1. Field of the Invention
This invention relates generally to a system and method for providing a vehicle roll stability indicator that is indicative of the potential for vehicle roll and, more particularly, to a system and method for providing a vehicle roll stability indicator that is indicative of the potential for vehicle roll, where determining the roll stability indicator includes calculating vehicle roll energy and roll energy rate.
2. Discussion of the Related Art
It is known in the art to provide vehicle rollover control using differential braking control, rear-wheel steering control, front-wheel steering control, or any combination thereof to prevent a vehicle from rolling over. A vehicle roll prevention system may receive vehicle dynamics information from various sensors, such as yaw rate sensors, lateral acceleration sensors and roll rate sensors, to determine the proper amount of control action to be taken to prevent vehicle roll over. A balance typically needs to be provided between controlling the vehicle roll motion and the vehicle yaw motion to provide the optimal vehicle response. Thus, it is usually necessary to detect certain vehicle conditions to provide the roll prevention control.
Various methodologies are known in the art to detect these vehicle conditions. Specifically, rollover determination can be based on vehicle roll rate from a roll rate sensor and roll angle estimation. For prior techniques, thresholds for roll rate and roll angle are established to detect an imminent rollover. Even though roll rate and roll angle are the two most important elements for detecting vehicle roll motion, they do not reflect the total vehicle roll energy that would eventually determine the vehicles propensity to roll over.
In accordance with the teachings of the present invention, a system and method are disclosed for providing a vehicle roll stability indicator that estimates the propensity for vehicle rollover. The system determines vehicle kinematics from various vehicle sensors, such as roll rate, yaw rate, lateral acceleration, vehicle speed, etc. From these kinematic values, the system estimates a roll angle of the vehicle and a bank angle of the vehicle. The estimated bank angle is used to correct the roll angle. The system determines a roll energy of the vehicle and a roll energy rate of the vehicle from the corrected roll angle. From the roll energy and the roll energy rate, the system calculates a roll stability indicator that defines the potential that the vehicle wheels will lift off of the ground or the vehicle will roll over. From the roll stability indicator, vehicle stability control systems can take suitable action.
Additional features of the present invention will become apparent from the following description and appended claims taken in conjunction with the accompanying drawings.
The following discussion of the embodiments of the invention directed to a process for determining a vehicles rollover probability by determining the vehicles roll energy and roll energy rate is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses.
As will be discussed below, the present invention includes a system and method for determining the probability that a vehicle wheels will lift off of the ground (tip-up) or the vehicle will roll over by determining a roll stability indicator as a function of roll angle and roll rate to give the roll energy. Vehicle rollover involves a complex interaction of forces acting on the vehicle that are influenced by vehicle maneuvering and road conditions. The vehicle roll motion is primarily caused by inertial forces, and in the case of high slip angle, by the tire overturning moment.
Under a steady-state condition during the roll, the center of gravity (CG) of the sprung mass of the vehicle 10 moves laterally and vertically and follows the trajectory:
Y=Y(φ) (1)
Z=Z(φ) (2)
Where φ is the vehicle roll angle.
The kinetic energy T and the potential energy Π(φ) of the vehicle sprung mass are given as:
Where Io is the roll moment of inertia of the sprung mass of the vehicle about the center of gravity, M is the mass of the vehicle, prime denotes differentiating with respect to the roll angle (φ, and Πsusp(φ) is the suspension potential energy during the roll motion.
In the linear region, Πsusp(φ)=Kφ2, where K is the roll stiffness. However, in the complete region, this is a non-linear function due to suspension ride and roll rate non-linearities.
If the mass of the vehicle 10 is rotated about a roll center, then:
M(Y′2+Z′2)=MH2 (5)
Where H is the vehicle sprung mass center of gravity height above the roll axis.
By letting (aY,aZ) and (ay,az) be the components of the vector of acceleration in the frames O1XYZ and Oxyz, respectively, then:
aY=ay cos φ−az sin φ (6)
aZ=ay sin −φ+az cos φ (7)
The measured lateral accelerations aym=ay+g sin φand azm=az+g sin φinclude the effect of gravity. The expression for the generalized force is:
Q=−M(ayY′+azZ′)−Ixz{dot over (r)} (8)
Where Ixz is the yaw-roll product of inertia and r is the yaw rate.
Equation (8) can be defined in the form:
Q=−M[aym(Y′ cos φ+Z′ sin φ)+azm(−Y′ sin φ+Z′ cos φ)−gZ′]−Ixz{dot over (r)} (9)
Lagrange's equation of motion is given as:
Where I1=I0+M(Y′2+Z′2).
Equation (10) is valid for different phases of roll motion, including prior to wheel lift, one wheel lifted, two wheels lifted, etc. Note that the behavior of the functions Y, Z, c, Π is different for these phases.
The energy of the vehicle system can then be defined as:
The change of energy (roll rate) during the roll motion is the derivative of the roll energy E:
{dot over (E)}={dot over (φ)}Q (12)
From equations (11) and (12), a roll stability indicator, according to the invention, can be calculated as:
Were E2WL is the predetermined amount of energy needed to lift two vehicle wheels, {dot over (E)}critical is the predetermined critical amount of energy rate where the vehicle will roll over and c1 and c2 are speed-dependent constants. Both the energy E2WL and the critical energy rate {dot over (E)}critical can be determined experimentally by vehicle testing. For a typical SUV, E2WL=1000 Nm and {dot over (E)}critical=12500 Nm/sec. Table 1 below is an exemplary look-up table that can be used to provide the two speed-dependent constants c1 and c2 for different vehicle speeds based on simulations.
The algorithm then determines the speed-dependant constants c1 and c2 at box 36 based on the vehicle speed from a desirable look-up table, such as Table 1. The algorithm then determines the energy E2WL and the critical energy rate {dot over (E)}critical at box 38 for the particular vehicle. The algorithm then calculates the roll stability indicator RI at box 40 using equation (13).
If the roll stability indicator RI is greater than the first threshold Th_1 at the decision diamond 52, then the algorithm determines whether the roll stability indicator RI is less than a second threshold value Th_2 at decision diamond 50. In one embodiment, the threshold value Th_2 represents the threshold beyond which two vehicle wheels on the same side lift off the ground more than 54 mm. If the roll stability indicator RI is greater than the first threshold value Th_1, but less than the second threshold value Th_2, then the stability control system takes a first lesser control action at box 52. This first action could include differential braking for one wheel, adjusting the steering wheel angle or stiffening the suspension.
If the roll stability indicator RI is greater than the second threshold value at the decision diamond 52, then the algorithm determines whether the roll stability indicator RI is less than a third threshold value Th_3 at decision diamond 54. If the roll stability indicator RI is greater than the second threshold value Th_2, but less than the third threshold value Th_3, then the stability control takes a second control action at box 56. The second control action can increase the intensity of the control action over the first control action, and possibly provide coordinated control at different control systems.
If the roll stability indicator is greater than the third threshold value Th_3 at the decision diamond 54, then the control algorithm takes a third control action at box 58. The third control action can include emergency braking to slow down the vehicle quickly.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.