1. Field of the Disclosure
The present disclosure relates to a roll restrictor for preventing unwanted axially directed rotation of an automotive powertrain.
2. Related Art
Automotive powertrains, particularly powertrains used with front wheel drive vehicles and featuring an engine and transaxle mounted in a conventional east-west configuration—i.e., with the engine's crankshaft perpendicular to the longitudinal center line of the vehicle—utilize roll restrictors to prevent unwanted rotation of the engine and transaxle about an axis which, if not coincidental with the engine's crankshaft center axis, is at least parallel thereto.
Known automotive powertrain roll restrictors utilize bracketry for attaching the restrictor to the transaxle or engine, with brackets that include a separate post for connecting link bushings. Such posts are attached by a fastener which is intended to subject the post to sufficient frictional force at its ends to prevent slippage between the remainder of the bracket and the post itself. Unfortunately, if the clamp load imposed upon the post by the fastener is lost for whatever reason, or it is, indeed, insufficient from the time of initial assembly, resultant slippage between the bushing post and the bulk of the bracket will often times cause a portion of the roll restrictor to fail; in some cases, a failure may involve a roll restrictor mounting pad incorporated in a transaxle. Needless to say such failure engenders considerable expense and inconvenience.
It would be desirable to provide a roll restrictor which prevents slippage between a control link bushing and the bracketry attached to an engine or transaxle.
According to an aspect of the present disclosure, a roll restrictor system for an automotive powertrain includes a first mounting pad located upon a powertrain component, and a mounting bracket having an integral bushing post, with the mounting bracket being attached to the first mounting pad. A control link has a first bushing engaged with the integral bushing post, and a second bushing engaged with the vehicle's structural member.
According to a preferred embodiment, the integral bushing post is one-piece with the mounting bracket.
According to another aspect of the present disclosure, the first mounting pad could be located upon a vehicle transaxle or vehicle engine, with the control link being generally parallel to the vehicle's longitudinal center line.
According to another aspect of the present disclosure, a roll restrictor mounting bracket may include a one-piece U-shaped member having a number of towers which are bored to accept fasteners extending into a mounting pad configured upon a powertrain component, with a bridge section extending between outboard ends of the towers, and with one of the towers being configured as an integral bushing post. As an alternative, the mounting bracket may be configured as a one-piece member having a base with at least three fasteners extending through the base and into a powertrain mounting pad, and with one of the fasteners extending through a bushing post, with the post being one-piece with the base.
According to another aspect of the present disclosure, a control link has a first bushing including an annular elastomeric isolator having a central bore engaged with an integral bushing post, and a second bushing engaged with a vehicle structural member.
It is an advantage of a present roll restrictor system that the number of parts needed to install the system is less, as compared with known systems.
It is yet another advantage of a roll restrictor system according to the present disclosure that higher loads may be imposed upon the system without failure of the system, as compared with known alternative systems.
It is yet another advantage of the present roll restriction system that the fewer number of components which are needed reduce manufacturing, shipping, storage and inventory costs.
Other advantages, as well as features of the present system, will become apparent to the reader of this specification.
As shown in
As shown in
Details of control link 42 are shown first in
According to another aspect of the present disclosure, the first and second bushings employed in control link 44 may be configured from elastomeric materials such as urethane materials and other types of composite and elastomeric and non-elastomeric bushing materials known to those skilled in the art and suggested by this disclosure. Regardless of the particular bushing material chosen, the embodiment of
The foregoing system has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiments may become apparent to those skilled in the art and fall within the scope of the disclosure. Accordingly, the scope of legal protection afforded can only be determined by studying the following claims.