The present description relates generally to antenna systems and methods for use thereof and relates, more specifically, to antenna systems employing rolled and/or folded antennas and methods for use thereof.
Various systems exist currently for implementing reconfigurable antennas. One example is a group of closely spaced patches, where the patches are connected by switches. By opening some switches and closing other switches, the electromagnetic geometry and antenna performance are changed. However, the physical geometry stays the same.
In another example of an existing device, an antenna is connected to a ground and/or a feed through one or more switches. As some switches are opened and other are closed, the electromagnetic properties (e.g., resonant frequency, gain, etc.) of the antenna are changed as well. Once again, the physical geometry stays the same.
A different type of antenna is a telescoping antenna, such as is used with portable radios and televisions. Such antennas are typically monopole antennas constructed of concentric metal tubes that can be pulled out to provide length or retracted to provide compactness. A user can extend the antenna during operation and retract the antenna for storage. Generally, telescoping antennas provide better performance at or near their maximum lengths and often provide adequate performance even when retracted (though the general rule is that the natural resonant frequency will be shifted as the length changes). Currently, however, there is no antenna available that provides acceptable compactness and performance when the antenna is disposed upon a substrate and operates at the same band when compact or expanded.
Various embodiments of the invention are directed to antenna systems that include antenna elements disposed upon flexible substrates, the antenna elements providing performance within a communication band when the substrate is rolled and unrolled (or folded and unfolded). Various embodiments of the invention are directed to methods for use of such antennas, including operating within a particular communication band in an unrolled (or unfolded) configuration and operating within the same communication band in a rolled (or folded) configuration.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Antenna element 101 is disposed upon flexible substrate 103. In one example, flexible substrate 103 is constructed of the material commonly referred to as “flexible PCB,” and antenna element 101 is constructed as a metal trace thereon. Other embodiments may employ other materials for flexible substrate 103, such as any of a variety of plastics and/or may also employ other conductive materials for antenna element 101. In
An advantage of the embodiment of FIGS. 1 and 2A-D is that rolling flexible substrate 103 and antenna element 101 does not change the operating frequency of antenna system 100 so drastically that the operating frequency falls out of a band that is serviced by antenna element 101 in its unrolled configuration. Thus, antenna system 100 provides consistent service in a communication band whether rolled or unrolled.
A notable feature of antenna system 300 is the inverted “V” shape of antenna element 301. Specifically, the conductive material of antenna element 301 follows a path that leads away from ground plane 304 near RF feed 302 and leads toward ground plane 304 at the end that is farthest from RF feed 302. The inverted “V” shape is one design that eliminates or minimizes overlap of the conductive path with itself when the antenna is rolled or folded. The inverted “V” shape of antenna element 301 allows antenna element 301 to provide operation in both rolled and unrolled configurations.
A prototype according to the design of the embodiment of
While
In this example, antenna element 811 is disposed upon substrate 803 at an angle that minimizes or eliminates overlap with itself when rolled or folded. By contrast, antenna element 801 will experience much overlap with itself when rolled or folded. Thus, antenna element 801 would generally be expected to experience greater frequency shift when rolled or folded than would antenna element 811. One example embodiment may require a high degree of precise performance within a frequency band and use antenna elements 801 when flexible substrate 803 is flat, and use the other antenna element 811 when flexible substrate 803 is rolled. In system 800, RF module 805, or another separate device (not shown), includes a control system that selects antenna element 801 or antenna element 811 using switch 815. System 800 uses the control system to discern a rolled or unrolled status and to control switch 815 to select an appropriate antenna element depending on the rolled/unrolled status of flexible substrate 803. In this way, system 800 provides consistent operation within a desired communication band in any rolled or unrolled configuration.
