the strip material.
  • 2. The quadrant roll conveyor of claim 1, wherein the shafts of the rolls in the roll pairs have an axis of rotation intersecting the axis of rotation of the corresponding shaft located on the opposite side of the conveyor centerline at a point in a vertical plane passing through the conveyor centerline.
  • 3. The quadrant roll conveyor of claim 2, wherein each of the rolls is crowned in a longitudinal direction.
  • 4. The quadrant roll conveyor of claim 2, wherein each of the rolls is tapered in a longitudinal direction.
  • 5. The quadrant roll conveyor of claim 2, wherein a first portion of each of the rolls in a longitudinal direction is cylindrical and a second portion of each of the rolls in the longitudinal direction is tapered.
  • 6. The quadrant roll conveyor of claim 1, wherein each of the roll is crowned in a longitudinal direction.
  • 7. The quadrant roll conveyor of claim 1, wherein each of the rolls is tapered in a longitudinal direction.
  • 8. The quadrant roll conveyor of claim 1, wherein a first portion of each of the rolls in a longitudinal direction is cylindrical and a second portion of each of the rolls in the longitudinal direction is tapered.
  • 9. The quadrant roll conveyor of claim 1, wherein the wrapping angle is 180°.
  • 10. The quadrant roll conveyor of claim 1, wherein the wrapping angle is 90°.
  • 11. A quadrant roll conveyor for conveying strip material around a quadrant roll of any desired wrapping angle, comprising:three substantially parallel support members, with one of the support members positioned coaxial with a conveyor centerline; and a plurality of rolls, wherein each of the rolls is journaled for rotation in two of the three support members, wherein the rolls are arranged in a plurality of roll pairs, with the respective rolls in the roll pairs positioned on opposite sides of the conveyor centerline, wherein the rolls in the roll pairs have a separate, straight shafts positioned at an angle of less than 90° with the conveyor centerline such that the rolls, in combination, define a chevron pattern around the wrapping angle, wherein the strip material is continuously centered on the conveyor around the wrapping angle by the rolls when the conveyor transports the strip material, and wherein the shafts of the rolls in the roll pairs have an axis of rotation intersecting the axis of rotation of the corresponding shaft located on the opposite side of the conveyor centerline at a point in a vertical plane passing through the conveyor centerline.
  • 12. The quadrant roll conveyor of claim 11, wherein each of the rolls is crowned in a longitudinal direction.
  • 13. The quadrant roll conveyor of claim 12, wherein a maximum value for crowning of each of the rolls is determined by the following formula: C=R⁡(1-cos⁡(arcsin⁡(L2⁢R⁢sin⁢ ∝)))wherein ∝ is a complementary angle to the angle defined between the conveyor centerline and axis of rotation of the shafts of the rolls in the roll pairs, wherein L is a distance between the conveyor centerline and one of the support members, and wherein R is a radius of the quadrant roll.
  • 14. The quadrant roll conveyor of claim 11, wherein each of the rolls is tapered in a longitudinal direction.
  • 15. The quadrant roll conveyor of claim 11, wherein a first portion of each of the rolls in a longitudinal direction is cylindrical and a second portion of each of the action of the rolls in the longitudinal direction is tapered.
  • 16. The quadrant roll conveyor of claim 11, wherein the wrapping angle is 180°.
  • 17. The quadrant roll conveyor of claim 11, wherein the wrapping angle is 90°.
  • 18. A method of using a quadrant roll conveyor to convey strip material around a quadrant roll of any desired wrapping angle, comprising the steps of:providing the quadrant roll conveyor, with the conveyor further comprising: three substantially parallel support members, with one of the support members positioned coaxial with a conveyor centerline; and a plurality of at least partially crowned rolls, wherein each of the rolls is journaled in two of the three support members, wherein the rolls are arranged in a plurality of roll pairs, with the respective rolls in the roll pairs positioned on opposite sides of the conveyor centerline, and wherein the rolls in the roll pairs have separate, straight shafts positioned at an angle of less than 90° with the conveyor centerline such that the rolls, in combination, define a chevron pattern around the wrapping angle; positioning the strip material on the conveyor; tensioning the strip material such that the strip material moves in a conveying direction around the quadrant roll defined by the conveyor; and continuously centering the strip material on the conveyor around the wrapping angle with the rolls.
  • 19. The method of using a quadrant roll conveyor to convey strip material around a quadrant roll of claim 18, wherein the wrapping angle is 180°.
  • 20. The method of using a quadrant roll conveyor to convey strip material around a quadrant roll of claim 18, wherein the wrapping angle is 90°.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Serial No. 60/118,482 filed Feb. 3, 1999, entitled “Roll Quadrant With Strip Centering Action”.

US Referenced Citations (11)
Number Name Date Kind
1863520 Camerota Jun 1932 A
2592581 Lorig Apr 1952 A
2593157 Lorig Apr 1952 A
2593158 Lorig Apr 1952 A
2682333 Orr Jun 1954 A
2692773 Lorig Oct 1954 A
2828852 Lorig Apr 1958 A
3763992 Klenk Oct 1973 A
4541557 Fell et al. Sep 1985 A
4643013 Blazevic Feb 1987 A
5472080 Fukuoka Dec 1995 A
Foreign Referenced Citations (3)
Number Date Country
3826638 Dec 1989 DE
1191028 Oct 1959 FR
4-228224 Aug 1992 JP
Non-Patent Literature Citations (1)
Entry
Kramer, Walter. “Transporteur a Rouleaux, Notamment Transporteur de Stockage Pour Laminoirs.” Brevent I'lnvention. Oct. 1959. Gr. 5, Cl. 6, No. 1.91.028.
Provisional Applications (1)
Number Date Country
60/118482 Feb 1999 US