This invention relates generally to a roll-up door structure and in particular to a roll-up door or overhead door having a swinging door therein.
Roll-up doors are commonly found on trucks, trailers, garages, and industrial buildings. These types of doors typically include a series of pivotally connected horizontal extending panels that ride along a pair of generally L-shaped tracks. The doors are typically configured so that they open by rolling the door up along the tracks and close by rolling the door down along the tracks. The door includes a number of panels to enable the door to bend around the corners of the L-shaped tracks.
Roll-up doors are commonly used to enclose large openings where a standard hinged swinging door would be cumbersome or otherwise be impractical. In buildings, it is common to find an ordinary hinged door positioned near the roll-up door. The hinged door is designed for the convenient and efficient entry and exit of personnel while the roll-up door is designed for the convenient and efficient entry and exit of freight and vehicles. Since the roll-up door is typically large, it requires more effort to open and close the larger roll-up door than a smaller swinging hinged door. In addition, since the temperature within the structure is often controlled, it is more energy efficient to use the smaller door when possible. Therefore, it is typically more efficient for people to use the swinging door rather than the roll-up door when accessing or exiting the structure.
Trucks and trailers having roll-up doors typically do not have the space to include separate smaller swinging hinged doors adjacent and in addition to the roll-up door. However, such a door would be advantageous in vehicles for the same reason it is advantageous in the building structure context. A smaller door would lessen the strain on the operator as he or she would be able to avoid opening the heavier roll-up door when such a large opening is not needed. In addition, where the internal temperature of the truck or trailer is controlled, energy loss would be decreased by use of a smaller swinging door, as the large roll-up door would not be opened as frequently.
To address this need certain roll-up doors have been developed that include smaller swinging doors as an integral part thereof. Exemplary roll-up doors for use with building structures including a smaller swinging door, commonly referred to as a service door, are disclosed in U.S. Patent Publication No. 2003/0141023 to Griebel; U.S. Pat. No. 6,006,814 to Dalpe; U.S. Pat. No. 5,673,740 to Park; U.S. Pat. No. 4,603,723 to Sugihara; U.S. Pat. No. 2,759,227 to Reid et al.; and U.S. Pat. No. 1,989,658 to McCloud. Nonetheless, there is a need in the art for an improved roll-up door that includes a service door. In particular, there is a need in the art for such a door that is particularly well suited to be used on a commercial vehicle, which is subjected to a more rugged environment that is not typically present for doors used with non-mobile building structures.
The invention provides a roll-up door that includes a smaller more efficient service door therein. According to one embodiment of the invention, the service door pivots open and closed about a hinged edge while the opposing free edge is secured together by a self-locking assembly. According to one embodiment of the invention, the self-locking assembly includes a segmented bar that self aligns and forms a rigid support member for supporting the free end of the service door while the service door is in use. According to another embodiment of the invention, a method of manufacturing or retrofitting a roll-up door to include a service door therein is also provided.
A roll-up door is shown in the figures and described herein. The roll-up door includes a service door therein that is constructed to swing open and closed about a vertical axis like a typical entry and exit door. However, unlike typical doors, which ordinarily comprise unitary constructions, the service door is constructed of a plurality of hinged sections of panels attached to allow the roll-up door to bend when the roll-up door opens and closes. The invention provides novel structure, which enables the service door in the roll-up door to function like an ordinary swinging door yet bend with the rest of the roll-up door when the roll-up door is opening or closing. In addition, a method of manufacturing a roll-up door and a method of retrofitting a roll-up door including a service door therein are also provided according to the invention.
While the invention will be described with embodiments of the invention that are exemplified for use with a truck body door, it should be understood that the principles of the invention are not limited to vehicle applications, but could be applied to roll-up and overhead door configurations for buildings or portions thereof.
Referring to the figures wherein like numerals represent like parts throughout the several views, in
In the depicted embodiment, the roll-up door 12 includes seven generally rectangular panels 20, 22, 24, 26, 28, 30 and 32. A service door 40 is formed from portions of the roll-up door panels and is positioned to align with the pull-out ramp 56 located midway between a first side 58 and a second side 60 of the truck 10. The pull-out ramp 56 is shown operatively extended in
Adjacent a second longitudinal vertical seam 52 in the roll-up door panels, and supporting the free edge of the service door, is a free end securing assembly 54. The free end securing assembly 54 includes a bar 62 that extends generally parallel to the second longitudinal vertical edge 52. The bar 62 is constructed of multiple sections that lock together to hold the free side 63 (as opposed to the pivot side 67) of the door together as a single unit. Attached to the bar 62 are a plurality of pivot supports 64, collars 66, and latches 68. The bar 62 is pivotally connected to the outside panels adjacent the second vertical seam 52 by the pivot support 64. In the embodiment illustrated there is one pivot support 64 connected to each of the panels 20, 22, 24, 26, 28 and 30 forming the service door. Similarly, there is one latch 68 pivotally connected to the bar 62 for each of the panels 20, 22, 24, 26, 28 and 30. The latches, described in more detail hereinafter, releasably secure the service door panels at the free side 63 of the door to their respective adjacent roll-up door panel portions, in response to pivotal motion of the bar 62 about the pivot support 64. The free end securing assembly 54 is configured such that it holds the service door 40 closed when the bar 62 is pivotally biased towards the outside surface 70 of the service door 40 as shown in
It should be appreciated that according to the invention many alternative embodiments of the roll-up door 12 and its associated service door 40 are possible. For example, the roll-up door 12 may include any number of panels in any workable geometric configuration. The service door 40 within the roll-up door could alternatively be located off to one side or another. Moreover, the service door 40 may include more or fewer hinges, and the hinges can be positioned in many different locations. For example, in an alternative embodiment each panel forming the service door may be connected to the roll-up door panels by one or two hinges (not shown) located adjacent the inside edge of the service door 40 such that the service door 40 is configured to open inwardly.