In other embodiments with more than one antenna element, the multiple antenna elements can be operated at the same time, whether rolled or unrolled, e.g., in a Multiple Input Multiple Output (MIMO) application. Such an embodiment may include two or more antenna elements configured so as to minimize overlap when rolled or folded. Furthermore, such an embodiment may utilize separate RF modules for each antenna element or an RF module with two, independent input/output ports. The number of different antenna elements that may be disposed upon a substrate is not limited to one or two, but may be scaled for any of a variety of applications. Multiple-antenna systems that can be adapted according to one or more embodiments include MIMO applications, array applications, antenna diversity applications, and the like.
In block 902, a configuration of the antenna elements is discerned. For instance, the system may discern that the antenna elements and their accompanying substrate are rolled or unrolled. The action of block 902 may be performed in response to a change in configuration, periodically, in response to a user command and/or the like.
In block 903, one of the antenna elements is selected in response to the discerned configuration. For instance, if antenna element A is adapted for use in an unrolled configuration, and the discerned configuration is unrolled, then antenna element A is selected in block 903. On the other hand, if antenna element B is adapted for use in a rolled configuration, and the discerned configuration is rolled, then antenna element B is selected.
In block 904, it is discerned whether a configuration has changed. If the configuration has changed, then the new configuration is discerned in block 902. If the configuration has not changed, then the system does not reselect antenna elements in block 905. During operation, at least in this embodiment, the system regularly checks whether the configuration has changed by returning to block 904. Using process 900, the antenna system ensures satisfactory operation in at least one communication band in the rolled and unrolled configurations.
While
While the embodiments illustrated above show antenna elements on flexible substrates that may be rolled and unrolled, other embodiments provide for folding alternatively to, or in addition to, rolling.
Furthermore, while the embodiments illustrated above show monopole-type antennas with a single metal path above a ground plane, other types of antennas may find use in other embodiments. For instance, various embodiments may use a patch antenna element, a Planar Inverted F Antenna (PIFA)-type element, a slot antenna element, a multi-band antenna element, etc.
Various embodiments of the invention may be adapted for use in any of a variety of devices, such as, e.g., a walkie talkie, a rollable screen device, a wrist phone, an RF Identification (RFID) tag (e.g., applied to a flat, curved or creased surface), and the like.
Various embodiments of the invention provide advantages over prior art antenna systems. For instance, rolling an antenna can provide for compactness and for conformance with various devices in many embodiments. Furthermore, various embodiments provide for rolling and unrolling with no perceptible loss of performance to a human user, since some embodiments operate in the same band when rolled or unrolled and operate with acceptable gain and efficiency even when rolled. Moreover, antennas in the past have been folded or rolled for transportation or storage, but no known systems employ folded or rolled antennas during use (especially not in a same operating band as when unfolded or unrolled).
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
3165751 | Clark | Jan 1965 | A |
3577196 | Pereda | May 1971 | A |
3631505 | Carman et al. | Dec 1971 | A |
4041498 | Freimark et al. | Aug 1977 | A |
4743917 | Huntsman et al. | May 1988 | A |
4868576 | Johnson, Jr. | Sep 1989 | A |
5079558 | Koike | Jan 1992 | A |
5274393 | Scott | Dec 1993 | A |
5313221 | Denton, Jr. | May 1994 | A |
5343213 | Kottke et al. | Aug 1994 | A |
5374937 | Tsunekawa et al. | Dec 1994 | A |
5513383 | Tsao | Apr 1996 | A |
5661496 | Baek et al. | Aug 1997 | A |
6140970 | Ylijurva | Oct 2000 | A |
6531986 | Saito | Mar 2003 | B2 |
6756943 | Kim et al. | Jun 2004 | B2 |
7339530 | Ying et al. | Mar 2008 | B2 |
7573426 | Amano et al. | Aug 2009 | B2 |
7586461 | Miyoshi et al. | Sep 2009 | B2 |
20020190904 | Cohen | Dec 2002 | A1 |
20040207560 | Knapp | Oct 2004 | A1 |
20070040758 | Dwyer et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100328171 A1 | Dec 2010 | US |