It should also be appreciated that the roll-up door 12 can be configured to be used in many other environments. In an alternative embodiment the roll-up door 12 can be configured to be used on a truck having a hydraulic loading platform (lift gate) in place of the ramp 56. In other embodiments the roll-up door 12 can be configured, for example, to be used in industrial building settings or as a garage door of a residential building.
Referring to FIGS. 3A-C, the roll-up door 12 is shown from inside the truck 10 body. In the depicted embodiment the panels 20, 22, 24, 26, 28, 30 and 32 are shown pivotally connected via a plurality of hinges 72 and 82. Those portions of adjacent roll-up door 12 panels located outside of the service door perimeter are connected by four columns of hinges 72a, 72b, 72c and 72d. These hinges collectively interconnect the panels to form a solid surrounding framework for the service door 40 when the roll-up door is closed or down as shown in
Still referring to FIGS. 3A-C, the service door 40 includes a transverse support mechanism 92. The transverse support mechanism 92 includes a cable 94 that is connected near a lower corner 96 and near an opposed upper corner 98 of the service door 40. The cable 94 can be tensioned to provide auxiliary support to the service door 40. In the depicted embodiment each end of the cable includes a threaded tensioning member 102 that can be twisted to tighten or loosen the cable 94. In addition, along the cable 94 are guide members 100 that attach to the inner surface 90 of the service door 40 and hold the cable in place along the panels of the service door 40. It should be appreciated that alternative embodiments of the service door may include no transverse support mechanism 92 or alternative embodiments of such support mechanisms.
The roll-up door 12 also includes a base plate 104 that connects the left most portion 20a of the panel 20 to the right most portion 20b of the panel 20. The base plate 104 is downwardly notched to be positioned adjacent the truck body floor and to extend underneath a wiper seal 110 of the service door 40 mounted near the lower edge of the lowest service door panel 20c. In some embodiments the downwardly notched portion of the base plate 104 includes chamfered edges to facilitate the rolling of two wheel carts into and out of the service door 40. Chamfered edges can also prevent operators from tripping on the base plate 104. The wiper seal 110 seals the gap between the bottom edge of the service door panel 20c and the base plate 104 when the service door and roll-up door are closed. A pair of seal members 112 and 114 are connected respectively to or adjacent the base plate 104 portions extending beneath the left most and right most panel portions 20a and 20b to form seals of such panel portions with the floor of the truck body when the roll-up door 12 is closed.
Referring to
Each of the adjacent sections 114, 116 and 118 of the bar 62 includes a self-guiding locking mechanism 120 that releasably holds adjacent sections 112, 114, 116 and 118 of bar 62 together except for the upper most section 112, as the post 122 would not serve a function. In the depicted embodiment, the locking mechanism includes a post 122 mounted to the upper end of a post segment that is sized to cooperatively engage the lower portion 124 of the adjacent section 112, 114, 116 and 118 of bar 62. More particularly, the bar 62 in the depicted embodiment is hollow, having a circular cross-section with an inner diameter D1 and an outer diameter D2. In the depicted embodiment the sections 112, 114, 116 and 118 of the bar 62 have a constant inner diameter D1 and outer diameter D2.
As illustrated in
The proximal end 128 of the post 122 is configured to fit within the upper end 130 of section 116 of the bar 62. To hold the post 122 in place within the section 116 a collar 66 is positioned over the outside of the upper end 130 of section 116 of the bar 62. The collar 66 supports a threaded set screw 132 that includes a bearing end 134 that fits through a hole 136 in the upper end 130 of section 116 of the bar 62 and engages the body of the post 122 securing the longitudinal position of the post 122 within the bar segment. The collar 66 further allows the longitudinal position of the post 122 to be axially adjusted as necessary to insure proper cooperative engagement with the bottom 124 of the next adjacent bar segment. A similar self guiding locking mechanism is present at the junctions of each pair of adjacent segments of bar 62. It should be understood that many alternative embodiments of locking mechanism 120 are possible. A few such alternative embodiments will be discussed in greater detail below.
Referring to
Each latch 68 includes an over center lever portion 142 pivotally connected to a base member 158 that is secured to the service door panel adjacent its free side edge 63. The lever arm 142 pivots about a pin 142a between a closed latched position as shown in
The bar 62 segments are further aligned on and secured to the outer surface 70 of the service door panels by the hinge support members 64 (
In some embodiments support slugs 166 and 168 are inserted into the bar 62 at the locations where the bar connects to the hinge support members 64 and latches 68. The slugs 166 and 168 are sized, constructed, and positioned to provide structural support to such areas of the bar 62 to prevent the bar from crushing or dimpling at the connection locations. In the depicted embodiment the bar 62 is a ¾ inch hollow cylindrical steel bar. Any number of alternative materials, sizes, and shapes of bars can be used as well.
Referring to
Referring to
In the depicted embodiment the slug 204 includes a rod 206 that is connected to and extends from the top portion 208 of the slug 204 towards the upper end 210 of the bar 196. The bar 196 is constructed to engage a post 212 such that the longitudinal position of the post 212 relative to the bar 196 can be adjusted by moving the post 212 along the rod 206. In the depicted embodiment, the upper end 214 of the rod 206 is threaded, and the bottom of the post 212 includes a threaded hole 216 that engages the upper end 214 of the rod 206. The vertical position of the post 212 in the depicted embodiment can be adjusted by twisting the post about its central axis 218. Once the desired vertical position of the post 212 is set, the post 212 can be further secured to the bar 196 by tightening the set screw 220 on the collar 222. Post 212 operatively functions similar to post 122 previously described.
Referring to
It should be appreciated that any disclosed feature of the free end securing member of one embodiment may be combined with the features of disclosed alternative embodiments to form additional alternative embodiments. In addition, numerous other alternative embodiments not specifically shown or described are also within the scope of the invention.
Referring to
Referring to
Referring to
The second ends 298 and 300 of the springs 284 and 282 are anchored to cross bars 302 and 304 fixed to units 260 and 258, respectively. In the depicted embodiment the bars 290 and 292 have a square cross-section that fits within the square cross-section of units 260 and 258. The first ends 294 and 296 of the springs 284 and 282 are attached to bars 290 and 292. It should be appreciated that any other shaped cross-sections are possible and that in some embodiments the cross-section of the bars need not be the same shape as the cross-section of the units.
Referring to
The sealing assembly includes two columns 312 and 314 of sealing plates 316 attached to the inside edges 52 and 53 adjacent the free end 63 and the pivot end 67 of the service door 40. The sealing plates 316 include a first surface 322 configured to attach to inside surface 318 of the non-service door portion 320 of the rollup door 12. In the depicted embodiment, the sealing plates 316 include a second surface 324 offset and parallel to the first surface 322 that is configured to attach to a gasket 326. The offset can be achieved by stacking materials together to form the sealing plate as shown in
At each end of the sealing plate 316 are angled surfaces 328 and 330 that prevent the ends of the sealing plate 316 from interfering with each other as the roll-up door 12 moves upward and downward. In the depicted embodiment, the angle of the angled surfaces 328 and 330 relative to the first surface 322 is less than 45 degrees. It should be appreciated that in alternative embodiments any suitable angle including zero and 90 degrees is possible.
Referring generally to the description above, a method of manufacturing or retrofitting a roll-up door is provided. The method of manufacturing and retrofitting the roll-up door includes a number of common steps. For example, some of the steps in common may include pivotally connecting the pivot side 67 of the service door 40 to the non-service door portion of the roll-up door; connecting a free end securing assembly 54 to the service door; connecting a transverse support mechanism 92 to the inside surface of the service door 40; connecting a base plate 104 across the bottom most panel 20; installing the sealing assembly; and adjusting free end securing member 54 to ensure proper alignment. In the embodiments illustrated above, many of the above steps are illustrated in greater detail. For example, the step of pivotally connecting the pivot side 67 of the service door 40 to the non-service door portion of the roll-up door is shown to include the step of hinging the panels of the service door to the adjacent panels of the roll-up door to allow the service door to pivot about a vertical axis. The step of connecting a free end securing assembly 54 to the service door 40 is shown to include the step of securing via fasteners the free end securing assembly 54 to the free side 63 of the outside surface of the service door 40. It should be appreciated that not all of the above steps are necessary in the retrofitting or manufacturing process. In addition, many additional steps and sub-steps are also consistent with the principles of the invention, as illustrated above.
The method of retrofitting the roll-up door 12 to include the service door may also include the steps of cutting the panels of the service door 40 into the roll-up door; rearranging and adding hinges to accommodate the panels of the service door 40; removing the original seal at the lower edge of the service door prior to attaching the base plate across the bottom panel 20 of the roll-up door. It should be appreciated that many additional steps or sub-steps or different steps may be included in the retrofitting process; for example, the step of capping the cut edges with edge caps 121 may also be included. In should also be appreciated that in some embodiments the retrofitting process includes fewer steps as well.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.